切线长定理_九年级数学教案_模板

合集下载

2024版初三数学切线长定理教案[1]

2024版初三数学切线长定理教案[1]

初三数学切线长定理教案•引言•知识链接•探究学习•课堂练习目录•归纳小结•拓展延伸01引言使学生理解切线长定理的概念,掌握切线长定理的证明方法和应用技巧。

知识与技能过程与方法情感态度与价值观通过探究、观察、归纳等数学活动,培养学生的数学思维和解决问题的能力。

激发学生学习数学的兴趣,培养学生的数学素养和严谨的科学态度。

030201切线长定理的概念和性质切线长定理的证明方法切线长定理的应用举例教学重点与难点教学重点切线长定理的证明方法和应用技巧。

教学难点如何引导学生理解切线长定理的本质和应用,以及如何培养学生的数学思维和解决问题的能力。

02知识链接圆是平面上所有与定点(圆心)距离等于定长(半径)的点的集合。

圆的定义及基本性质C = 2πr,S = πr²,其中r 为半径。

圆的周长与面积公式在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

圆心角、弧、弦之间的关系垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

垂径定理及其推论圆的性质与定理直线与圆有唯一公共点时,这条直线叫做圆的切线。

切线的定义经过半径的外端并且垂直于这条半径的直线是圆的切线。

切线的判定定理圆的切线垂直于经过切点的半径。

切线的性质定理切线的性质与定理相似三角形的性质与判定•相似三角形的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。

相似三角形的判定方法两角对应相等,两三角形相似。

两边对应成比例且夹角相等,两三角形相似。

三边对应成比例,两三角形相似。

相似三角形的性质对应角相等。

对应边成比例。

面积比等于相似比的平方。

03探究学习利用实际生活中的例子,如切割圆形蛋糕、圆形纸片等,让学生直观感受切线长定理的应用。

通过比较不同切线长度的变化,引导学生发现切线长与半径之间的关系,从而引入切线长定理。

通过回顾圆的性质,引出切线长定理的概念。

通过严格的数学推导,证明切线长定理的正确性。

利用相似三角形或全等三角形的性质,推导切线长与半径之间的等式关系。

切线长定理_九年级数学教案_模板

切线长定理_九年级数学教案_模板

切线长定理 _九年级数学教课方案 _模板1、教材分析(1)知识结构( 2)要点、难点分析要点:切线长定理及其应用.因切线长定理再次表现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等供给了理论依照,它属于工具知识,常常应用,所以它是本节的要点.难点:与切线长定理相关的证明和计算问题.如 120 页练习题中第 3 题,它不单应用切线长定理,还用到解方程组的知识,是代数与几何的综合题,学生常常不可以很好的把知识连接起来.2、教法建议本节内容需要一个课时.(1)在教课中,组织学生自主察看、猜想、证明,并深刻分析切线长定理的基本图形;对重要的结论实时总结;(2)在教课中,以“察看——猜想——证明——分析——应用——概括”为主线,展开在教师组织下,以学生为主体,活动式教课.教课目的1.理解切线长的观点,掌握切线长定理;2.经过对例题的分析,培育学生分析总结问题的习惯,提升学生综合运用知识解题的能力,培育数形联合的思想.3.经过对定理的猜想和证明,激发学生的学习兴趣,调换学生的学习踊跃性,建立科学的学习态度.教课要点 :切线长定理是教课要点教课难点 :切线长定理的灵巧运用是教课难点教课过程设计:(一)察看、猜想、证明,形成定理1、切线长的观点.如图, P 是⊙ O 外一点, PA, PB 是⊙ O 的两条切线,我们把线段 PA, PB 叫做点 P 到⊙O 的切线长.指引学生理解:切线和切线长是两个不一样的观点,切线是直线,不可以胸怀;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,能够胸怀.2、察看利用电脑改动点P 的地点,察看图形的特点和各量之间的关系.3、猜想指引学生直观判断,猜想图中PA 能否等于PB.PA= PB.4、证明猜想,形成定理.猜想能否正确。

需要证明.组织学生分析证明方法.要点是作出协助线OA , OB ,要证明PA= PB.想想:依据图形,你还能够获取什么结论?∠OPA=∠ OPB( 如图 )等.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线均分两条切线的夹角.5、概括:把前面所学的切线的 5 条性质与切线长定理一同概括切线的性质6、切线长定理的基本图形研究如图, PA, PB 是⊙ O 的两条切线,A, B 为切点.直线OP 交⊙ O 于点 D, E,交 AP于 C(1)写出图中全部的垂直关系;(2)写出图中全部的全等三角形;(3)写出图中全部的相像三角形;(4)写出图中全部的等腰三角形.说明:对基本图形的深刻研究和认识是在学习几何中要点,它是灵巧应用知识的基础.(二)应用、概括、反省例 1、已知:如图, P 为⊙ O 外一点, PA, PB 为⊙ O 的切线,A 和B 是切点, BC 是直径.求证: AC ∥ OP.分析:从条件想,由P 是⊙ O 外一点, PA、PB 为⊙ O 的切线, A ,B 是切点可得PA=PB,∠APO =∠ BPO ,又由条件BC 是直径,可得 OB = OC,由此联想到与直径相关的定理“垂径定理”和“直径所对的圆周角是直角”等.于是想到可能作协助线AB.从结论想,要证AC ∥ OP,假如连接AB 交 OP 于 O,转变为证CA ⊥ AB , OP ⊥ AB ,或从OD 为△ABC 的中位线来考虑.也可考虑经过平行线的判断定理来证,可获取多种证法.证法一.如图.连接AB .PA,PB 分别切⊙ O 于 A , B∴ PA= PB∠ APO =∠ BPO∴ OP ⊥AB又∵BC 为⊙O 直径∴ AC⊥ AB∴ AC∥ OP (学生板书 )证法二.连接AB ,交 OP 于 DPA,PB 分别切⊙ O 于 A 、 B∴ PA= PB∠ APO =∠ BPO∴AD =BD又∵ BO=DO∴ OD 是△ABC 的中位线∴ AC∥ OP证法三.连接AB ,设 OP 与 AB 弧交于点 EPA,PB 分别切⊙ O 于 A 、 B∴ PA= PB∴ OP ⊥AB∴ =∴∠ C=∠ POB∴ AC∥ OP反省:教师指引学生比较以上证法,激发学生的学习兴趣,培育学生灵巧应用知识的能力.例2、圆的外切四边形的两组对边的和相等.(分析和解题略)反省:( 1)例 3 事实上是圆外切四边形的一个重要性质,请学生记着结论.四边形的性质:对角互补.P120 练习:( 2)圆内接练习1填空如图 ,已知⊙ O 的半径为 3 厘米,PO= 6 厘米,PA,PB 分别切⊙ O 于 A,B,则 PA= _______,∠APB = ________练习 2已知:在△ABC中,BC=14厘米,AC=9厘米,AB=13厘米,它的内切圆分别和 BC , AC ,AB 切于点 D ,E, F,求 AF , AD 和 CE 的长.分析:设各切线长AF , BD 和 CE 分别为 x 厘米, y 厘米, z 厘米.后列出对于x , y, z 的方程组,解方程组即可求出结果.(解略)反省:解这个题时,除了要用三角形内切圆的观点和切线长定理以外,还要用到解方程组的知识,是一道综合性较强的计算题.经过对此题的研究培育学生的综合应用知识的能力.(三)小结1、提出问题学生概括(1)这节课学习的详细内容;(2)学惯用的数学思想方法;(3)应注意哪些观点之间的差别 ?2、概括基本图形的结论3、学习了用代数方法解决几何问题的思想方法.(四)作业教材 P131 习题 7. 4A 组 1. (1), 2,3, 4. B 组 1 题.研究活动图中找错你能找出(图1)与(图在图 2 中, P1A 为⊙ O1 ⊙O3 的切线.2)的错误所在吗?和⊙ O3 的切线、 P1B 为⊙ O1 和⊙ O2 的切线、P2C 为⊙ O2 和提示:在图 1 中,连接 PC、PD,则 PC、PD 都是圆的直径,从圆上一点只好作一条直径,所以此图是一张错图,点O 应在圆上.在图 2 中,设 P1A=P1B=a , P2B=P2C=b , P3A = P3C= c,则有a= P1A= P1P3+P3A= P1P3+ c①c= P3C= P2P3+P3A= P2P3+ b②a= P1B= P1P2+P2B= P1P2+ b③将②代人①式得a= P1P3+(P2P3+ b) = P1P3+P2P3+b,∴ a-b= P1P3+P2P3由③得 a-b= P1P2 得∴P1P2= P2P3+ P1P3∴P1、 P 2 、P3 应重合,故图 2 是错误的.不等式和它的基天性质(1)教课目的: 1.认识不等式的意义,掌握不等式的基天性质,并能正确运用它们将不等式变形;2.提升学生察看、比较、概括的能力,浸透类比的思想方法;重、难点:掌握不等式的基天性质并能正确运用它们将不等式变形。

切线长定理教案(优秀教案)-(含多款)

切线长定理教案(优秀教案)-(含多款)

切线长定理教案(优秀教案)-(含多款)教案切线长定理教案一、教学目标1.让学生理解切线长定理的概念和意义,掌握切线长定理的证明和应用方法。

2.培养学生的几何思维能力,提高学生的空间想象力和逻辑推理能力。

3.培养学生运用切线长定理解决实际问题的能力,增强学生的数学应用意识。

二、教学内容1.切线长定理的概念和意义2.切线长定理的证明方法3.切线长定理的应用三、教学重点与难点1.教学重点:切线长定理的概念、证明和应用。

2.教学难点:切线长定理的证明过程,以及如何运用切线长定理解决实际问题。

四、教学方法1.采用启发式教学方法,引导学生自主探究切线长定理的证明和应用。

2.利用多媒体教学手段,展示切线长定理的直观图形,帮助学生理解定理。

3.设计丰富的例题和练习题,让学生在实践操作中掌握切线长定理的应用。

五、教学过程1.导入新课通过生活中的实例,如圆规作图等,引出切线长定理的概念,激发学生的学习兴趣。

2.讲解切线长定理的概念和意义(1)切线的定义:与圆相切,且与圆的半径垂直的直线。

(2)切线长定理:从圆外一点引圆的两条切线,切线长相等。

3.证明切线长定理(1)构造图形,连接圆心与切点,利用圆的半径相等,证明切线长相等。

(2)通过几何画板演示证明过程,让学生直观感受定理的正确性。

4.切线长定理的应用(1)讲解切线长定理在几何作图中的应用,如求圆的切线、等分弦等。

(2)讲解切线长定理在解决实际问题中的应用,如求圆的直径、周长等。

5.课堂练习设计不同难度的练习题,让学生独立完成,巩固切线长定理的应用。

6.总结与拓展(1)总结切线长定理的概念、证明和应用方法。

(2)拓展切线长定理的相关知识,如圆的切线方程、切线长定理的推广等。

7.课后作业布置适量的课后作业,让学生巩固所学知识,提高解题能力。

六、教学评价1.课堂参与度:观察学生在课堂上的发言和讨论情况,了解学生的学习兴趣和积极性。

2.作业完成情况:检查学生的作业,了解学生对切线长定理的掌握程度。

人教版九年级数学上册24.2.2切线长定理教案

人教版九年级数学上册24.2.2切线长定理教案
此外,小组讨论的环节中,我发现学生们在讨论切线长定理的实际应用时,思路不够开阔。这可能是因为他们在日常生活中对几何图形的观察不够细致,或者是缺乏将理论知识应用到实际中的经验。我打算在之后的课程中,增加一些观察和分析实际几何图形的练习,帮助学生培养从生活中发现数学的能力。
在难点解析部分,我发现通证明过程有了更清晰的认识。但仍有学生反映在理解证明思路时感到困难。我考虑在下一节课中,引入更多的辅助手段,如动画演示或实物模型,来帮助学生们更好地理解几何证明的思路。
-证明思路:证明过程中涉及到的几何变换和逻辑推理对学生来说是难点。
-举例:在证明过程中,如何通过构造全等三角形和使用圆的性质来推导切线长定理。
-问题解决:学生在应用切线长定理解决具体问题时,往往难以找到合适的解题切入点。
-举例:在求解切线长或证明线段相等的问题时,学生可能不知道如何利用切线长定理来简化问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了切线长定理的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对切线长定理的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。如果有任何疑问或不明白的地方,请随时向我提问。
二、核心素养目标
1.培养学生的几何直观与空间观念:通过切线长定理的学习,使学生能够观察和理解几何图形,发展空间想象力,提高解决几何问题的能力。
2.提升学生的逻辑推理与证明能力:引导学生探索切线长定理的证明过程,训练学生运用逻辑推理、几何论证的方法,培养严谨的数学思维。
3.增强学生的解决问题能力:通过切线长定理在具体题目中的应用,让学生掌握解决问题的方法和策略,提高解题效率,形成良好的数学解题习惯。

九年级数学上册《切线长定理》教案、教学设计

九年级数学上册《切线长定理》教案、教学设计
5.注重培养学生的合作交流意识,引导学生学会倾听、尊重他人意见,形成良好的团队合作氛围。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握切线长定理的定义及其证明过程。
2.能够运用切线长定理解决实际问题,如求切线长度、判断点到圆的距离等。
3.掌握切线长定理与其他数学知识(如相似三角形、勾股定理等)的联系与运用。
6.总结反思,提炼方法:在教学结束后,组织学生进行总结反思,提炼切线长定理的学习方法和解题技巧,培养学生的自主学习能力。
7.评价反馈,调整教学:通过课堂提问、课后作业、小组讨论等形式,了解学生的学习情况,给予及时反馈。根据学生的反馈,调整教学策略,以提高教学效果。
8.关注情感,培养态度:在教学过程中,关注学生的情感态度,鼓励学生积极参与,勇于克服困难。培养学生的团队合作意识,形成良好的学习氛围。
3.情感态度:强调数学在现实生活中的应用,激发学生对数学学科的兴趣和热爱。
4.课后作业:布置课后作业,巩固所学知识。要求学生按时完成,教师及时批改并给予反馈。
五、作业布置
为了巩固学生对切线长定理的理解和应用,布置以下作业:
1.基础巩固题:设计一些基础的切线长定理题目,要求学生熟练掌握定理的基本应用,如求解切线长度、判断点到圆的距离等。此类题目旨在帮助学生巩固课堂所学知识,提高解题速度和准确性。
(三)情感态度与价值观
1.培养学生主动探索、积极思考的学习态度,激发学生对数学学科的兴趣。
2.引导学生体会数学的严谨性和逻辑性,培养学生的理性思维和科学精神。
3.通过数学史的了解,让学生感受数学文化的魅力,增强民族自豪感。
4.培养学生的团队协作意识,学会倾听、尊重他人意见,形成良好的人际关系。
教学设计:

九年级数学下册《切线长定理》教案、教学设计

九年级数学下册《切线长定理》教案、教学设计
(4)利用信息技术手段,如几何画板、动画等,使抽象的几何关系形象化、直观化,降低学习难度。
2.教学过程:
(1)导入:通过一个生活实例,如圆形跑道的修建问题,引出切线长定理,激发学生兴趣。
(2)探究:引导学生观察几何图形,提出猜想,尝试证明切线长定理。
(3)讲解:对切线长定理的证明过程进行详细讲解,强调几何逻辑推理的重要性。
九年级的学生已经具备了一定的几何知识基础,对圆的性质、三角形的基本概念有了一定的了解。在此基础上,学习切线长定理,他们能够更好地理解圆与三角形之间的关系,将所学知识进行拓展和深化。然而,学生对切线长定理的理解和应用可能还存在一定难度,特别是定理的证明过程和在实际问题中的应用。
考虑到学生的认知发展水平,他们对抽象几何关系的理解仍有待提高,因此,在教学过程中,应注重从直观到抽象的过渡,通过丰富的实例、生动的语言和形象的表达,帮助学生建立起切线长定理的直观形象。此外,学生在解决实际问题时,可能缺乏独立思考和创新能力,需要教师在教学过程中给予适当的引导和鼓励。
5.写作任务:结合切线长定理的学习,撰写一篇数学小论文,主题为“切线长定理在实际生活中的应用”。
要求:论文内容要具有实际意义,结构清晰,论据充分。通过写作,培养学生的数学表达能力和创新意识。
6.家长参与:鼓励学生与家长一起探讨切线长定理在实际生活中的应用,共同完成一道实践题。
要求:家长参与学生的数学学习,增进家校合作,提高学生的学习兴趣和积极性。
(4)应用:设计不同难度的练习题,让学生运用切线长定理解决问题,巩固所学知识。
(5)拓展:引导学生探索切线长定理在解决实际问题中的应用,如设计最优路线等。
3.教学评价:
(1)过程性评价:关注学生在课堂上的参与度、合作交流、思考过程等,给予及时的反馈和鼓励。

九年级数学上册切线长定理(教案)

九年级数学上册切线长定理(教案)

九年级数学上册第 3 课时切线长定理【知识与技术】理解掌握切线长的观点和切线长定理,认识三角形的内切圆和三角形的心里等观点 .【过程与方法】利用圆的轴对称性帮助研究切线长的特点 .联合求证三角形内面积最大的圆的问题,掌握三角形内切圆和心里的观点 .【感情态度】经历察看、实验、猜想、证明等数学活动过程,发展合情推理能力.【教课重点】切线长定理及其应用 .【教课难点】内切圆、心里的观点及运用.一、情境导入,初步认识研究如图,纸上有一⊙ O,PA 为⊙ O 的一条切线,沿着直线 PO 对折,设圆上与点 A 重合的点为 B,回答以下问题:(1)OB 是⊙ O 半径吗?( 2)PB 是⊙O 的切线吗?( 3) PA、 PB 是什么关系?( 4)∠ APO 和∠ BPO 有何关系?学生着手实验,察看剖析,合作沟通后,教师抽取几位学生回答以下问题.剖析: OB 与 OA 重合, OA 是半径,∴ OB 也是半径 .依据折叠前后的角不变,∴∠ PBO=∠PAO=90°(即 PB⊥OB), PA=PB,∠ POA=∠POB;∠APO= ∠ BPO.而 PB 经过半径 OB 的外端点,∴ PB 是⊙ O 的切线 .二、思虑研究,获得新知1.切线长的定义及性质切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长叫做这点到圆的切线长 .我们知道圆的切线是直线,而切线长是一条线段长,不是直线.如右图中, PA、PB 是⊙ O 的两条切线,∴ OA ⊥ PA,OB⊥ PB.又 OA=OB ,OP=OP,∴ Rt△ AOP≌ Rt△BOP,∴ PA=PB,∠ AOP=∠BOP,∠ APO=∠BPO.由此我们获得切线长定理:从圆外一点能够引圆的两条切线,它们的切线长相等,这一点和圆心的连线均分两条切线的夹角 .【教课说明】这个定理要让学生疏清题设和结论 .题设:过圆外一点作圆的切线 .结论:①过圆外的这一点可作该圆的两条切线 .②两条切线长相等 .③这一点和圆心的连线均分两条切线的夹角 .猜想:在上图中连结AB ,则 OP 与 AB 有如何的关系?剖析:∵ PA、PB 是⊙ O 的切线, A 、B 是切点 .∴PA=PB,∠ OPA=∠OPB,∴OP⊥ AB,且 OP 均分 AB.2.三角形的内切圆思虑如图是一张三角形的铁皮,如安在它上边截下一块圆形的用料,而且使圆的面积尽可能大呢?【教课说明】指引学生剖析作图的重点,假定圆已经作出,圆心应知足什么条件,如何依据这些条件确立圆心?圆心确立后,如何确立半径?教师指引,学生要相互议论来解决这些问题.假定切合条件的圆已作出,那么这个圆与△ABC 的三边都相切,这个圆的圆心到△ ABC 三边的距离都等于半径 .又由于我们在角均分线这节中学过,三角形的三条角均分线交于一点,而且这个点到三条边的距离相等.所以,在△ ABC中,作∠ B,∠ C 的角均分线 BM 和 CN,它们订交于点 I ,则点 I 到 AB 、 BC、AC 的距离相等 .∴以 I 为圆心,点 I 到 BC 的距离 ID 为半径作圆,则⊙ I 与△ ABC 三边相切 .内切圆:与三角形各边都相切的圆叫做三角形的内切圆.内切圆的圆心是三角形三条角均分线的交点,叫做三角形的心里.三角形的心里到三角形三边的距离相等.【教课说明】要让学生比较图形理解三角形的内切圆的观点,并与三角形的外接圆进行比较 .“接”和“切”是说明多边形的极点和边与圆的关系;多边形的极点都在圆上叫“接” ,多边形的边都与圆相切叫“切” .三、典例精析,掌握新知例 1 教材第 100 页,例 2(此题较简单,教师指点,可由学生自主达成)例 2 如图, P 为⊙ O 外一点, PA、PB 分别切⊙ O 于 A 、B 两点,连结 OP,交⊙ O 于 C,若 PA=6.PC=23.求⊙ O 的半径 OA 及两切线 PA、 PB 的夹角 .剖析:连结 OA ,设 AO=x ,在 Rt△AOP 中利用勾股定理求出 x,由切线长定理知∠ APO=12∠ APB.求出∠ APO 便可得∠ APB.解:连结 AO ,∵ PA 是⊙ O 的切线,∴ PA⊥OA ,△ PAO 为直角三角形 .设 OA=x ,则 OC=x,在 Rt△PAO 中, OA 2+PA2=OP2,∴ x2+62=(2 3 +x)2,解得 :x=2 3 .∴OA=2 3 ,OP=4 3 ,∴∠AOP=60°,∠APO=30°.∴∠ APB=2∠APO=2×30° =60°.∴⊙ O 的半径 OA 为 2 3 ,两切线PA、PB 的夹角为 60°.【教课说明】例 1、例 2 是利用切线长定理进行计算,在解题过程中,我们经常用方程来解决几何问题 .例 3 如图,在△ ABC 中, I 是心里,∠ BIC=100°,则∠ A=____.剖析:∵ I 是心里 .∴B I, CI 分别是∠ ABC ,∠ ACB 的均分线 .∴∠ ABC+ ∠ACB=2 (∠ IBC+ ∠ICB ) .又∵∠ BIC=100°,∴∠ IBC+ ∠ICB=80° .∴∠ ABC+ ∠ACB=160 °.∴∠ A=180° -160°=20° .【教课说明】指导学生利用三角形心里的性质解决问题.四、运用新知,深入理解课本第 100 页练习 1、 2 题.【教课说明】教师指引学生达成课本练习.五、师生互动,讲堂小结这节课学习了哪几个重要知识点?你有哪些迷惑?【教课说明】学生自主沟通并讲话总结,教师予以增补和评论,让学生完好地领悟本堂课的知识重点 .1.部署作业:从教材“习题”中选用 .2.达成练习册中本课时练习的“课后作业”部分.本节课的教课是直线与圆的地点关系的持续,从研究切线长定理开始,经过如何作一个三角形的内切圆,引出三角形的内切圆和三角形心里的观点,经历这些研究过程,能使学生掌握图形的基本知识和基本技术,并能解决简单的问题.。

北师大版九年级数学37切线长定理教案

北师大版九年级数学37切线长定理教案

教案一、教学目标1.知识与技能:(1)了解什么是切线以及切线的性质;(2)掌握切线长定理的概念和计算方法;(3)能够运用切线长定理解决实际问题。

2.过程与方法:(1)通过引导学生思考,引出切线的概念;(2)通过数学实例,引导学生了解切线的性质;(3)通过练习题,巩固学生对切线长定理的掌握。

3.情感态度与价值观(1)培养学生具备良好的数学思维能力;(2)培养学生独立思考和解决问题的能力;(3)培养学生对数学的兴趣与好奇心。

二、教学重难点1.教学重点:(1)切线的概念;(2)切线的性质;(3)切线长定理的计算方法。

2.教学难点:(1)引导学生理解切线的性质;(2)能够善于运用切线长定理解决实际问题。

三、教学过程1.引入新知识:(1)通过投影片展示一个圆形,并引导学生观察、思考圆上的点到圆心的连线和切线有什么共同点和区别。

(2)以学生感兴趣的问题为切入点,例如一个人站在操场的跑道上,他站在一个点上,他向前走穿过人行道一直走到跑道外面,这个人行道与跑道的交点与他最初站的地方之间的线段是多长?(3)引导学生讨论圆上的点到圆心的连线和切线的性质,引出切线的概念以及切线长定理。

2.学习切线的性质:(1)通过一组具体的数学实例,让学生观察、分析,并总结切线的性质。

(2)引导学生进行合作探究,提出问题和解决问题的方法。

3.掌握切线长定理的计算方法:(1)讲解切线长定理的概念和计算方法。

(2)通过数学实例,引导学生掌握切线长定理的计算方法。

4.运用切线长定理解决实际问题:(1)通过具体实例和练习题,引导学生运用切线长定理解决实际问题。

(2)让学生在小组或个人中解答问题,并进行讨论和分享解决思路。

5.深化与拓展学习:(1)提供一些拓展问题,让学生深化对切线长定理的理解。

(2)讲解一些切线的拓展知识,如相切、切线的性质等。

(3)提供一些挑战性问题,让学生进行探究和解决。

四、课堂练习1.选择题:(1)已知半径为6cm的圆O,切线AB与半径OA的夹角为60°,则AB的长度为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

切线长定理_九年级数学教案_模板1、教材分析(1)知识结构(2)重点、难点分析重点:切线长定理及其应用.因切线长定理再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点.难点:与切线长定理有关的证明和计算问题.如120页练习题中第3题,它不仅应用切线长定理,还用到解方程组的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来.2、教法建议本节内容需要一个课时.(1)在教学中,组织学生自主观察、猜想、证明,并深刻剖析切线长定理的基本图形;对重要的结论及时总结;(2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学.教学目标1.理解切线长的概念,掌握切线长定理;2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想.3.通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度.教学重点:切线长定理是教学重点教学难点:切线长定理的灵活运用是教学难点教学过程设计:(一)观察、猜想、证明,形成定理1、切线长的概念.如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB叫做点P到⊙O的切线长.引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.2、观察利用电脑变动点P 的位置,观察图形的特征和各量之间的关系.3、猜想引导学生直观判断,猜想图中PA是否等于PB.PA=PB.4、证明猜想,形成定理.猜想是否正确。

需要证明.组织学生分析证明方法.关键是作出辅助线OA,OB,要证明PA=PB.想一想:根据图形,你还可以得到什么结论?∠OPA=∠OPB(如图)等.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.5、归纳:把前面所学的切线的5条性质与切线长定理一起归纳切线的性质6、切线长定理的基本图形研究如图,PA,PB是⊙O的两条切线,A,B为切点.直线OP交⊙O于点D,E,交AP 于C(1)写出图中所有的垂直关系;(2)写出图中所有的全等三角形;(3)写出图中所有的相似三角形;(4)写出图中所有的等腰三角形.说明:对基本图形的深刻研究和认识是在学习几何中关键,它是灵活应用知识的基础.(二)应用、归纳、反思例1、已知:如图,P为⊙O外一点,PA,PB为⊙O的切线,A和B是切点,BC是直径.求证:AC∥OP.分析:从条件想,由P是⊙O外一点,PA、PB为⊙O的切线,A,B是切点可得PA=PB,∠APO=∠BPO,又由条件BC是直径,可得OB=OC,由此联想到与直径有关的定理“垂径定理”和“直径所对的圆周角是直角”等.于是想到可能作辅助线AB.从结论想,要证AC∥OP,如果连结AB交OP于O,转化为证CA⊥AB,OP ⊥AB,或从OD为△ABC的中位线来考虑.也可考虑通过平行线的判定定理来证,可获得多种证法.证法一.如图.连结AB.PA,PB分别切⊙O于A,B∴PA=PB∠APO=∠BPO∴OP ⊥AB又∵BC为⊙O直径∴AC⊥AB∴AC∥OP (学生板书)证法二.连结AB,交OP于DPA,PB分别切⊙O于A、B∴PA=PB∠APO=∠BPO∴AD=BD又∵BO=DO∴OD是△ABC的中位线∴AC∥OP证法三.连结AB,设OP与AB弧交于点EPA,PB分别切⊙O于A、B∴PA=PB∴OP ⊥AB∴=∴∠C=∠POB∴AC∥OP反思:教师引导学生比较以上证法,激发学生的学习兴趣,培养学生灵活应用知识的能力.例2、圆的外切四边形的两组对边的和相等.(分析和解题略)反思:(1)例3事实上是圆外切四边形的一个重要性质,请学生记住结论.(2)圆内接四边形的性质:对角互补.P120练习:练习1填空如图,已知⊙O的半径为3厘米,PO=6厘米,PA,PB分别切⊙O于A,B,则PA=_______,∠APB=________练习2已知:在△ABC中,BC=14厘米,AC=9厘米,AB=13厘米,它的内切圆分别和BC,AC,AB切于点D,E,F,求AF,AD和CE的长.分析:设各切线长AF,BD和CE分别为x厘米,y厘米,z厘米.后列出关于x , y,z 的方程组,解方程组便可求出结果.(解略)反思:解这个题时,除了要用三角形内切圆的概念和切线长定理之外,还要用到解方程组的知识,是一道综合性较强的计算题.通过对本题的研究培养学生的综合应用知识的能力.(三)小结1、提出问题学生归纳(1)这节课学习的具体内容;(2)学习用的数学思想方法;(3)应注意哪些概念之间的区别?2、归纳基本图形的结论3、学习了用代数方法解决几何问题的思想方法.(四)作业教材P131习题7.4A组1.(1),2,3,4.B组1题.探究活动图中找错你能找出(图1)与(图2)的错误所在吗?在图2中,P1A为⊙O1和⊙O3的切线、P1B为⊙O1和⊙O2的切线、P2C为⊙O2和⊙O3的切线.提示:在图1中,连结PC、PD,则PC、PD都是圆的直径,从圆上一点只能作一条直径,所以此图是一张错图,点O应在圆上.在图2中,设P1A=P1B=a,P2B=P2C=b,P3A=P3C=c,则有a= P1A= P1P3+P3A= P1P3+ c①c= P3C= P2P3+P3A= P2P3+ b②a= P1B= P1P2+P2B= P1P2+ b③将②代人①式得a = P1P3+(P2P3+ b)= P1P3+P2P3+ b,∴a-b= P1P3+P2P3由③得a-b= P1P2得∴P1P2= P2P3+ P1P3∴P1、P 2 、P3应重合,故图2是错误的.不等式和它的基本性质(1)教学目标:1.了解不等式的意义,掌握不等式的基本性质,并能正确运用它们将不等式变形;2.提高学生观察、比较、归纳的能力,渗透类比的思维方法;重、难点:掌握不等式的基本性质并能正确运用它们将不等式变形。

教法:尝试、讨论、引导、总结教具:投影仪教学内容及程序:一、前提测评1.前边,我们已学习了等式和它的基本性质。

请同学们思考并回答下列问题。

2.由“等式表示相等关系”,教师问:在现实生活中,同种量间有没有不等的关系呢?(如身高与身高、面积与面积等)请学生举一些实例。

3.这节课,我们就来认识表示不等式关系的式子,并研究它的性质。

(板书:不等式和它的基本性质)二、达标导学我们先来认识不等式。

(板书:“1.不等式的意义”)1.教师出示下列式子(板书):-71+4 , 5+31≠2-5 , a≠0 ,a+2>a+1 , x+34 B组-3-5;D组-22 ∴-3>-2 ()②∵-10 ()④∵-a活动目标:1、利用几何画板的形象性,通过量的变化,验证并进一步研究函数图象的性质。

2、利用几何画板的动态性,从变化的几何图形中,寻找不变的几何规律。

3、学会作简单函数的图象,并对图象作初步了解。

4、通过本节课的教学,把几何画板作为学生认知的工具,从而激发学生学习和探索数学的兴趣。

活动的重点难点及设施活动重点:图形的性质和规律的探索活动难点:几何画板的操作(作函数的图象)活动设施:微机室(有液晶投影仪和大屏幕);windows操作平台几何画板office2000等教师准备好的五个画板文件:hstx1.gsphstx2.gsphstx3.gspymdl1.gspymdl2.gsp。

操作一按下列步骤进行操作,并回答相应的问题。

1、单击右上角“请看动画”,再打开d:\jhhb\hstx1.gsp画板文件;2、拖动点E和点F沿坐标轴运动(或双击按钮“动画1”),同时观看解析式中的k和b的变化。

①当k>0时,图象经过哪几个象限?②当k3、双击显示按钮后,在k>0和k4、先在坐标系内作出直线(或直接打开文件:c:\sketch\hstx2.gsp)操作二1、同操作一,打开d:\jhhb\hstx2.gsp2、保持a不变,分别上下移动b、c改变b、c的大小时,抛物线的形状是否变化?上下移动a改变a的大小,注意观看抛物线的开口方向与什么有关?张口程度与什么有关?3、上下移动c改变c的大小,看抛物线怎样变化?4、分别改变a、b的大小,看抛物线的对称轴是否发生变化?由3和4可知,抛物线的对称轴与什么有关?与什么无关?5、c保持不变,改变a、b时,抛抛线总是经过哪一点?6、抛物线与x轴交点的个数与b2-4ac的符号有什么关系?7、双击显示按钮,再双击动画按钮,观察y随x怎样变化?8、当a=0时,函数的图象是什么?操作三打开文件:d:\jhhb\ymdl1.gsp圆的两弦AB、CD相交于圆内一点P,我们得到,如果把点P拖到圆外,上述结论是否成立?如果点在圆上呢?操作四作函数y=x2-2的图象作图步骤:1、击“文件”菜单中“新绘图”命令,建立新的绘图板;2、点击“图表”菜单中的“建立坐标轴”;3、在横坐标轴上任找一点,用“文本工具”,加上标签“C”,选中C点,单击“度量”菜单中的“坐标”命令,得度量值,C:(-2.80,0.00),再用“选择工具”选择它。

(度量值变黑)4、点击“度量”菜单中的“计算”命令,出现计算器;5、点击“数值”下拉式菜单中的“点C”的“x”值,按“确定”按纽,得Xc=-2.80 再用“选择工具”选择它。

(度量值变黑)6、点击“度量”菜单中的“计算”命令,出现计算器,再点击“数值”下拉式菜单中的“x[c]”,分别按计算器上的“∧”、“2”、“-”、“2”、“确定”按纽。

得到代数式的值:xc2-2=14.45.7、用“选择工具”,分别选中Xc=-2.80 xc2-2=14.45. (选取第二个对象要按键盘上的“shift”键的同时再选);8、点击“图表”菜单中的“绘出(x,y)”,得到点“E”。

(如果看不到点E,说明它不在当前的视窗内,此时可调整C点,使该点出现在窗口内);9、分别选中点E和点C,点击“作图”菜单中的“轨迹”,得二次函数的图象。

活动目标:1、利用几何画板的形象性,通过量的变化,验证并进一步研究函数图象的性质。

2、利用几何画板的动态性,从变化的几何图形中,寻找不变的几何规律。

3、学会作简单函数的图象,并对图象作初步了解。

4、通过本节课的教学,把几何画板作为学生认知的工具,从而激发学生学习和探索数学的兴趣。

活动的重点难点及设施活动重点:图形的性质和规律的探索活动难点:几何画板的操作(作函数的图象)活动设施:微机室(有液晶投影仪和大屏幕);windows操作平台几何画板office2000等教师准备好的五个画板文件:hstx1.gsphstx2.gsphstx3.gspymdl1.gspymdl2.gsp。

相关文档
最新文档