切线长定理教案(优秀教案)---新版
数学教案-切线长定理

数学教案-切线长定理数学教案-切线长定理1、教材分析(1)知识结构(2)重点、难点分析重点:切线长定理及其应用.因切线长定理再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点.难点:与切线长定理有关的证明和计算问题.如120页练习题中第3题,它不仅应用切线长定理,还用到解方程组的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来.2、教法建议本节内容需要一个课时.(1)在教学中,组织学生自主观察、猜想、证明,并深刻剖析切线长定理的基本图形;对重要的结论及时总结;(2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学.教学目标1.理解切线长的概念,掌握切线长定理;2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想.3.通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度.教学重点:切线长定理是教学重点教学难点 :切线长定理的灵活运用是教学难点教学过程设计:(一)观察、猜想、证明,形成定理1、切线长的概念.如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB叫做点P到⊙O的切线长.引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.2、观察利用电脑变动点P 的位置,观察图形的特征和各量之间的关系.3、猜想引导学生直观判断,猜想图中PA是否等于PB. PA=PB.4、证明猜想,形成定理.猜想是否正确,数学教案-切线长定理。
需要证明.组织学生分析证明方法.关键是作出辅助线OA,OB,要证明PA=PB.想一想:根据图形,你还可以得到什么结论?OPA=OPB(如图)等.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.5、归纳:把前面所学的切线的5条性质与切线长定理一起归纳切线的性质6、切线长定理的基本图形研究如图,PA,PB是⊙O的两条切线,A,B为切点.直线OP交⊙O于点D,E,交AP于C(1)写出图中所有的垂直关系;(2)写出图中所有的全等三角形;(3)写出图中所有的相似三角形;(4)写出图中所有的等腰三角形.说明:对基本图形的深刻研究和认识是在学习几何中关键,它是灵活应用知识的基础.(二)应用、归纳、反思例1、已知:如图,P为⊙O外一点,PA,PB为⊙O的切线,A和B是切点,BC是直径.求证:AC∥OP.分析:从条件想,由P是⊙O外一点,PA、PB为⊙O的切线,A,B是切点可得PA=PB,APO=BPO,又由条件BC是直径,可得OB=OC,由此联想到与直径有关的定理“垂径定理”和“直径所对的圆周角是直角”等.于是想到可能作辅助线AB.从结论想,要证AC∥OP,如果连结AB交OP于O,转化为证CAAB,OP AB,或从OD为△ABC的中位线来考虑.也可考虑通过平行线的判定定理来证,可获得多种证法.证法一.如图.连结AB.PA,PB分别切⊙O于A,BPA=PBAPO=BPOOP AB又∵BC为⊙O直径ACABAC∥OP (学生板书)证法二.连结AB,交OP于DPA,PB分别切⊙O于A、BPA=PBAPO=BPOAD=BD又∵BO=DOOD是△ABC的中位线AC∥OP证法三.连结AB,设OP与AB弧交于点EPA,PB分别切⊙O于A、BPA=PBOP AB=C=POBAC∥OP反思:教师引导学生比较以上证法,激发学生的学习兴趣,培养学生灵活应用知识的能力.例2、圆的外切四边形的两组对边的和相等.(分析和解题略)反思:(1)例3事实上是圆外切四边形的一个重要性质,请学生记住结论.(2)圆内接四边形的性质:对角互补.P120练习:练习1 填空如图,已知⊙O的半径为3厘米,PO=6厘米,PA,PB分别切⊙O于A,B,则PA=_______,APB=________练习2 已知:在△ABC中,BC=14厘米,AC=9厘米,AB=13厘米,它的内切圆分别和BC,AC,AB切于点D,E,F,求AF,AD和CE的长.分析:设各切线长AF,BD和CE分别为x厘米,y厘米,z厘米.后列出关于x , y,z的方程组,解方程组便可求出结果.(解略)反思:解这个题时,除了要用三角形内切圆的概念和切线长定理之外,还要用到解方程组的知识,是一道综合性较强的计算题.通过对本题的研究培养学生的综合应用知识的能力.(三)小结1、提出问题学生归纳(1)这节课学习的具体内容;(2)学习用的数学思想方法;(3)应注意哪些概念之间的区别?2、归纳基本图形的结论3、学习了用代数方法解决几何问题的思想方法.(四)作业教材P131习题7.4A组1.(1),2,3,4.B组1题.探究活动图中找错你能找出(图1)与(图2)的错误所在吗?在图2中,P1A为⊙O1和⊙O3的切线、P1B为⊙O1和⊙O2的切线、P2C为⊙O2和⊙O3的切线.提示:在图1中,连结PC、PD,则PC、PD都是圆的直径,从圆上一点只能作一条直径,所以此图是一张错图,点O应在圆上.在图2中,设P1A=P1B=a,P2B=P2C=b,P3A=P3C=c,则有a=P1A=P1P3+P3A=P1P3+ c ①c=P3C=P2P3+P3A=P2P3+ b ②a=P1B=P1P2+P2B=P1P2+ b ③将②代人①式得a =P1P3+(P2P3+ b)=P1P3+P2P3+ b,a-b=P1P3+P2P3由③得a-b=P1P2得P1P2=P2P3+ P1P3P1、P 2 、P3应重合,故图2是错误的.。
切线长定理教案(优秀教案)-(含多款)

切线长定理教案(优秀教案)-(含多款)教案切线长定理教案一、教学目标1.让学生理解切线长定理的概念和意义,掌握切线长定理的证明和应用方法。
2.培养学生的几何思维能力,提高学生的空间想象力和逻辑推理能力。
3.培养学生运用切线长定理解决实际问题的能力,增强学生的数学应用意识。
二、教学内容1.切线长定理的概念和意义2.切线长定理的证明方法3.切线长定理的应用三、教学重点与难点1.教学重点:切线长定理的概念、证明和应用。
2.教学难点:切线长定理的证明过程,以及如何运用切线长定理解决实际问题。
四、教学方法1.采用启发式教学方法,引导学生自主探究切线长定理的证明和应用。
2.利用多媒体教学手段,展示切线长定理的直观图形,帮助学生理解定理。
3.设计丰富的例题和练习题,让学生在实践操作中掌握切线长定理的应用。
五、教学过程1.导入新课通过生活中的实例,如圆规作图等,引出切线长定理的概念,激发学生的学习兴趣。
2.讲解切线长定理的概念和意义(1)切线的定义:与圆相切,且与圆的半径垂直的直线。
(2)切线长定理:从圆外一点引圆的两条切线,切线长相等。
3.证明切线长定理(1)构造图形,连接圆心与切点,利用圆的半径相等,证明切线长相等。
(2)通过几何画板演示证明过程,让学生直观感受定理的正确性。
4.切线长定理的应用(1)讲解切线长定理在几何作图中的应用,如求圆的切线、等分弦等。
(2)讲解切线长定理在解决实际问题中的应用,如求圆的直径、周长等。
5.课堂练习设计不同难度的练习题,让学生独立完成,巩固切线长定理的应用。
6.总结与拓展(1)总结切线长定理的概念、证明和应用方法。
(2)拓展切线长定理的相关知识,如圆的切线方程、切线长定理的推广等。
7.课后作业布置适量的课后作业,让学生巩固所学知识,提高解题能力。
六、教学评价1.课堂参与度:观察学生在课堂上的发言和讨论情况,了解学生的学习兴趣和积极性。
2.作业完成情况:检查学生的作业,了解学生对切线长定理的掌握程度。
切线长定理教案优秀教案Word

相等等,加深对定理的理解。
示范解题步骤
03
通过具体例题,示范切线长定理在解题中的应用,让学生明确
解题步骤和方法。
课堂练习环节
基础练习题
安排适量的基础练习题,让学生 运用切线长定理解决简单的几何
问题。
提高练习题
增加一定难度的提高练习题,引导 学生综合运用切线长定理和其他几 何知识解决问题。
小组讨论与展示
的几何意义。
教学挂图
展示切线长定理的相关 知识点和典型例题,便
于学生观看和学习。
多媒体资源准备
投影仪
用于展示切线长定理的课件、动 画和视频等教学资源。
电脑
播放教学资源,同时可用于实时 编辑和展示教学内容。
教学软件
如几何画板等,用于动态演示切 线长定理的几何图形和变化过程, 帮助学生形成直观印象。
网络资源
能够运用切线长定理解决与圆 有关的切线问题,包括切线的 判定、切线长的计算等。
了解切线长定理在实际问题中 的应用,如建筑设计、工程绘 图等领域。
过程与方法目标
通过观察、实验、归纳等过程,探究切线长定理的形成过程,培养学生的探究精神 和创新能力。
通过讲解、讨论、练习等方法,使学生掌握切线长切线概念
简要介绍切线的定义及性 质,引导学生思考切线与 圆的关系。
明确教学目标
阐述本节课的教学目标和 要求,让学生明确学习方 向。
新课学习环节
讲解切线长定理
01
详细讲解切线长定理的内容,包括定理的表述、证明及应用等。
探究切线长定理的推论
02
引导学生探究切线长定理的推论,如切线与半径垂直、切线长
PART 06
评价与反馈
REPORTING
切线长定理教育教学设计

切线长定理教育教学设计【教学设计】课程名称:数学教学内容:切线长定理教学目标:1.知识目标:了解切线长定理的概念,掌握切线长度的计算方法;2.能力目标:能够灵活运用切线长定理解决相关问题;3.情感目标:培养学生的数学兴趣,激发学生对数学的好奇心和探究欲望。
重点难点:切线长度的计算方法、如何灵活运用切线长定理解决问题。
教学准备:教材、黑板、粉笔、实物模型。
教学过程:Step 1 导入新知(5分钟)1.引入话题:通过提问引入,例如“你知道什么是切线吗?”“切线和弦有什么区别?”2.提出问题:什么是切线长定理?3.小组讨论:让学生在小组内讨论并回答问题。
Step 2 理论探究(30分钟)1.讲解切线长定理的概念和表达方式:使用黑板,让学生用自己的语言解释切线长定理,并将解释内容记录在黑板上。
2.演示切线长度计算方法:在黑板上画出一个圆,并标出切点和切线,然后演示如何根据切线长度计算方法计算切线长度。
3.学生练习:让学生自己动手计算给定的切线长度,并与搭桥的方法进行对比。
Step 3 整合运用(30分钟)1.分组讨论:将学生分为几个小组,每个小组选择一个实际场景,例如自行车轮胎的修理、建筑中的圆台等,并结合切线长定理进行讨论。
2.小组展示:让每个小组展示他们的讨论结果,包括场景描述和切线长度的计算过程。
Step 4 拓展应用(30分钟)1.知识运用:设计一些练习题,让学生运用切线长定理解决相关问题,并给予适当的指导。
2.拓展应用:设计一些拓展题,让学生通过切线长定理解决更复杂的问题,激发学生的思维能力。
Step 5 课堂小结(5分钟)1.总结切线长定理的概念和计算方法;2.强调切线长定理的重要性;3.激发学生对数学的兴趣和好奇心。
Step 6 课后作业(5分钟)1.布置课后作业:让学生完成相关的练习题,巩固所学知识;2.提出思考题:例如“还有哪些几何图形中可以运用切线长定理解决问题?”教学反思:本节课通过引入切线长定理的概念,讲解切线长度的计算方法,并将其应用于实际场景和拓展应用中,旨在提高学生对数学概念的理解和运用能力。
切线长定理 教学案1

切线长定理教学案教学目标:1.理解切线长的概念,掌握切线长定理;2.培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力;3.培养学生的动手实践能力和探究能力,培养学生的合作精神。
教学重点:切线长定理教学难点:切线长定理的灵活运用教学过程:一. 前提测评切线的性质定理:________________________________________________二.切线长定理1.想一想:经过平面上的已知点P作已知圆的切线,分别可画多少条呢?请同学们利用上图画一画.(答案:____________________________________________________________________。
)2.引出切线长的定义切线长:_________________________________________________________________________3.探究与实践:(小组合作讨论)如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB的长叫做点P到⊙O的切线长.(1)观察并猜想:①.切线长PA与PB的数量关系;___________②.∠OPA与∠OPB的关系。
___________(2)证明你的猜想:(3)归纳出切线长定理:_______________________________________________________________________________________________4.切线长定理图形研究:(小组合作讨论)结合右边的切线长的基本图(PA,PB分别切⊙O于A,B,直线PO交⊙O于D,E,交AB于C.),小组交流,研究下面的问题.①.整个图形是一个轴对称图形吗?若是,指出它的对称轴;②.写出和∠AEB相等的角:③.写出一个关于∠AEB与∠APB的等式:④.你能证明AD平分∠PAB吗?练习:已知:⊙O的半径为3厘米,点P和圆心O的距离为6厘米,经过点P作⊙O的两条切线,则这两条切线的夹角为_____°,切线长为_____厘米,两切点的距离为_______厘米.5.例1、已知:如图,P为⊙O外一点,PA,PB为⊙O的切线,A和B是切点,PA=10,∠P=500,F是优弧AB上一点。
切线长定理_九年级数学教案_模板

切线长定理_九年级数学教案_模板1、教材分析(1)知识结构(2)重点、难点分析重点:切线长定理及其应用.因切线长定理再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点.难点:与切线长定理有关的证明和计算问题.如120页练习题中第3题,它不仅应用切线长定理,还用到解方程组的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来.2、教法建议本节内容需要一个课时.(1)在教学中,组织学生自主观察、猜想、证明,并深刻剖析切线长定理的基本图形;对重要的结论及时总结;(2)在教学中,以“观察——猜想——证明——剖析——应用——归纳”为主线,开展在教师组织下,以学生为主体,活动式教学.教学目标1.理解切线长的概念,掌握切线长定理;2.通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想.3.通过对定理的猜想和证明,激发学生的学习兴趣,调动学生的学习积极性,树立科学的学习态度.教学重点:切线长定理是教学重点教学难点:切线长定理的灵活运用是教学难点教学过程设计:(一)观察、猜想、证明,形成定理1、切线长的概念.如图,P是⊙O外一点,PA,PB是⊙O的两条切线,我们把线段PA,PB叫做点P到⊙O的切线长.引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.2、观察利用电脑变动点P 的位置,观察图形的特征和各量之间的关系.3、猜想引导学生直观判断,猜想图中PA是否等于PB.PA=PB.4、证明猜想,形成定理.猜想是否正确。
需要证明.组织学生分析证明方法.关键是作出辅助线OA,OB,要证明PA=PB.想一想:根据图形,你还可以得到什么结论?∠OPA=∠OPB(如图)等.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.5、归纳:把前面所学的切线的5条性质与切线长定理一起归纳切线的性质6、切线长定理的基本图形研究如图,PA,PB是⊙O的两条切线,A,B为切点.直线OP交⊙O于点D,E,交AP 于C(1)写出图中所有的垂直关系;(2)写出图中所有的全等三角形;(3)写出图中所有的相似三角形;(4)写出图中所有的等腰三角形.说明:对基本图形的深刻研究和认识是在学习几何中关键,它是灵活应用知识的基础.(二)应用、归纳、反思例1、已知:如图,P为⊙O外一点,PA,PB为⊙O的切线,A和B是切点,BC是直径.求证:AC∥OP.分析:从条件想,由P是⊙O外一点,PA、PB为⊙O的切线,A,B是切点可得PA=PB,∠APO=∠BPO,又由条件BC是直径,可得OB=OC,由此联想到与直径有关的定理“垂径定理”和“直径所对的圆周角是直角”等.于是想到可能作辅助线AB.从结论想,要证AC∥OP,如果连结AB交OP于O,转化为证CA⊥AB,OP ⊥AB,或从OD为△ABC的中位线来考虑.也可考虑通过平行线的判定定理来证,可获得多种证法.证法一.如图.连结AB.PA,PB分别切⊙O于A,B∴PA=PB∠APO=∠BPO∴OP ⊥AB又∵BC为⊙O直径∴AC⊥AB∴AC∥OP (学生板书)证法二.连结AB,交OP于DPA,PB分别切⊙O于A、B∴PA=PB∠APO=∠BPO∴AD=BD又∵BO=DO∴OD是△ABC的中位线∴AC∥OP证法三.连结AB,设OP与AB弧交于点EPA,PB分别切⊙O于A、B∴PA=PB∴OP ⊥AB∴=∴∠C=∠POB∴AC∥OP反思:教师引导学生比较以上证法,激发学生的学习兴趣,培养学生灵活应用知识的能力.例2、圆的外切四边形的两组对边的和相等.(分析和解题略)反思:(1)例3事实上是圆外切四边形的一个重要性质,请学生记住结论.(2)圆内接四边形的性质:对角互补.P120练习:练习1填空如图,已知⊙O的半径为3厘米,PO=6厘米,PA,PB分别切⊙O于A,B,则PA=_______,∠APB=________练习2已知:在△ABC中,BC=14厘米,AC=9厘米,AB=13厘米,它的内切圆分别和BC,AC,AB切于点D,E,F,求AF,AD和CE的长.分析:设各切线长AF,BD和CE分别为x厘米,y厘米,z厘米.后列出关于x , y,z 的方程组,解方程组便可求出结果.(解略)反思:解这个题时,除了要用三角形内切圆的概念和切线长定理之外,还要用到解方程组的知识,是一道综合性较强的计算题.通过对本题的研究培养学生的综合应用知识的能力.(三)小结1、提出问题学生归纳(1)这节课学习的具体内容;(2)学习用的数学思想方法;(3)应注意哪些概念之间的区别?2、归纳基本图形的结论3、学习了用代数方法解决几何问题的思想方法.(四)作业教材P131习题7.4A组1.(1),2,3,4.B组1题.探究活动图中找错你能找出(图1)与(图2)的错误所在吗?在图2中,P1A为⊙O1和⊙O3的切线、P1B为⊙O1和⊙O2的切线、P2C为⊙O2和⊙O3的切线.提示:在图1中,连结PC、PD,则PC、PD都是圆的直径,从圆上一点只能作一条直径,所以此图是一张错图,点O应在圆上.在图2中,设P1A=P1B=a,P2B=P2C=b,P3A=P3C=c,则有a= P1A= P1P3+P3A= P1P3+ c①c= P3C= P2P3+P3A= P2P3+ b②a= P1B= P1P2+P2B= P1P2+ b③将②代人①式得a = P1P3+(P2P3+ b)= P1P3+P2P3+ b,∴a-b= P1P3+P2P3由③得a-b= P1P2得∴P1P2= P2P3+ P1P3∴P1、P 2 、P3应重合,故图2是错误的.不等式和它的基本性质(1)教学目标:1.了解不等式的意义,掌握不等式的基本性质,并能正确运用它们将不等式变形;2.提高学生观察、比较、归纳的能力,渗透类比的思维方法;重、难点:掌握不等式的基本性质并能正确运用它们将不等式变形。
切线长定理的教学设计

切线长定理的教学设计教学设计:切线长定理一、教学目标:1.理解切线长定理的概念和公式。
2.掌握应用切线长定理计算相关问题的方法。
3.培养学生的思维逻辑能力和数学推理能力。
二、教学准备:1.教师准备黑板、粉笔、投影仪等教学工具。
2.学生准备纸笔等学习工具。
三、教学过程:第一部分:导入新知1. 教师用一道具体问题引入切线长定理的概念,如:请思考,一个半径为5cm的圆,有一条线段与圆相切,线段长度为8cm,那么这条线段是圆的什么部分?学生思考后回答切线。
教师引导学生思考切线与圆的关系。
2.教师用黑板上的图形向学生展示切线的定义,并引导学生回答切线与圆的关系。
然后,教师引入切线长定理,并对定理进行介绍与解释。
3.教师向学生展示定理的证明过程,以加深学生对定理的理解。
第二部分:切线长定理的公式推导1.教师向学生讲解切线长定理的公式推导过程。
教师用黑板或投影仪展示推导过程,并引导学生一起完成。
2.学生逐步推导切线长定理的公式,教师进行指导和纠正。
3.学生站起来,互相核对答案,并与教师进行讨论。
第三部分:切线长定理的应用1. 教师通过实例向学生展示切线长定理的应用。
例如,给出一个半径为6cm的圆,线段与圆相切,线段长为10cm,让学生计算切线长。
2.学生用纸和笔在课本或练习册上计算问题。
教师巡视教室,指导学生解决问题。
3.学生互相核对答案并与教师讨论。
第四部分:练习与拓展1.教师提供一些练习题,学生在纸上进行计算。
2.教师引导学生思考一些拓展问题,如:当线段与圆相交、两个圆相切等情况下,如何应用切线长定理。
3.学生讨论解决拓展问题。
教师对解决方法进行总结和点评,引导学生发现问题的普遍解法。
第五部分:课堂小结1.教师对切线长定理进行小结,强调定理的重要性和应用范围。
2.教师提醒学生预习下一课时的内容。
四、教学反思:切线长定理是中学数学中的一个重要定理,教师在课堂上需要通过一道具体问题引入切线的概念,并引导学生之间的互动与讨论,以培养学生的思维能力和数学推理能力。
九年级数学上册《切线长定理》教案、教学设计

三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握切线长定理的定义及其证明过程。
2.能够运用切线长定理解决实际问题,如求切线长度、判断点到圆的距离等。
3.掌握切线长定理与其他数学知识(如相似三角形、勾股定理等)的联系与运用。
6.总结反思,提炼方法:在教学结束后,组织学生进行总结反思,提炼切线长定理的学习方法和解题技巧,培养学生的自主学习能力。
7.评价反馈,调整教学:通过课堂提问、课后作业、小组讨论等形式,了解学生的学习情况,给予及时反馈。根据学生的反馈,调整教学策略,以提高教学效果。
8.关注情感,培养态度:在教学过程中,关注学生的情感态度,鼓励学生积极参与,勇于克服困难。培养学生的团队合作意识,形成良好的学习氛围。
3.情感态度:强调数学在现实生活中的应用,激发学生对数学学科的兴趣和热爱。
4.课后作业:布置课后作业,巩固所学知识。要求学生按时完成,教师及时批改并给予反馈。
五、作业布置
为了巩固学生对切线长定理的理解和应用,布置以下作业:
1.基础巩固题:设计一些基础的切线长定理题目,要求学生熟练掌握定理的基本应用,如求解切线长度、判断点到圆的距离等。此类题目旨在帮助学生巩固课堂所学知识,提高解题速度和准确性。
(三)情感态度与价值观
1.培养学生主动探索、积极思考的学习态度,激发学生对数学学科的兴趣。
2.引导学生体会数学的严谨性和逻辑性,培养学生的理性思维和科学精神。
3.通过数学史的了解,让学生感受数学文化的魅力,增强民族自豪感。
4.培养学生的团队协作意识,学会倾听、尊重他人意见,形成良好的人际关系。
教学设计:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《切线长定理》-教学设计方案
课题:§6.10切线长定理
1、教学目标:
(1)、知识目标:了解切线长的定义,掌握切线长定理,并利用它进行有关的计算;在运用切线长定理的解题过程中,进一步渗透方程的思想,熟悉用代数的方法解几何题。
(2)、能力目标:经历画图、度量、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,培养学生有条理地、清晰地阐述自己的观点的能力。
(3)、素质目标:初步学会从数学的角度提出问题、理解问题,并能运用所学的知识和技能解决问题,发展应用意识。
在解题中形成解决问题的基本策略,体验问题策略的多样性,发展实践能力与创新精神。
(4)、情感与态度目标:了解数学的价值,对数学有好奇心与求知欲,在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心。
2、教学重点:理解切线长定理
3、教学难点:应用切线长定理解决问题
4、教学方法:
教学方法采用引导发现法,辅之以讨论法。
利用“问题情境——建立数学模型——解释、应用、拓展”的模式进行教学。
本节课是概念、定理、解题的教学,因此,要利用概念模式元、定理教学模式元、解题教学模式元的有机组合,完成本节课的教学。
5、课型:综合课
6、教具:
多媒体计算机、自制圆半径测量仪、悠悠球
7、学具:
刻度尺2把、量角器、圆规、水杯、强力胶
8、教学实施过程:。