污水生物脱氮技术研究现状
《SBR工艺生物脱氮及外加碳源效果研究》范文

《SBR工艺生物脱氮及外加碳源效果研究》篇一一、引言随着工业和城市化的快速发展,水体富营养化问题日益严重,其中氮污染成为水环境治理的重要难题。
SBR(Sequencing Batch Reactor,序批式活性污泥法)工艺作为一种高效的污水处理技术,具有操作灵活、适应性强等优点,广泛应用于污水处理领域。
生物脱氮作为SBR工艺的重要环节,其效果直接影响到出水水质。
同时,外加碳源作为一种强化生物脱氮的手段,也被广泛研究。
本文旨在研究SBR工艺生物脱氮及外加碳源的效果,为实际工程应用提供理论依据。
二、SBR工艺生物脱氮原理及研究现状SBR工艺是一种按间歇方式运行的处理工艺,通过周期性改变反应条件,实现污水的高效处理。
生物脱氮是SBR工艺的核心环节,主要通过硝化与反硝化作用实现。
硝化作用由自养型好氧菌完成,将氨氮氧化为硝酸盐;反硝化作用由异养型厌氧菌完成,将硝酸盐还原为氮气。
两者结合,实现生物脱氮的目的。
近年来,SBR工艺生物脱氮的研究主要集中在优化运行参数、提高脱氮效率等方面。
然而,在实际应用中,由于进水氮负荷、水温、pH值等因素的影响,SBR工艺的生物脱氮效果往往难以达到预期。
因此,有必要研究外加碳源对SBR工艺生物脱氮的影响。
三、外加碳源对SBR工艺生物脱氮的影响外加碳源是指向污水处理系统中投加有机碳源,以提高反硝化过程的电子供体浓度,从而促进反硝化速率。
常见的外加碳源包括甲醇、乙酸钠、葡萄糖等。
研究表明,外加碳源可以显著提高SBR工艺的生物脱氮效果。
一方面,外加碳源为异养型厌氧菌提供了充足的电子供体,加速了反硝化速率;另一方面,外加碳源可以改善污泥的活性,提高污泥对氮的去除能力。
此外,外加碳源还可以调节系统的pH值,有利于硝化与反硝化过程的进行。
四、实验方法与结果分析1. 实验方法本实验采用SBR工艺,分别设置外加碳源组(甲醇)和对照组(无外加碳源),在相同条件下运行一定周期。
通过监测进出水的氨氮、硝酸盐氮等指标,分析SBR工艺的生物脱氮效果及外加碳源的影响。
《2024年城市污水处理新型生物脱氮除磷技术研究进展》范文

《城市污水处理新型生物脱氮除磷技术研究进展》篇一一、引言随着城市化进程的加快,城市污水处理成为环境保护领域亟待解决的问题。
传统的污水处理方法虽然能够满足基本需求,但面对日益增长的城市人口和日益复杂的污水成分,传统的处理技术已经难以满足当前的环保要求。
因此,新型生物脱氮除磷技术的研究与进步对于改善水质、保护生态环境具有十分重要的意义。
本文旨在梳理近年来城市污水处理中新型生物脱氮除磷技术的研究进展。
二、生物脱氮技术研究(一)发展概况生物脱氮技术主要通过微生物的作用,将污水中的氮素转化为无害的氮气排放到大气中。
近年来,研究者们通过优化反应器设计、改进微生物菌群以及调控环境因素等手段,推动了生物脱氮技术的进步。
(二)技术分类目前,生物脱氮技术主要包括厌氧-好氧(A/O)工艺、同步硝化反硝化(SND)技术、短程硝化反硝化等。
这些技术通过不同的反应过程和微生物活动,实现了高效脱氮的效果。
(三)研究进展随着研究的深入,新型生物脱氮技术如微氧脱氮技术、基于膜生物反应器的脱氮技术等逐渐崭露头角。
这些技术不仅提高了脱氮效率,还降低了能耗和运行成本。
三、生物除磷技术研究(一)发展概况生物除磷技术主要通过微生物的代谢活动,将污水中的磷素去除或转化为易于回收的形态。
近年来,随着对微生物除磷机制的了解加深,除磷技术的效率也得到了显著提高。
(二)技术分类常见的生物除磷技术包括聚磷菌(PAOs)除磷工艺、厌氧-好氧(A/O)结合除磷等。
这些技术通过调控微生物的生长环境和代谢过程,实现了对污水中磷的高效去除。
(三)研究进展新型的生物除磷技术如基于微藻的除磷技术、电化学辅助生物除磷技术等逐渐成为研究热点。
这些技术不仅提高了除磷效率,还为后续的磷资源回收提供了可能。
四、新型生物脱氮除磷技术的优势与挑战(一)优势新型生物脱氮除磷技术相比传统技术,具有更高的处理效率、更低的能耗和运行成本。
同时,这些技术还能够实现对氮、磷等营养元素的回收利用,具有良好的经济和环境效益。
污水生物脱氮除磷工艺的现状与发展

为 氨 态 氮 的 基 础 上 ,利 用 硝 化 菌 和 反 硝化 菌 的 作 用 ,在 好 氧 条 件 下将 氨 氮通 过反 硝化 作 用 转 化 为
亚硝态氮 、硝态氮。在 缺氧条件下通过反 硝化作 用将 硝氮 转化 为氮 气 ,达 到从 废水 中脱氮 的 目
的 。废 水 中氮 的去 除 还 包 括 靠 微 生 物 的 同化 作 用 将氮转化 为细胞原 生质成分 。主要过 程如下 : 氨 化 作 用 是 有 机 氮 在 氨 化 菌 的作 用 下 转 化 为 氨 氮 。
硝 化 作 用 是 在 硝 化 菌 的作 用 下 进 一 步 转 化 为 硝
酸盐 氮 。其 中亚 硝 酸菌 和 硝 酸菌 为 好 氧 自养 菌 , 以 无 机 碳 化合 物 为碳 源 ,从 N 4 N z H+ O- 或 的氧 化 反 应 中获取 能 量 [ 。其 中硝 化 的最佳 温度 在纯培 养 中为 2 ~5℃, 土壤 中为 3~ O℃, 53 在 04 最佳 p H值 偏 碱性 。 反硝化 作 用是反 硝化 菌 ( 多数是 异养 型兼 性厌 氧 大 菌 ,O< .m / ) D O5 gL 在缺 氧 的条 件下 , 以硝酸 盐氮 为 电
关键词 : 生物脱 氮除磷 ; 富营养化 ; 工艺; 发展趋 势
Ab t a t Me h ns o se tr b oo i a i o e n h s h r s rmo a a i u s d o f t e t d t n l nto e n sr c : c a im fwa twae il gc ln t g n a d p o p o u e v lw s d s s e .S me o h r i o a i g n a d r c a i r p o p o u mo a r c s e e ei t d c da c r i gt eo d r f p c n me Me n i e u u ed v lp n e d i f l h s h r s e v l o e s s r r u e c o d n t r e a ea dt . a whl t t r e e o me tr n s nt s ed r p w no oh os i eh f t i h i w r r s e td B s do e n r d c ino p o e si w s u r a dta c a i o b oo i a h s h r s e v l h u db e p n d e e o p c e . a e nt t u t f r c s ,t a t o w r t p h i o o p f h me h n s f ilg c p o p o u mo a o l ed e e e , m l r s a dmo e o u u d e nt e c o i l o t le h oo y n r c s f wo l r b a n r c n lg . b o h mi c ot Ke r s bo o ia i o e n h s h r s e v l e t p i ain t c n l g ;r n s y wo d : il gc l t g na dp o p o u mo a; ur hc t ;e h oo t d nr r o o y e
污水处理中的生物脱氮技术

通过控制生物反应器的温度、pH值、溶解氧等参数,优化微生物 的生长和代谢环境,提高脱氮效率。
投加营养物质
针对缺乏某些必要营养物质的废水,适当投加必要的营养物质,促 进微生物的生长和代谢,提高脱氮效率。
降低运行成本的研究
优化工艺流程
01
通过改进和优化生物脱氮技术的工艺流程,降低能耗和物耗,
环保可持续
生物脱氮技术是一种环境友好的处理方法,不会产生二次 污染,且微生物资源可循环利用,符合可持续发展的要求 。
降低处理成本
相较于传统的物化处理方法,生物脱氮技术具有较低的运 行成本和较高的处理效率,有助于降低污水处理成本。
对未来研究的建议
深入研究微生物种群
进一步了解参与硝化、反硝化的微生物种群及其代谢机制,有助 于优化生物脱氮工艺,提高脱氮效率。
开发新型生物脱氮技术
针对不同水质、不同处理要求的污水处理场景,开发新型、高效的 生物脱氮技术,以满足不断变化的污水处理需求。
强化实际应用研究
加强生物脱氮技术在污水处理厂的实际应用研究,积累运行数据, 为技术的推广应用提供实践依据。
THANKS
THANK YOU FOR YOUR WATCHING
通过控制反应条件,如溶解氧的浓度和有机物的投加量,可以实现同步硝 化反硝化,提高脱氮效率。
同步硝化反硝化可以简化工艺流程,减少设备和投资成本,因此在污水处 理领域具有广泛的应用前景。
03
生物脱氮技术的主要方法
活性污泥法
总结词
一种常用的生物脱氮技术,通过微生物的作用将污水中的氨氮转化为氮气。
详细描述
活性污泥法利用微生物的硝化作用将污水中的氨氮氧化成硝酸盐或亚硝酸盐, 再通过反硝化作用将硝酸盐或亚硝酸盐还原成氮气,从而达到脱氮的目的。该 方法操作简单,处理效果好,但能耗较高。
《2024年污水生物脱氮除磷工艺的现状与发展》范文

《污水生物脱氮除磷工艺的现状与发展》篇一一、引言随着城市化进程的加速和工业化的推进,污水处理成为环境保护和可持续发展的关键环节。
在污水处理过程中,氮、磷等营养物质的去除尤为关键,因为这些物质会直接导致水体富营养化,影响水生态系统的平衡。
其中,污水生物脱氮除磷工艺因其高效、经济的特点,成为当前污水处理领域的研究热点。
本文将详细介绍污水生物脱氮除磷工艺的现状及其发展趋势。
二、污水生物脱氮除磷工艺的现状1. 传统生物脱氮除磷工艺传统的生物脱氮除磷工艺主要包括活性污泥法、生物膜法等。
这些工艺通过微生物的作用,将污水中的氮、磷等营养物质转化为无害物质,从而达到净化水质的目的。
然而,这些工艺在处理过程中存在能耗高、污泥产量大等问题,限制了其应用范围。
2. 新型生物脱氮除磷工艺针对传统工艺的不足,科研人员不断探索新型的生物脱氮除磷工艺。
其中,短程硝化反硝化、厌氧氨氧化、同步脱氮除磷等工艺在实验室阶段取得了显著成果。
这些新型工艺具有能耗低、污泥产量少等优点,为污水处理提供了新的思路。
3. 实际应用情况目前,各种生物脱氮除磷工艺在实际应用中取得了良好的效果。
例如,某些城市采用新型的同步脱氮除磷工艺,实现了氮、磷的高效去除,同时降低了能耗和污泥产量。
此外,一些工业园区也采用生物脱氮除磷工艺处理废水,有效减轻了对周边水环境的污染。
三、污水生物脱氮除磷工艺的发展趋势1. 工艺优化与创新未来,随着科研技术的不断发展,污水生物脱氮除磷工艺将进一步优化和创新。
科研人员将探索更加高效的微生物种类和反应机制,以提高氮、磷的去除效率。
同时,针对不同地区、不同行业的污水处理需求,开发适应性强、操作简便的工艺。
2. 能源回收与资源化利用在污水处理过程中,通过生物脱氮除磷等工艺产生的能量和资源将得到充分利用。
例如,利用微生物在反应过程中产生的能量,实现污水的能源自给或供电;同时,将处理后的污水用于农业灌溉、景观用水等,实现水资源的循环利用。
污水处理中的深度脱氮技术研究

污水处理中的深度脱氮技术研究一、引言在现代城市化的进程中,污水处理是一个不可忽视的环境问题。
其中,氮污染是造成水体富营养化的主要原因之一。
因此,深度脱氮技术的研究和应用愈发重要。
本文旨在探讨污水处理中的深度脱氮技术及其研究进展。
二、深度脱氮技术概述深度脱氮技术是指将污水中的氮元素有效去除至环境规定的排放标准以下的处理技术。
具体而言,常见的深度脱氮技术包括物理方法、化学方法和生物方法。
1. 物理方法物理方法主要利用分离技术和吸附技术进行污水中氮元素的去除。
例如,膜分离技术能够有效去除溶解性氮,通过不同孔径大小的膜将氮分子滞留在膜上,实现脱氮。
此外,吸附技术利用吸附剂对氮分子进行吸附,从而实现去除。
2. 化学方法化学方法主要利用化学反应将氮元素转化为其他形式从而去除。
常见的化学方法包括硝化反应和反硝化反应。
硝化反应将污水中的氨氮氧化为亚硝酸盐或硝酸盐,而反硝化反应将亚硝酸盐或硝酸盐还原为氮气释放到大气中。
3. 生物方法生物方法主要利用生物活性物质对污水中的氮元素进行处理。
传统的生物方法包括厌氧氨氧化和硝化反硝化工艺。
而近年来兴起的深度脱氮技术中,反硝化产物的再利用成为了研究热点。
通过微生物对反硝化产物的利用,可以将氮元素进一步去除达到更高的脱氮效果。
三、深度脱氮技术的研究进展随着环境问题的加剧和技术的不断进步,深度脱氮技术在污水处理领域得到了广泛应用和研究。
1. 新型吸附剂的应用新型吸附剂的研发成为了深度脱氮技术的重要方向。
例如,一些基于石墨烯、金属氧化物等材料制备的吸附剂具有较大的比表面积和优异的吸附性能,能够高效地去除污水中的氮元素。
2. 微生物技术的创新微生物技术在深度脱氮技术中发挥着重要作用。
新型生物载体的开发以及基因工程技术的应用为深度脱氮提供了新的途径。
例如,一些研究人员通过改良微生物株的代谢途径,使其对反硝化产物有更高的利用能力,从而实现更高效的脱氮效果。
3. 联合技术的应用深度脱氮技术的研究也逐渐向联合技术发展。
污水处理中的生物脱氮技术应用

城市污水处理
总结词
城市污水处理是生物脱氮技术应用的重 要领域之一,通过生物脱氮技术可以有 效处理城市污水中含有的氮污染物,提 高水质并降低水体富营养化的风险。
VS
详细描述
城市污水中含有一定量的氮污染物,如生 活污水、雨水等。生物脱氮技术通过硝化 和反硝化作用,可以有效去除这些污染物 ,降低水体富营养化的风险,提高水质并 保障城市居民的用水安全。
02
CATALOGUE
生物脱氮技术应用场景
生活污水处理
总结词
生活污水处理是生物脱氮技术的重要应用领域,通过生物脱氮技术可以有效去 除生活污水中含有的氮污染物,达到净化水质的目的。
详细描述
生活污水中含有大量的氮污染物,如氨氮、硝态氮等,这些污染物对人体健康 和生态环境造成危害。生物脱氮技术通过微生物的硝化和反硝化作用,将氮污 染物转化为无害的氮气排出,从而达到净化水质的效果。
03
CATALOGUE
生物脱氮技术应用案例
某生活污水处理厂生物脱氮技术应用
总结词
成功应用、高效去除
详细描述
某生活污水处理厂采用生物脱氮技术,通过合理设计缺氧、好氧反应器,成功实现了对总氮的高效去 除。经过处理后的出水总氮浓度低于排放标准,满足了环保要求。
某工业废水处理厂生物脱氮技术应用
总结词
针对性强、效果显著
04
CATALOGUE
生物脱氮技术的发展趋势和挑战
生物脱氮技术的发展趋势
高效低耗
随着环保要求的提高,生物脱氮 技术正朝着高效、低能耗的方向 发展,以提高脱氮效率并降低运
行成本。
智能化控制
利用现代信息技术和人工智能技术 ,实现生物脱氮过程的智能化控制 ,提高处理效果和稳定性。
《2024年A2O污水处理工艺研究进展》范文

《A2O污水处理工艺研究进展》篇一一、引言随着工业化和城市化的快速发展,水资源的污染问题日益严重,其中污水处理成为环境保护领域的重要课题。
A2O(厌氧-缺氧-好氧)污水处理工艺作为一种有效的污水处理技术,因其处理效率高、操作简便、成本低廉等优点,得到了广泛的应用和关注。
本文旨在探讨A2O污水处理工艺的研究进展,分析其技术特点、应用现状及未来发展趋势。
二、A2O污水处理工艺概述A2O污水处理工艺是一种生物脱氮除磷的污水处理技术,通过厌氧、缺氧、好氧三个阶段的交替运行,实现对污水的有效处理。
该工艺通过不同阶段的微生物活动,达到去除有机物、氮、磷等污染物的目的。
A2O工艺具有较好的处理效果和适应性,适用于各种规模的污水处理厂。
三、A2O污水处理工艺研究进展1. 技术特点分析A2O污水处理工艺具有以下技术特点:(1)处理效率高:通过厌氧、缺氧、好氧三个阶段的协同作用,实现对污水的有效处理,去除率较高。
(2)操作简便:工艺流程相对简单,操作方便,易于维护。
(3)成本低廉:相比其他污水处理技术,A2O工艺具有较低的运行成本和投资成本。
(4)适应性强:适用于各种规模的污水处理厂,可处理不同来源的污水。
2. 应用现状分析A2O污水处理工艺在全球范围内得到了广泛应用。
研究人员在提高处理效率、降低能耗、优化运行管理等方面取得了显著成果。
此外,针对不同地区、不同来源的污水,研究人员还开展了大量的实际应用研究,为A2O工艺的推广应用提供了有力支持。
3. 最新研究成果近年来,针对A2O污水处理工艺的研究不断深入,取得了一系列重要成果。
例如,研究人员通过优化运行参数、改进设备结构等手段,提高了A2O工艺的处理效率;同时,针对污泥处理、资源回收等问题,开展了一系列研究工作,为A2O工艺的可持续发展提供了新的思路和方法。
四、未来发展趋势与展望随着环保要求的不断提高和技术的不断进步,A2O污水处理工艺将迎来新的发展机遇。
未来,A2O工艺将朝着以下方向发展:1. 智能化运行管理:通过引入物联网、大数据等先进技术手段,实现A2O工艺的智能化运行管理,提高处理效率和稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
污水生物脱氮技术研究现状摘要:概述了传统生物脱氮技术原理及传统的生物脱氮技术,分析了传统生物脱氮工艺的不足,并介绍了同时硝化反硝化、短程硝化反硝化、厌氧氨氧化等几种生物脱氮新技术的机理、特点和研究现状。
最后对生物脱氮技术的今后的发展趋势进行了展望及建议,指出高效、低能耗的可持续脱氮工艺是污水处理的发展方向。
关键词:生物处理;生物脱氮;短程硝化反硝化;同步硝化反硝化;厌氧氨氧化Research Status of Biological Removal of Nitrogenfrom WastewaterAbstract:Summarizes the conventional biodenitrification technology principle and conventional biological removal of nitrogen technology, analyzes the deficiencies of conventional biological removal of nitrogen, and introduces nitration denitrification, shortcut nitrification and denitrification anaerobic ammonium oxidation ,and the features, the mechanism and the current research status of the several biological new technologies,. Finally have a outlook and Suggestions of the new technologies , points out that high efficiency, low energy consumption is the development direction of removal of nitrogen in sewage treatment.Keywords:biological disposal;nitrogen removal;shortcut nitrification;Simultaneous nitrification and denitrifieation;anaerobic ammonium近年来,随着工业化和城市化程度的不断提高,合成洗涤剂、化肥和农药被广泛使用。
大量氮元素进入水体,使水体富营养化日益严重,我国现有污水处理厂中有60%没有脱氮功能,即使有脱氮功能的污水处理厂采用传统的脱氮技术对氨氮、总氮的去除率仅在10%~30%之间仍然难达到一级A标准[1]。
因此,越来越多的国家和地区开始制定日趋严格的污水排放标准,这就意味着对新建及已建污水处理厂提出了更高的要求。
和其他的脱氮技术相比生物脱氮技术相对其他方法的脱氮技术有着很强的优势,但传统的生物脱氮工艺存在着一些不可避免的缺陷,随着研究的不断深入,新的脱氮技术越来越多的引起人们的注意,已经成为当前研究的热点[2]。
1生物脱氦机理生物脱氮包括氨化、硝化、反硝化三个过程,并由有机氮氨化、硝化、反硝化及微生物的同化作用来完成,即水体中的有机氮首先在氨化菌的作用下转化为氨态氮,这也就是所谓的氨化阶段。
一般氨化过程与微生物去除有机物同时进行,氨化作用进行得很快,有机物去除结束时,氨化过程也已完成;之后是硝化阶段,-一N;最后是反硝化阶氨态氮在好氧的条件下通过亚硝化菌和硝化菌转化为NO2段,该阶段在缺氧的条件下,通过反硝化菌将亚硝酸盐氮和硝酸盐氮转化为N2 O。
由于反硝化细菌是兼性厌氧菌,只有在缺氧或厌氧条件下才能进行反硝或N2化,因此需要为其创造一个缺氧或厌氧的环境[1]。
而近年来的一些研究发现,在好氧的条件下发生了同时硝化和反硝化作用;在厌氧的条件下氨态氮减少;这些现象都无法用传统生物脱氮理论来解释,表明除了传统的生物脱氮理论外,还存在其他的生物脱氮原理。
2传统生物脱氮技术废水中的氮以有机氮、氨氮、亚硝氮和硝酸盐4种形态存在。
传统生物脱氮技术遵循已发现的自然界氮循环机理,废水中的有机氮依次在氨化菌、亚硝化菌、硝化菌和反硝化菌的作用下进行氮化反应、亚硝化反应、硝化反应和反硝化反应后最终转变为氮气而溢出水体,达到了脱氮目的。
普遍认为氨氮的去除是通过硝化和反硝化这两个相互独立的过程实现的,由于对环境条件的要求不同,这两个过程不能同时发生,而只能序列式进行,即硝化反应发生在好氧条件下,反硝化反应则发生在严格的缺氧或厌氧条件下。
在这种理论指导下,传统的生物脱氮工艺都是将缺氧区(或厌氧区)与好氧区分隔开,如A/0、A2/O等工艺;或者是在同一个反应器中,通过时问或空问上的好氧和缺氧的交替进行来实现氮的去除,如SBR等工艺[2]。
2.1 传统生物脱氮工艺2.1.1 三级活性污泥法脱氮工艺[5]它是以氨化、硝化和反硝化3项反应过程为基础建立的。
其工艺流程示之于下图所示:第一级曝气池为一般的二级处理曝气池,其主要功能是去除BOD、COD,使有机氮转化,形成NH3、NH4,即完成氨化过程。
第二级硝化曝气池,在这里进行硝化反应,使NH3及NH4氧化为NO3-N。
第三级为反硝化反应器,这里在缺氧条件下,NO3-N还原为气态N2,并逸往大气,在这一级应采取厌氧--缺氧交替的运行方式。
这种系统的优点是有机物降解菌、硝化菌、反硝化菌,分别在各自反应器内生长增值,环境条件适宜,而且各自回流在沉淀池分离的污泥,反应速度快而且比较彻底。
但处理设备多,造价高,管理不够方便。
2.1.2 A/O工艺该工艺是80年代初开创的工艺流程,其主要特点是将反硝化反应器放置在系统之首,即反硝化、硝化与BOD去除分别在两个不同的反应器内进行。
其工艺流程示之于图2:本工艺主要不足之处是该流程的处理水是来自硝化反应器,因此,在处理水中含有一定浓度的硝酸盐,如果运行不当,在沉淀池内也会发生反硝化反应,使污泥上浮,使处理水水质恶化。
3生物脱氮新工艺目前研究较多的生物脱氮新工艺主要有:短程硝化反硝化(Shortcut Nitrification D e n i t r i f i c a t i o n) 、同步硝化反硝化(Simultaneous Nitrification Denitrification, SND)厌氧氨氧化(Anaerobic Ammonium Oxidation,ANAMMOX)。
3.1 同步硝化反硝化根据传统脱氮理论: 氨氮的去除通过硝化和反硝化两个独立过程实现, 由于对环境的要求不同,两个过程不能同时发生。
现行的生物脱氮工艺是把硝化和反硝化作为两个独立的阶段分别安排在不同的反应器中(空间上)或者利用间歇好氧和厌氧条件(时间上)实现氮的去除, 往往造成系统复杂, 能耗较大且运行管理不便。
然而, 近几年国内外有不少试验和报道证明硝化反应和反硝化反应可以在同一操作条件下与同一反应器内进行, 称为好氧反硝化或同步硝化反硝化现象( S imu ltaneous N itrification and Den itrif ication, 简称SND)。
有研究表明, 好氧条件下的反硝化现象存在于各种不同的生物处理系统, 如流化床反应器、生物转盘、SBR、氧化沟、CAST工艺等。
3.1.1 同步硝化反硝化工艺机理目前,对于SND现象的形成原因有很多种解释,归纳起来主要集中于两个方面:物理学解释和生物学解释。
物理学解释认为,SND是一种物理现象,是由于曝气方式、反应器构型等造成的宏观缺氧环境。
或者受微生物种群结构、基质分布和生物代谢反应的不均匀性,以及物质传递变化等因素的相互作用,缺氧(或厌氧)段可以在活性污泥菌胶团内部形成微观缺氧环境。
关于SND的生物学解释认为硝化过程被认为发生在好氧条件下, 反硝化过程被认为在缺氧条件下发生。
但是20世纪80年代好氧反硝化菌和异养硝化菌的发现, 打破了传统理论认为的硝化反应只能由自养细菌完成和反硝化只能在厌氧条件下进行的观点, 为好氧反硝化的解释提供了生物学的依据。
研究表明反硝化在好氧条件下也能发生, 同样, 硝化反应在氧浓度较低时也能够发生。
在此过程中, 好氧反硝化菌同时利用氮和氧作为最终电子受体, 直接将氨转化为最终气态产物。
由于许多好氧反硝化菌同时也是异养硝化菌, 能够直接把NH+4 转化为最终气态产物而去除, 因此, 同步硝化反硝化生物脱氮也就成为可能。
影响SND 脱氮效率及脱氮速率的控制因素还有很多, 如: 溶解氧、ORP、pH 值、碳源、污泥龄。
利用氧化还原电极电位ORP控制实际上是一种间接DO 控制。
ORP可以很好地反映DO 的变化, 特别是DO 比较低时。
若DO 无法直接测量, ORP 更可成为DO 的间接测量手段。
pH 是影响废水生物脱氮处理工艺运行的一个重要因子。
考虑到硝化和反硝化两过程中碱度消耗与产生的相互性, 同步硝化与反硝化的最适pH 值应保持在8. 0左右。
此外, 温度、污泥浓度以及游离氨浓度( FA )等也都会对SND有着一定的影响。
3.1.2 同步硝化反硝化工艺研究前景同步硝化反硝化技术的产生为今后污水处理降低投资并简化生物脱氮过程提供了可能性, 在荷兰、丹麦、德国、意大利等国已有污水处理工厂在利用同步硝化反硝化脱氮工艺运行, 但关于同步硝化反硝化机理的研究大多数仍处于实验阶段, 离投入工程运行还有距离。
总的来说, 今后在以下方面还值得作进一步深入的研究:1) 好氧颗粒污泥具有同步硝化反硝化的微观环境,可对其形成机理、微生物学特性、脱氮性能等方面加以研究。
2) 研究发现兼性反硝化菌具有很强的生物摄、放磷能力, 如何将脱氮除磷有机的结合起来, 探索一种可持续城市污水生物处理技术正成为研究热点。
3)逸出造成二次污染问题的有害中间气态产物如NO、N2O等也是近期研究的课题。
4)如何综合考虑各种影响因素, 以及实际工程应用中控制条件的确定, 以便提高同步硝化反硝化工艺的稳定可靠性。
3.2 短程硝化反硝化通常,有机氮化合物在氨化细菌的脱氨基作用下产生氨(氨化作用),氨在有氧的条件下,经亚硝化菌的作用转化为亚硝酸或亚硝酸盐,然后再经硝化菌的作用转化为硝酸或者硝酸盐,这就是硝化作用;而反硝化作用是在厌氧的条件下,反硝化细菌将硝酸盐还原成为HNO2、N2等物质的作用。
短程硝化反硝化技术(Shortcut Nitrification and Denitrification)则是将硝化反应控制在亚硝酸盐阶段,不进行亚硝酸盐至硝酸盐的转化,就转入反硝化反应。
因此,它可以缩短曝气时间,节省运行费用。