污水处理厂A-A-O生物脱氮除磷工艺简介
A2O工艺、氧化沟 、SBR工艺、CAST工艺优缺点

A2/O工艺、氧化沟、A/O工艺、SBR工艺、CAST工艺一、A2/O工艺1.基本原理A2/O工艺是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧-缺氧-好氧生物脱氮除磷工艺的简称。
该工艺处理效率一般能达到:BOD5和SS为90%~95%,总氮为70%以上,磷为90%左右,一般适用于要求脱氮除磷的大中型城市污水厂。
但A2/O工艺的基建费和运行费均高于普通活性污泥法,运行管理要求高,所以对目前我国国情来说,当处理后的污水排入封闭性水体或缓流水体引起富营养化,从而影响给水水源时,才采用该工艺。
2. A2/O工艺特点:(1)污染物去除效率高,运行稳定,有较好的耐冲击负荷。
(2)污泥沉降性能好。
(3)厌氧、缺氧、好氧三种不同的环境条件和不同种类微生物菌群的有机配合,能同时具有去除有机物、脱氮除磷的功能。
(4)脱氮效果受混合液回流比大小的影响,除磷效果则受回流污泥中夹带DO和硝酸态氧的影响,因而脱氮除磷效率不可能很高。
(5)在同时脱氧除磷去除有机物的工艺中,该工艺流程最为简单,总的水力停留时间也少于同类其他工艺。
(6)在厌氧—缺氧—好氧交替运行下,丝状菌不会大量繁殖,SVI 一般小于100,不会发生污泥膨胀。
(7)污泥中磷含量高,一般为2.5%以上。
3.A2/O工艺的缺点·反应池容积比A/O脱氮工艺还要大;·污泥内回流量大,能耗较高;·用于中小型污水厂费用偏高;·沼气回收利用经济效益差;·污泥渗出液需化学除磷。
二、氧化沟1氧化沟技术氧化沟(oxidation ditch)又名连续循环曝气池(Continuous loop reactor),是活性污泥法的一种变形。
氧化沟污水处理工艺是在20世纪50年代由荷兰卫生工程研究所研制成功的。
自从1954年在荷兰首次投入使用以来。
由于其出水水质好、运行稳定、管理方便等技术特点,已经在国内外广泛的应用于生活污水和工业污水的治理[1]。
A2-O工艺脱氮除磷及其优化控制的研究

A2-O工艺脱氮除磷及其优化控制的研究A2/O工艺脱氮除磷及其优化控制的研究摘要:本文主要研究了A2/O(Anoxic/Anaerobic/Oxic)工艺在废水处理中的应用,并对其脱氮除磷效果进行了探讨。
通过对A2/O工艺的原理、工艺流程和工艺优化控制方法进行分析,旨在为工程实践提供技术支持和参考。
一、引言废水中的氨氮和磷元素对自然生态环境具有一定的污染作用,因此废水处理工艺中必须考虑脱氮除磷工作。
A2/O工艺是一种通过增加缺氧区域和厌氧区域来实现同时脱氮除磷的工艺。
该工艺具有工艺简单、操作方便等优点,被广泛应用于污水处理厂。
二、A2/O工艺原理A2/O工艺是将缺氧区域引入A2/O反应池内,通过氨氧化细菌、反硝化细菌和同步硝化反硝化细菌协同作用,将废水中的氨氮转化为氮气的过程。
在A2/O反应池中,废水经过缺氧区、厌氧区和好氧区,分别进行脱氮、厌氧反硝化和好氧反硝化反应,从而达到脱氮除磷的效果。
三、A2/O工艺流程A2/O工艺的主要流程包括进水、预处理、A1区、A2区、M区、混凝沉淀、滤池和出水等。
在进水预处理阶段,可采用格栅污染物筛选和调节pH值等措施。
在A1区,废水与好氧污泥混合,并通过曝气装置增加溶解氧含量。
在A2区,废水与厌氧污泥混合,减少氧气的供应来实现缺氧条件。
在M区,通过混凝剂的加入,使沉淀物形成较大的颗粒,便于后续的沉淀。
最后,通过滤池和反洗等步骤,实现出水的净化。
四、A2/O工艺优化控制A2/O工艺的优化控制主要包括进水流量的控制、曝气量的控制、外加碳源的控制、内循环比的调整以及污泥回流比的控制等。
其中,进水流量的控制要根据实际情况进行调整,以保证污水处理出水的稳定性。
曝气量的控制应根据废水的COD浓度和溶解氧的含氧量进行调整,以提高好氧污泥的活性和效果。
外加碳源的控制主要是根据废水的C/N比进行投加,以促进脱氮除磷反应的进行。
内循环比的调整可以通过增加或减少回流水量,来实现系统中不同区域的溶解氧浓度和污泥浓度的调节。
A2O工艺简介及常规指标介绍

1、主要无机污染物
无机污染是各种有害的金属、盐类、酸、碱性物质及无机 悬浮物等,所有造成的水质污染。建筑材料、化工等工业 生产排出的污染物中大量为无机污染物,各种酸、碱和无 机盐类的排放,会引起水体污染,首先破坏其自然缓冲作 用,抑制微生物生长,阻碍水体自净作用。
污水中含氮化合物有有机氮、氨氮、硝酸盐氮与亚硝酸 盐氮,成为总氮。有机氮很不稳定,容易在微生物作用 下分解成其他三种:在无氧的条件下分解为氨氮,在有 氧的条件下分解为氨氮、再转化为亚硝酸盐氮与硝酸盐 氮。氨氮在水中的形式为游离氨与离子状态铵盐两种。 总氮过高,危害水环境。
2、主要的有机污染物
主要指生活污水或工业废水中的蛋白质、碳水化合物、脂 肪、尿素、氨氮等等物质,这些有机质极不稳定,易腐化 产生恶臭。
碳水化合物主要包括糖类、淀粉、纤维素等,主要成分为 碳、氢、氧、其中糖类、淀粉和纤维素可生物降解,对微 生物无毒害、无抑制。蛋白质主要成分为碳、氢、氧、氮, 其中氮约占16%,可生物降解,对微生物无毒害、无抑制。
1、生物化学需氧量(BOD)
生化需氧量又称生化耗氧量,英文缩写BOD,是用微生物代谢作 用所消耗的溶解氧量来间接表示城镇污水被有机物污染程度的 一个重要指标。其值越高,说明水中有机污染物质越多,污染 也就越严重。悬浮或溶解状态存在于生活污水和制糖、食品、 造纸、纤维等工业废水中的碳氢化合物、蛋白质、油脂、木质 素等均为有机污染物,可经好氧菌的生物化学作用而分解,由 于在分解过程中消耗氧气,故亦称需氧污染物质。若这类污染 物质排入水体过多,将造成水中溶解氧缺乏,同时,有机物又 通过水中厌氧菌的分解引起腐败现象,产生甲烷、硫化氢、和 氨等恶臭气体,使水体变质发臭。
5、总磷
水中磷多以磷酸盐形式存在。主要来源为生活污水、化肥、 有机磷农药及近代洗涤剂所用的磷酸盐增洁剂等。水中的 磷是藻类生长需要的一种关键元素,过量磷是造成水体污 秽异臭,使湖泊发生富营养化和海湾出现赤潮的主要原因。 总磷是水样经消解后将各种形态的磷转变成正磷酸盐后测 定的结果。
AAO污水处理工艺介绍

2、城市污水除磷技术
2.1化学除磷
一、城市污水脱氮除磷工艺与模拟控
2.2生物除磷
3、常规生物脱氮除磷工艺
3.1 A/A/O系列
一、城市污水脱氮除磷工艺与模拟控
Bardenpho工艺
三、交互式反应器研究与中试装置设计
当原污水有机碳源不能同时满足生物脱氮除磷要求时, 首先满足生物脱氮, 在生物处理后投加新型混凝剂强化生物除磷, 确保氮磷同时达标。
4、串联运行模式研究
4.1 串联运行模式1
三、交互式反应器研究与中试装置设计
串联运行模式1工艺示意图
正常水量、污染物浓度较高, 氮磷浓度较高条件下 或冬季运行时采用
3、中试运行小结
3.3 结论3
四、交互式反应器中运行研究
进水COD<180mg/L,且平均COD/TN<4.3,进水TP0.41~3.49mg/L,当NH4+-N去除率>80%时,由于碳源严重不足,脱氮效率不高,随回流污泥进入厌氧区的NO3−-N对生物除磷效果造成不利影响,TP去除率在50%以下。 当NH4+-N去除率<50%,且进水COD超过60mg/L时,进入厌氧区的硝酸盐浓度持续低于2.0mg/L,系统的生物除磷能力逐渐加强; 当进水COD持续在100mg/L以上时,出水TP可在1.0mg/L以下。虽然进入厌氧区的NO3−-N对除磷有不利影响,但系统的除磷功能不会丧失殆尽,但是降雨引起的进水COD急剧下降能导致系统除磷功能完全丧失
增加抗冲击负荷能力措施: ①增大混合液回流比; ②加大系统进水流量; ③维持反应器系统MLVSS在1000mg/L以上; ④投加混凝剂。 当进水COD平均值小于70mg/L,为提高系统抗冲击负荷的能力,保证出水氨氮达标,可将HRT缩短为4h,以增加污泥的有机负荷,减缓污泥的内源呼吸过程,维持系统MLVSS在1000mg/L以上。 考虑到低碳高氮磷城市污水的脱氮和抗冲击负荷能力,系统的混合液回流比宜在1~2之间,污泥回流比宜在0.5~1.0之间。
A2O工艺简介

一般,污泥回流比为 25%-100%,太高,污泥将带入厌氧池太多 DO和硝态氧,影响其厌氧状态(DO<0.2mg·L-1),使释磷不利;如果 太低,则维持不了正常的反应池内污泥浓度 2500-3500 mg·L-1,影响 生化反应速率。
谢谢观赏
剩余污泥
硝酸还原菌
将内回流带入的硝酸盐通过生物反硝化作用 将回流混合液 6 NO2 3CH 3OH 3 N 2 6OH 3H 2O 3CO, 2 —N和NO —N还原为N 释放至空气,BOD 中带入的大量 NO 3 2 2 总方应: 亚硝酸还原菌 — 浓度继续下降, NO3CO N浓度大幅度下降,而磷的变化很小 6 NO 5CH OH 5 3 N 7 H O 6OH 2 3 2 2 2
2 NH 4 3O2 2 NO2 4 H 2 H 2O 2 NO2 O2 2 NO3
硝酸亚菌
硝酸菌
总方应:NH4 2O 2 NO3 2 H H 2O
而P随着聚磷菌的过量摄取,也以较快的速率下降,并通过剩余污泥的排放,将磷除去
A2/O脱氮除磷工艺性能特点
生物除磷基本原理
聚磷菌厌氧释磷过程
多聚磷酸盐 分解 ATP 分解
聚磷菌细胞
胞内碳源 PHB
聚磷菌细胞
ADP+磷酸盐+能量 + 发酵 简单有 机底物 大分子有机物
合成
聚磷菌好氧吸磷过程
简单有机底物 胞内碳源PHB +O2 TCA循环
聚磷菌细胞
ATP+核酸+ 多聚磷酸盐
生物氧化
能量 CO2+H2O+ +
6 NO在缺氧池中,反硝化菌利用污水中的有机物作碳源, 3 2CH 3OH 6 NO2 2CO2 4 H 2 O
(完整版)A2O工艺、氧化沟、SBR工艺、CAST工艺优缺点

A2/O工艺、氧化沟、A/O工艺、SBR工艺、CAST工艺一、A2/O工艺1.基本原理A2/O工艺是Anaerobic-Anoxic-Oxic的英文缩写,它是厌氧-缺氧-好氧生物脱氮除磷工艺的简称。
该工艺处理效率一般能达到:BOD5和SS为90%~95%,总氮为70%以上,磷为90%左右,一般适用于要求脱氮除磷的大中型城市污水厂。
但A2/O工艺的基建费和运行费均高于普通活性污泥法,运行管理要求高,所以对目前我国国情来说,当处理后的污水排入封闭性水体或缓流水体引起富营养化,从而影响给水水源时,才采用该工艺。
2. A2/O工艺特点:(1)污染物去除效率高,运行稳定,有较好的耐冲击负荷。
(2)污泥沉降性能好。
(3)厌氧、缺氧、好氧三种不同的环境条件和不同种类微生物菌群的有机配合,能同时具有去除有机物、脱氮除磷的功能。
(4)脱氮效果受混合液回流比大小的影响,除磷效果则受回流污泥中夹带DO和硝酸态氧的影响,因而脱氮除磷效率不可能很高。
(5)在同时脱氧除磷去除有机物的工艺中,该工艺流程最为简单,总的水力停留时间也少于同类其他工艺。
(6)在厌氧—缺氧—好氧交替运行下,丝状菌不会大量繁殖,SVI 一般小于100,不会发生污泥膨胀。
(7)污泥中磷含量高,一般为2.5%以上。
3.A2/O工艺的缺点·反应池容积比A/O脱氮工艺还要大;·污泥内回流量大,能耗较高;·用于中小型污水厂费用偏高;·沼气回收利用经济效益差;·污泥渗出液需化学除磷。
二、氧化沟1氧化沟技术氧化沟(oxidation ditch)又名连续循环曝气池(Continuous loop reactor),是活性污泥法的一种变形。
氧化沟污水处理工艺是在20世纪50年代由荷兰卫生工程研究所研制成功的。
自从1954年在荷兰首次投入使用以来。
由于其出水水质好、运行稳定、管理方便等技术特点,已经在国内外广泛的应用于生活污水和工业污水的治理[1]。
A2O及变形工艺

4、厌氧缺氧的开启
配制好一部分废水注入厌氧池和 缺氧池, COD 控制在 400mg/L 左右, 挥发酚控制在 100mg/L 左右,以把水注满滤床为止。 从好氧池抽泥水进缺氧 和厌氧池, 进行挂膜 (投入一定量的铁粉或 黄泥水, 以便污泥更好更 快地吸附在膜上)
pH 值对硝化菌的生长繁 殖有很大的影响, 在一定的温度下, pH 在 8.0~8.5 之间, 硝化速度可达最大值
四、 A2O工艺设计参数
水力停留时间:厌氧、缺氧、好氧三段总停留时间一般为 6~8h,而三段停留 时间比例:厌氧:缺氧:好氧等于 1:1:(3~4)。 污泥回流比:25%~100%。 混合液回流比:200%。 有机物负荷:好氧段:<0.18 kgBOD5/(kgMLSS· d);厌氧段:>0.10 kgBOD5/(kgMLSS· d)。 好氧段:KN/MLSS<0.05KNBOD5/(kgMLSS· d);缺氧段:BOD5/NOx-— N>4;厌氧段进水:P/BOD5<0.06。 污泥浓度为 3000~4000 mg· L-1。 溶解氧:好氧段:DO=2 mg· L-1;缺氧段:DO≤0.5 mg·L-1;厌氧段:DO≤0.2 mg· L-1;硝酸态氧≈0。 硝化反应氧化 1g NH4+—N需氧 4.57g,需消耗碱度 7.1g(以CaCO3计)。 反硝化反应还原 1g NO x-—N将放出 2.6g氧,生成 3.57g碱度(以CaCO3 计),并消耗 1.72gBOD5。 pH 值:好氧池:pH=7.0~8.0;缺氧池:pH=6.5~7.5; 厌氧池:pH=6~8。 水温:13~18℃时其污染物质的去除率较稳定。 污泥中磷的比率为 2.5%以上。
AAO简介

A2/O工艺A2/O工艺亦称A-A-O工艺,是英文Anaerobic-Anoxic-Oxic 第一个字母的简称(生物脱氮除磷)。
按实质意义来说,本工艺称为厌氧-缺氧-好氧法,生物脱氮除磷工艺的简称。
A2/O工艺是流程最简单,应用最广泛的脱氮除磷工艺。
污水首先进入厌氧池,兼性厌氧菌将污水中的易降解有机物转化成VFAs。
回流污泥带入的聚磷菌将体内的聚磷分解,此为释磷,所释放的能量一部分可供好氧的聚磷菌在厌氧环境下维持生存,另一部分供聚磷菌主动吸收VFAs,并在体内储存PHB。
进入缺氧区,反硝化细菌就利用混合液回流带入的硝酸盐及进水中的有机物进行反硝化脱氮,接着进入好氧区,聚磷菌除了吸收利用污水中残留的易降解BOD外,主要分解体内储存的PHB产生能量供自身生长繁殖,并主动吸收环境中的溶解磷,此为吸磷,以聚磷的形式在体内储存。
污水经厌氧,缺氧区,有机物分别被聚磷菌和反硝化细菌利用后浓度已很低,有利于自养的硝化菌的生长繁殖。
最后,混合液进入沉淀池,进行泥水分离,上清液作为处理水排放,沉淀污泥的一部风回流厌氧池,另一部分作为剩余污泥排放。
本工艺在系统上可以称为最简单的同步脱氮除磷工艺,总的水力停留时间少于其他同类工艺。
而且在厌氧-缺氧-好养交替运行条件下,不易发生污泥膨胀。
运行中无须投药,厌氧池和缺氧池只需轻缓搅拌,运行费用低。
该工艺处理效率一般能达到:BOD5和SS为90%~95%,总氮为70%以上,磷为90%左右,一般适用于要求脱氮除磷的大中型城市污水厂。
但A2/O工艺的基建费和运行费均高于普通活性污泥法,运行管理要求高,所以对目前我国国情来说,当处理后的污水排入封闭性水体或缓流水体引起富营养化,从而影响给水水源时,才采用该工艺。
本工艺具有如下特点:(1)本工艺在系统上可以称为最简单的同步脱氮除磷工艺,总的水力停留时间少于其他同类工艺(2)在厌氧(缺氧)、好氧交替运行条件下,丝状菌不能大量增殖,无污泥膨胀之虞,SVI 值一般均小于100 (3)污泥中含磷浓度高,具有很高的肥效(4)运行中勿需投药,两个A断只用轻缓搅拌,并不增加溶解氧浓度,运行费用低本法也存在如下各项的待解决问题(1)除磷效果难于再行提高,污泥增长有一定的限度,不易提高,特别是当P/BOD值高时更是如此(2)脱氮效果也难于进一步提高,内循环量一般以2Q为限,不宜太高(3)进入沉淀池的处理水要保持一定浓度的溶解氧,减少停留时间,防止产生厌氧状态和污泥释放磷的现象出现、但溶解氧浓度也不宜过高,以防循环混合液对缺氧反应器的干扰1.A2O池的检测与控制参数的确定A2O生物除磷脱氮工艺处理污水效果与DO、内回流比r、外回流比R、泥龄SRT、污水温度及PH值等有关。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
污水处理厂A-A-O生物脱氮除磷工艺简介
作者:孟永进
来源:《硅谷》2009年第15期
中图分类号:X7文献标识码:A文章编号:1671-7597(2009)0810007-01
在城市生活污水处理厂,传统活性污泥工艺能有效去除污水中的BOD5和SS,但不能有效地去除污水中的氮和磷。
如果含氮、磷较多的污水排放到湖泊或海湾等相对封闭的水体,则会产生富营养化导致水体水质恶化或湖泊退化,影响其使用功能。
因此,在对污水中的BOD5和SS进行有效去除的同时,还应根据需要,考虑污水的脱氮除磷。
其中A-A-O(厌氧-缺氧-好氧)为同步生物脱氮除磷工艺的一种。
一、工艺原理及过程
A-A-O生物脱氮除磷工艺是活性污泥工艺,在进行去除BOD、COD、SS的同时可生物脱氮除磷,其工艺流程如图1所示。
在好氧段,硝化细菌将入流污水中的氨氮及由有机氮氨化成的氨氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷去除。
以上三类细菌均具有去除BOD5的作用,但BOD5的去除实际上以反硝化细菌为主。
污水进入曝气池以后,随着聚磷菌的吸收、反硝化菌的利用及好氧段的好氧生物分解,BOD5浓度逐渐降低。
在厌氧段,由于聚磷菌释放磷,TP浓度逐渐升高,至缺氧段升至最高。
在缺氧段,一般认为聚磷菌既不吸收磷,也不释放磷,TP 保持稳定。
在好氧段,由于聚磷菌的吸收,TP迅速降低。
在厌氧段和缺氧段,NH3-N浓度稳中有
降,至好氧段,随着硝化的进行,NH3-N逐渐降低。
在缺氧段,由于内回流带入大量NO3-N,NO3-N 瞬间升高,但随着反硝化的进行,NO3-N浓度迅速降低。
在好氧段,随着硝化的进行,NO3-N浓度逐渐升高。
二、A-A-O脱氮除磷系统的工艺参数及控制
A-A-O生物脱氮除磷的功能是有机物去除、脱氮、除磷三种功能的综合,因而其工艺参数应同时满足各种功能的要
求。
如能有效地脱氮或除磷,一般也能同时高效地去除BOD5。
但除磷和脱氮往往是相互矛盾的,具体体现的某些参数上,使这些参数只能局限在某一狭窄的范围内,这也是A-A-O系统工艺系统控制较复杂的主要原因。
1.F/M和SRT。
完全生物硝化,是高效生物脱氮的前提。
因而,F/M(污泥负荷)越低,SRT(污泥龄)越高。
脱氮效率越高,而生物除磷则要求高F/M低SRT。
A-A-O生物脱氮除磷是运行较灵活的一种工艺,可以以脱氮为重点,也可以以除磷为重点,当然也可以二者兼顾。
如果既要求一定的脱氮效果,也要求一定的除磷效果,F/M一般应控制在0.1-0.18㎏BOD5/(kgMLVSS·d),SRT一般应控制在8-15d。
2.水力停留时间。
水力停留时间与进水浓度、温度等因素有关。
厌氧段水力停留时间一般在1-2h范围内,缺氧段水力停留时间1.5-2.0h,好氧段水力停留时间一般应在6h。
3.内回流与外回流。
内回流比r一般在200-500%之间,具体取决于进水TKN浓度,以及所要求的脱氮效率。
一般认为,300-500%时脱氮效率最佳。
内回流比r与除磷关系不大,因而r的调节完全与反硝化工艺一致。
4.溶解氧(DO)。
厌氧段DO应控制在0.2mg/L以下,缺氧段DO应控制在0.5mg/L以下,而好氧DO应控制在2-3mg/L之间。
因生物除磷本身并不消耗氧,所以A-A-O脱氮除磷工艺曝气系统的控制与生物反硝化系统一致。
5.BOD5/TKN与BOD5/TP。
对于生物脱氮来说,BOD5/TKN至少应大于4.0,而生物除磷则要求BOD5/TP﹥20。
运行中应定期核算入流污水水质是否满足BOD5/TKN﹥4.0,BOD5/TP﹥20。
如果其中之一不满足,则应投加有机物补充碳源。
为了提高BOD5/TKN值,宜投加甲醇做补充碳源。
为了提高BOD5/TP值,则宜投加乙酸等低级脂肪酸。
6.PH控制及碱度核算。
A-A-O生物除磷脱氮系统中,污泥混合液的PH应控制在
7.0之上;如果PH﹤6.5,应外加石灰,补充碱度不足。
三、工艺运行异常问题的分析与排除
传统活性污泥工艺的故障诊断及排除技术,一般均适用于A-A-O脱氮除磷系统。
如果某处理厂控制水质目标为:BOD5≦25mg/L;SS≦25mg/L;NH3-N≦3mg/L;NO3-
N≦7mg/L;TP≦2mg/L。
则当实际水质偏离以上数值时,属异常情况。
现象一:TP﹤2mg/L,NH3-N﹤2mg/L,NO3N﹥7mg/L。
其原因及解决对策如下:
1.内回流比太小。
增大内回流。
2.缺氧段DO太高。
如果DO﹥0.5mg/L,则首先检查内回流比r是否太大。
如果太大,则适当降低。
另外,还应检查缺氧段搅拌强度是否太大,形成涡流,产生空气复氧。
现象二:TP﹤2mg/L,NH3-N﹥3mg/L,NO3-N﹥5mg/L,BOD5﹤25mg/L。
其原因及解决对策如下:
1.好氧段DO不足。
如果1.5﹤DO﹤
2.0mg/L,则可能只满足BOD5分解的需要,而不满足硝化的需要,应增大供气量,使DO处于2-3mg/L。
2.存在硝化抑制物质。
检查入流中工业废水的成分,加强上游污染源管理。
现象三:TP﹥2mg/L,NH3-N﹤3mg/L,NO3-N﹥5mg/L,BOD5﹤25mg/L。
其原因及解决对策如下:
1.入流BOD5不足。
检查BOD5/TKN是否大于4,BOD5/TP是否大于20,否则应采取增加入流BOD5的措施,如跨越初沉池或外加碳源。
2.外回流比太小,缺氧段DO太高。
检查缺氧段DO值,如果DO﹥0.5mg/L,则应采取措施,见“现象一”。
外回流比太大,把过量的NO3-N带入了厌氧段,应适当降低回流比。
现象四:TP﹥2mg/L,NH3-N﹤3mg/L,NO3-N﹤5mg/L,BOD5﹤25mg/L。
其原因及解决对策如下:
1.泥龄太长。
可适当增大排泥,降低SRT。
2.厌氧段DO太高。
如果DO﹥0.2mg/L,则应寻找DO升高的原因并予以排除。
首先检查是否搅拌强度太大,造成空气复氧,否则检查回流污泥中是否有DO带入。
3.入流BOD5不足。
检查BOD5/TP值。
如果BOD5/TP﹤20,则应外加碳源。
参考文献:
[1]顾魁声,污水生物处理技术,大连理工大学出版社,2004.
[2]钱易,现代废水处理新技术,中国科学技术出版社,1992.。