2.1数怎么不够用了 (1)
2.1 数怎么又不够用了 课件 1(北师大版八年级上)

长,宽分别是3,2的长方形,它 的对角线的长可能是整数吗?可 能是分数吗?
画一画
如下图,是由16个边长为1的小正方 形拼成的,任意连接这些小正方形的若 干个顶点,可得到一些线段,试分别找 出两条长度是有理数的线段和两条长度 不是有理数的线段。
数 的 发 展 历 史
1:人类是动物进化的产物,最初也完全没有数量 的概念。但人类发达的大脑对客观世界的认识已经达 到更加理性和抽象的地步。这样,在漫长 的生活实践 中,由于记事和分配生活用品等方面的需要,才逐渐 产生了数的概念,比如捕获了一头野兽,就用一块石 子代表,捕获了三头野兽,就用三块石子代表。
教学手段
动手操作 多媒体
自主探索,
合作交流 辅助
教学过程
情境引入 解读探究 知识拓展
学习小结
勾股定理
剪一剪,拼一拼
把两个边长为1的小正方形, 拼成一个大正方形。
1 1
+
1 1
=
议一议
设大正方形的边长为a, a满足什么条件?
∵ ∴
S大正方形=2S小正方形=2
a =2
2
a
教材分析
学情分析
教学目标
教学手段
教学过程
教材分析
第一次扩张
有理数 第 二 次 扩 张
非负有理数
无理数
学情 分 析
有理数和勾股定理
动手能力 重点难点:无理数存在的探索过程
教学目标
1通过拼图活动,让学生感受无理数产 生的实际背景和引入的必要性.
2学生经历数学思考与探索,进一步 发展学生的抽象思维水平. 3充分调动学生的积极性,培养学 生的合作精神,提高辩识能力.
a不是整数 a 也不是分数
八年级上第二章同步训练

八年级上第二章同步训练(2.1~2.3)§2.1 数怎么不够用了。
一. 判断题。
1.无限小数都是无理数。
( )2.有限小数都是有理数。
( )3.0.121221222²²²²是有理数。
( )4.半径为3的圆周长是有理数。
( )5.两个有理数的和、差、积仍是有理数,两个无理数的和、差、积仍是无理数。
( )。
二.填空题。
1. 叫无理数。
2.下列各数: 3π ,3.1415926,0,0.010010001²²²²²,81, 23-,654.0 ,其中无理数是_______。
3.正三角形的边长为6cm,高为h,则h 2=___,若精确到个位,那么h 约为____cm..三,解答题。
1.在直角三角形ABC 中,∠C=90°,若a=2,b=3,则c 2= ;c 是一个整数吗?可能是一个分数吗?为什么?2.一个长方形,长24cm, 宽为16cm,则这个长方形的对角线可能是整数吗?可能是分数吗?是有理数吗?3. 面积为7的 正方形的边长为χ。
请回答下列问题:①、χ的整数部分是多少?②、把χ的值精确到十分位是多少?精确到百分位呢?③、χ是有理数吗?并简要说明理由。
4.如图,要从离地面5m 的电线杆上的B 处向C 拉一条钢绳来固定,要固定点C 到A 的距离为3m,求BC 长度(精确到十分位)。
§2.2 平方根一,填空题。
1,94的平方根是____;算术平方根是 。
2,36 有 个平方根,它们是 ;它们的和是 ;它们互为 ;3,0.04的算术平方根是 ;开平方等于±5的数是 。
4,23-的算术平方根是____;231--)( 的算术平方根是____。
5,81的平方根是的平方根是 。
6,算术平方根等于它本身的数是____;平方根等于它本身的数是____。
7,如果0)6(42=++-y x ,那么=+y x ;8,如果a 的平方根是±2,那么=a ;9,当_______x 时,x -11有意义;10,(±3)2= 。
初中有理数复习题大全

2.1 数怎么不够用了一、选择题1、下面说法中正确的是()A、0表示没有意义B、正有理数和负有理数组成全体有理数C、0.3既不是整数,也不是分数,因此它不是有理数D、0既不是正数,也不是负数2、下列说法正确的是()A.正整数、负整数统称为整数 B.正分数和负分数统称为分数C、正数和负数统称为有理数D、0是最小的整数3.下列各组数中,不是互为相反意义的量的是()A.向东走5米和向西走2米 B.收入100元和支出20元C.上升7米和下降5米 D.长大1岁和减少2公斤4.向东行进-30m表示的意义是()A.向东行进30m B.向南行进30m C.向西行进-30m D.向西行进30m二、填空题1.把下列各数分别填在相应的表示集合的圈里.2、若将低于海平面11022米的太平洋最深处记作:–11011米,则高出海平面 8848、13米的珠穆朗玛峰应记作_____米.3、用正、负数表示:盈利6000元可记作_____元,亏损500元可记作_____元.4、如果“–2”表示比95小2的数,那么“+1”表示的数是_____;"–5"表示的数是______.5、如果把上升10m记作十10 m,那么–3m表示______.6、有理数中,最小的正整数是______;最大的负整数是______.三、解答题:1、是否存在满足下面条件的数,存在的话,把它们写出来:(1)最小的正有理数:(2)最小的负整数:(3)最大的非整数:(4)最小的整数:(5)最大的负有理数:(6)最小的有理数:2、如果a表示正数,那么–a表示什么数?如果a表示负数,那么–a表示什么数?字母a除了可以表示正数和负数外,还可以表示哪些有理数?3、初一(一)班数学成绩的平均分是85分,老师将第二小组的六个人的成绩记为:为+10,–8,+8,–4,0,–8,这六个学生的成绩分别是多少?2.2 数轴一、选择题1、在数轴上距离原点4个单位长度的点所表示的数是()A、4B、–4C、4或–4D、2或–22、大于–2.5而不大于3的整数()A、4个B、5个C、6个D、7个3、下列说法错误的是()A、所有的有理数都可以用数轴上的点表示B、数轴上的原点表示零C、在数轴上表示–3的点与表示+1的点的距离是2D、数轴上表示的点,在原点左边个单位处二、填空题:1、规定了__________、________和_________的直线叫做数轴;2、在数轴上表示+3的点在原点的______侧,距原点的距离是______个单位;表示–5的点原点的_____侧,它离原点的距离是_____个单位;表示+3的点位于表示–5的点的_____侧,根据_____,可得–5<33、若数轴上得点M和N点表示的两个数互为相反数,并且这两点间的距离为7.2,则这两个点表示的数分别和______和______.4、已知A,B是数轴上的点.(1)如果点A表示数–3,将A向右移动7个单位长度,那么终点表示的数是_______;(2)如果点B表示数3,将B向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是______.5、正数的相反数是______数,一个数的相反数的相反数是______,0的相反数是______.6、______的相反数大于它本身,______的相反数小于它本身.7、在数轴上,点A对应的数是1,那么在数轴上与点A相距3个单位长度的点表示的数是______.8、用“>”、“<”填空:(1)9 -16;(2)— —;(3)0 —6 .三、解答题:1、如下图所示,指出数轴上A、B、C、D、E各点分别表示什么数,并用“<”将它们连接起来。
七年级数学上册说课稿北师大版

七年级数学上册说课稿北师大版2.1数怎么不够用了各位评委老师,上午好,今天我说课的题目是《数怎么不够用了》,本节课是北师大出版的,七年级上册第二章第1节。
教学设计一、说教材:在此之前,学生已经学习了数和数的运算,对本节的学习有着铺垫作用。
本节内容是有理数的一部分,是对小学所学数的范围的补充,特别是首次提出了负数的概念,是以后学习绝对值、数轴、相反数及有理数运算的基础。
二、教学目标根据课程标准的要求,教材的结构与内容分析,学生现有的知识水平和心理结构特点,制定如下教学目标:1、使学生了解负数是如何产生的,理解正负数及零的含义。
2、知道它们的表示方法,能正确对正负数做一些简单的应用,对生活中的一些正负数现象做一些了解。
本节课是在学生学习了正数,即在正整数、正分数、零及这些数的运算的基础上,根据七年级学生年龄特点和心理特征即学生具有很强的感性认知基础,对一些具体的实践活动十分感兴趣。
活泼好动,思维敏捷,表现欲强,但思考问题不全面等。
采用探索引导式的学习方式。
四、重点、难点:重点:正数、负数的意义及如何区别意义相反的量。
难点:如何控制和提高学生的思维,在教学中把握主动性,培养学生各方面的能力。
五、教学设计及依据:借助多媒体辅助手段,创设问题情境,引导学生观察、分析、组织讨论、合作交流,启发学生积极思维,不断探索后汇报研究成果,行到结论后进行总结,及时进行反馈应用和反思式总结。
依据是《新课标》,学生是学习的主人,而教师在学生学习中只是组织者、引导者,培养学生学会学习,从学生现有生活经验的基础上,让学生感知知识的过程,使学生人人都能获得必要的数学,人人都获得有用的数学,不同的人获得不同的发展。
2.2数轴各位评委老师,上午好,今天我说课的题目是《数轴》,本节课是北师大出版的,七年级上册第二章第2节。
一、说教材1.教材的地位及作用“数轴”是人教版七年级数学上册第二章第二节“有理数”的重点内容之一,是在引进了负数及分析了有理数的分类后给出的。
七年级数学上册 第二章 2.1数怎么不够用了素材1 北师大版

辽宁省凌海市石山初级中学七年级数学上册第二章 2.1数怎么不
够用了素材1 北师大版
负数是数吗?——人类认识负数经历了一个漫长的过程。
大约2000年以前,中国就认识了负数,规定了表示负数的方法,指出了负数的实际意义,并进一步在解方程中运用正负数的运算,遥遥领先于印度和欧洲。
科学上的新发现往往会受到保守势力的反抗。
当负数概念传到欧洲以后,新旧观点之间出现了激烈的辩论,在这场辨论中有一段插曲。
一天,著名数学家、物理学家帕斯卡正和他的好友、神学家、数学家阿尔诺聊天,突然,阿尔诺说:从来都是
(较小的数):(较大的数)=(较小的数):(较大的数)
或者
(较大的数):(较小的数)=(较大的数):(较小的数)
现在,居然出现(-1):1=1:(-1),也就是
(较小的数):(较大的数)=(较大的数):(较小的数)
这类怪现象了!
其实,这种现象很正常,不必大惊小怪。
当数的范围扩大以后,原有的数学现象,有一些被保留下来,也有一些没有被保留下来。
数的范围从正整数、正分数扩大到有理数,“大数:小数=大数:小数”这一数学现象就没有被保留下来。
2与2+a相比较,哪个数大?自己思考一下。
2.1数怎么不够用了(修订版)

第二章 有理数 2.1数怎么不够用了[学习目标]1、 理解正数、负数和0的概念,会判断一个数是正数还是负数;2、 会用正数和负数来表示具有相反意义的量,理解数0的意义;3、 理解有理数的概念,并正确理解分类标准和按照一定的标准进行分类.[学习过程]一、板题、示标(一分钟):师:同学们,今天我们来学习第二章有理数及其运算2.1数怎么不够用了(教师板书). 过渡语:要达到什么教学目标呢?请看投影(屏幕显示): 学习目标:1、 理解正数、负数和0的概念,会判断一个数是正数还是负数;2、 会用正数和负数来表示具有相反意义的量,理解数0的意义;3、 理解有理数的概念,并正确理解分类标准和按照一定的标准进行分类. 过渡语:怎样才能当堂达到学习目标呢?我们将进行几次先学后教.请先看屏幕.二、第一次先学后教:初步认识正数、负数和01.(先学两分钟)师:请同学们看屏幕,并把表格填写完整(初布了解正负数和0的意义).2.(后教两分钟)时间到了以后请学生回答并师生讨论得出正确答案.三、第二次先学后教:用正负数表示生活中意义相反的量.1、(先学两分钟)师:请看屏幕,并根据你的生活实际,举例还有什么用负数表示的量呢?还有这些量的相反量又是什么呢?可以用什么数表示?2、(后教三分钟)学生一一举例,教师把例子板书至黑板,把正数和负数表示的量一一对应,从而讨论得出结论:用正负数可表示生活中意义相反的量.用正数表示的量,其相反量可以用负数表示.四、第三次先学后教:正数、负数和0的定义和应用1、(先学三分钟)师:请同学们看屏幕做例一、例二.(进一步熟悉正负数和0的意义)例1、2月3日,深圳气温零上10℃,哈尔滨气温零下5 ℃,若零上10 ℃,用+10 ℃表示,那么零下 5 ℃如何表示?0 ℃是不是代表没有温度?例2、我国珠穆朗玛峰高度比海平面高8848米,吐鲁番盆地高度比海平面底155米,若海平面的高度为零米,则它们的高度分别如何表示?提问:什么是正数?什么是负数?什么是0?2、(后教三分钟)请学生解题,讨论出正确答案,回答正负数和0的定义,教师加以总结:大于零的数叫正数,用“+”号(读做:正)表示;小于零的数叫负数,用“-”号(读作:负)表示;“0”既不是正数,也不是负数.0还是“基准”数.3、(再学两分钟)了解正负数在生活中表示的意义相反的量.(1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示?(2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么﹣0.03克表示什么?(3)某大米包装袋上标注着:“净重量:10kg±150g”, 这里的“10kg±150g”表示什么?4、(再教三分钟)请学生解题,并讨论出正确答案.5、(三学两分钟)师:选定一个身高做标准,用正负数表示你们班每位同学的身高与选定的身高标准,你是怎样表示的?与同伴进行交流.6、(三教五分钟)学生一一谈论自己的做法并师生讨论得出结论:举例:若选择170cm作为标准,则170cm记为0cm(0为基准数);要表示175cm,则175cm比170cm高5cm,则175cm记为+5cm;反之,要表示163cm,则163cm比170cm低7cm,则163cm记为-7cm.四、第四次先学后教:有理数的分类.1、(先学两分钟)提问:怎样将所有学过的数进行分类?什么是有理数?什么是非负数?2、(后教五分钟)请学生回答有理数的分类方法,以及有理数,非负数的定义,教师加以总结:整数和分数统称为有理数.正数和零统称为非负数.3、(再学三分钟)请把下列各数填入相应的集合中:3,-7,-32,∙6.5,0,418-,15,91正数集合:{ ……} 负数集合:{ ……} 整数集合:{ ……} 分数集合:{……}4、(再教两分钟)学生回答问题并师生讨论得出最终答案:正数集合:{3, ∙6.5 ,15,91……} 负数集合:{ -7,-32,418-……}整数集合:{ 3,-7,0,15 ……}分数集合:{-32,∙6.5,418- ,91……}。
§2.1数怎么不够用了1

§2.1数怎么不够用了【学习目标】1.通过生活中的事例,掌握正数和负数的概念2.会用正、负数表示具有相反意义的量3.掌握有理数的分类【课前知多少】1、实际生活中有许多数的应用,比如我们班有 ______ 人,这个月一共有 ______ 天,从家到学校大约需要 ______ 分钟,长方体有 ____ 个面 ____ 条棱,这些都可以用数字来表示。
【合作探究问题解决】一、用正数和负数表示具有相反意义的量探究1、像5,1.2,300,…这样,比 _____ 大的数叫做 ________ 。
像-10,-3,-2.5,…这样,比 _____ 小的数叫做 ________ 。
注意:_____既不是正数,也不是负数,它是正数与负数的分界。
例1、对于具有 ________________ 的两个量,如果其中一种量用正数表示,那么另一种量可以用 ________ 表示。
例2、将下面的数字填入相应的大括号里:-3.5,2,0,-错误!未找到引用源。
,4.8,-500,错误!未找到引用源。
,99①正数:{}②负数:{}③正整数:{}④负整数:{}例3 、“一个数,如果不是正数,那它必定是负数。
“这句话对不对?为什么?例4、如果水位升高3米记作+3m,那么水位下降3米可以记作 ________ ;若水位不升不降,应记作什么? ________ 。
例5、A地海拔高度是70m,B地海拔高度是-30m,C地海拔高度是30m,D地海拔高度是-90m。
哪个地方海拔最高?哪个地方海拔最低?二、有理数的有关概念探究2、对我们学过的数进行以下几种情况分类:正整数:举例__________________,零:0,负整数:举例____________正分数:举例______________,负分数:举例_________________________________、 __________和 __________统称为整数, ____________和_________ 统称分数,1、有理数的定义:___________ 和__________统称为有理数。
数怎么不够用了[上学期]--北师大版
![数怎么不够用了[上学期]--北师大版](https://img.taocdn.com/s3/m/f6491b61f12d2af90342e622.png)
有两个边长为1的正方形,剪一剪,拼一拼,设
法得到一个大的正方形。(请同学们展示自己的
作品)
11 11
1
1
1
1
11 22112来自211
1
1
11
1
1
1
1
11
a
(1)设大正方形的边长为a,a满足什么
条件?
(2)a可能是整数吗?说说你的理由。
(2)1.0203040506…(从小到大排列的相邻两个正 整数间都有一个0
(3) 3 (4) a+b(a,b都是无理数)
解:有理数有:5.101010101…
(5)
4 3
无理数有:1.0203040506… ,
3 , 4 .
3
然而,第一个发现这样的数的人 却被抛进大海,你想知道这其中的曲 折离奇吗?这得追溯到2500年前,有 个叫毕达哥拉斯的人,他是一个伟大 的数学家,他创立了毕达哥拉斯学派, 这是一个非常神秘的学派,他们以领 袖毕达哥拉斯为核心,认为毕达哥拉 斯是至高无尚的,他所说的一切都是 真理。
归纳:在等式a2 =2中,a既不是整数, 也不是分数,所以a不是有理数。
那么a到底是一个怎么样的数呢?
面积为2的正方形边长a究竟是多少呢? 请同学们借助计算器进行探索
边长a
面积s
1<a<2
1<s<4
归纳:a是一个无限不循环小数
例题:下列各数中,哪些是有理数?哪些是无理数?
(1)5.101010101…(相邻两个1之间都有一个0)
数学是锻炼思维的体操,体操能 使你身体健康,动作敏捷;数学能使 你的思想正确敏捷,有了正确的思想, 你才有可能爬上科学的大山。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1数怎么又不够用了(1)
班级 姓名 小组 评分
学习目标:
1、 掌握如何说明一个数不是有理数的方法;
2、 在探究过程中使学生感受“数”的确不够用了;
3、 极度热情、全力以赴、主动探索,增强学生学好数学的勇气与信心。
重点:如何说明一个数不是有理数。
难点:对有理数不够用的理解。
预习指导
【使用说明与学法指导】
一、 用15分钟时间,阅读课本P32内容: 1、 探究“拼图活动”部分后,你有何感想? 2、 探究“做一做”部分后,你又有何体会?
已学知识回顾:到目前为止,我们学过的数有哪些?有理数是怎样分类的?
二、 教材助读
思考:在我们的现实生活中,有理数是否可以满足我们的需要呢?
三、 预习自测 1、 把
21
,4,1435,0,-
3
,-
31
,-6,-
722
填入下列的集合中。
整数集合:{ },分数集合:{ },既不是整数也不是分数集合:{ } 2、以下各正方形的边长不是有理数的是:( )
A 、面积为25的正方形
B 、面积为25
4的正方形C 、面积为8的正方形D 、面积为1.44的正方形
五、我的疑惑:
课内探究
一、 学始于疑——我思考,我收获
1、 不能清楚的判断一个数到底是不是有理数;
2、 对于如何说明一个“数”是不是有理数,理解有障碍; 二、质疑探究——质疑解决、合作探究 (一)基础知识探究
问题1
问题2:设该正方形的边长为b ,则b 应满足什么条件? 问题3:b 是有理数吗?
提示:根据勾股定理得2
b =5,因为22=4,2
3=9,4<5<9. 所以b 不可能是
没有两个相同的分数相乘结果为5,故b 不可能为
方法总结:<判定一个数不是有理数的方法> (二)知识综合运用探究
【例1】如下图,正三角形A BC 的边长为2,高为h , h 可能是整数吗?可能是分数吗? C
【例2】长宽分别是3、2的长方形,它的对角线的长可能是有理数吗?
【扩展提升】下图是由16个边长为1的小正方形拼成的,任意连接这些小正方形的若干个顶点,可能得到一些线段,试分别找出两条长度是有理数和两条长度不是有理数的线段。
课后训练
1、 把下列各数填在相应的大括号内: 0,3,3
2-
,0.3,—6,0.8,
4
π
,1.12121…,
3
1,
整数集合:{ } ,分数集合:{ },既不是整数也不是分数集合:{ }
2、(1)设面积为8π的圆的半径为r ,r 是有理数吗?请说明理由。
(2)如下图是面积分别为1、2、3、4、5、6、7、8的正方形。
问:边长不是有理数的正方形有 个。
3、 请你在方格纸上按照如下要求设计直角三角形: (1) 使它的三边中有一边边长不是有理数; (2) 使它的三边中有两边边长不是有理数; (3) 使它的三边都不是有理数。
4、设面积为9的正方形的边长为a ,a 是有理数吗?如果正方形的面积为20,则其边长b 是有理数吗?如果不是有理数,试估计它的值。
5、在3.14,
7
22,4,π这四个数中,不是有理数理数的个数是( )
A 、1个
B 、2个
C 、3个
D 、4个。