图像边缘提取算法的分析

合集下载

图像识别中的轮廓提取算法探索(七)

图像识别中的轮廓提取算法探索(七)

图像识别中的轮廓提取算法探索引言:图像识别技术如今已经广泛应用于各个领域,其关键之一就是图像中的轮廓提取算法。

轮廓提取的准确与否直接影响到图像识别的效果。

本文将探索图像识别中常用的轮廓提取算法,并对其原理和优缺点进行分析。

一、边缘检测算法边缘检测是图像处理中最基础的一步,是进行轮廓提取的前提。

常用的边缘检测算法有Sobel算子、Laplacian算子和Canny算子等。

1. Sobel算子Sobel算子是一种基于梯度的边缘检测算法,其原理是通过计算每个像素点的梯度值来判断其是否为边缘点。

然后根据梯度值的大小确定边缘的强度,进而提取轮廓。

Sobel算子的优点是计算简单,对噪声鲁棒性强。

但其缺点也较为明显,容易产生边缘断裂的情况,并且对角线边缘检测效果较差。

2. Laplacian算子Laplacian算子是一种基于二阶导数的边缘检测算法,其原理是通过计算图像中每个像素点的二阶导数来判断其是否为边缘点。

Laplacian算子的优点是能够检测出边缘的交叉点,能够更精准地定位边缘。

但其缺点是对噪声比较敏感,容易产生误检。

3. Canny算子Canny算子是一种综合考虑多种因素的边缘检测算法,其原理是通过梯度计算、非极大值抑制和阈值处理来提取目标轮廓。

Canny算子的优点是能够提取清晰且连续的边缘,对噪声抑制效果好。

但其缺点是计算量较大,算法较为复杂。

二、区域生长算法区域生长算法是一种基于种子点的轮廓提取方法,其原理是在图像中选择若干个种子点,然后通过像素点之间的相似性判断来逐渐生长成为一个完整的区域。

区域生长算法的优点是能够提取出连续且相似的轮廓,适用于要求较高的图像识别任务。

但其缺点是对种子点的选择比较敏感,容易受到图像质量和噪声的影响。

三、边缘跟踪算法边缘跟踪算法是一种基于边缘连接的轮廓提取方法,其原理是通过追踪边缘点的连接关系,形成完整的轮廓。

边缘跟踪算法的优点是能够提取出精细的轮廓,并且对噪声抑制效果好。

医学图像处理中的边缘检测与分割算法

医学图像处理中的边缘检测与分割算法

医学图像处理中的边缘检测与分割算法边缘检测与分割是医学图像处理中的重要部分,被广泛应用于疾病诊断、医学影像分析和手术辅助等领域。

边缘检测算法用于提取图像中的边缘信息,而分割算法则可以将图像划分为不同的区域,有助于医生对图像进行进一步分析和诊断。

一、边缘检测算法在医学图像处理中,常用的边缘检测算法包括基于梯度的方法、基于模型的方法和基于机器学习的方法。

1. 基于梯度的方法基于梯度的边缘检测算法通过计算图像中像素点的梯度值来确定边缘位置。

常用的算法包括Sobel算子、Prewitt算子和Canny算子。

Sobel算子是一种常用的离散微分算子,通过在图像中对每个像素点应用Sobel算子矩阵,可以得到图像的x方向和y方向的梯度图像。

通过计算梯度幅值和方向,可以得到边缘的位置和方向。

Prewitt算子与Sobel算子类似,也是一种基于梯度的边缘检测算子。

它通过将图像中的每个像素点与Prewitt算子矩阵进行卷积运算,得到图像的x方向和y方向的梯度图像。

进一步计算梯度幅值和方向,可以确定边缘的位置和方向。

Canny算子是一种经典的边缘检测算法,它采用多步骤的方法来检测边缘。

首先,对图像进行高斯滤波来减少噪声。

然后,计算图像的梯度幅值和方向,进一步剔除非最大值的梯度。

最后,通过设置双阈值来确定真正的边缘。

2. 基于模型的方法基于模型的边缘检测算法借助数学模型来描述边缘的形状和特征。

常用的算法包括基于边缘模型的Snake算法和基于边缘模型的Active Contour算法。

Snake算法(也称为活动轮廓模型)是一种基于曲线的边缘检测算法。

它通过将一条初始曲线沿着图像中的边缘移动,使得曲线更好地贴合真实边缘。

Snake算法考虑了边缘的连续性、平滑性和能量最小化,可以获得较为准确的边缘。

Active Contour算法是Snake算法的进一步发展,引入了图像能量函数。

通过最小化能量函数,可以得到最佳的边缘位置。

Active Contour算法可以自动调整曲线的形状和位置,适应复杂的图像边缘。

sobel边缘检测算法

sobel边缘检测算法

sobel边缘检测算法
Sobel边缘检测算法比较简单,实际应用中效率比canny边缘检测效率要高,但是边缘不如Canny检测的准确,然而在很多实际应用的场合,sobel边缘却是首选,Sobel算子是高斯平滑与微分操作的结合体,所以其抗噪声能力很强,用途较多。

尤其是在对效率要求较高,而对细纹理不太关系的时候。

使用Sobel算子提取图像边缘分3个步骤:
1.提取X方向的边缘,X方向一阶Sobel边缘检测算法为:
[ − 1 0 1 − 2 0 2 − 1 0 1 ] (1) \left[
−1−2−1000121−101−202−101
\right] \tag{1}⎣⎡−1−2−1000121⎦⎤(1)
2.提取Y方向的边缘,Y方向一阶Sobel边缘检测算法为:
[ − 1 − 2 − 1 0 0 0 1 2 1 ] (2) \left[
−101−202−101−1−2−1000121
\right] \tag{2}⎣⎡−101−202−101⎦⎤(2)
3. 综合两个方向的边缘信息得到整幅图像的边缘。

图像边缘检测及提取,分水岭算法

图像边缘检测及提取,分水岭算法

1.几种算子图像边缘提取:程序代码如下:运行结果:原图为一堆苹果(彩图),各算子处理后的边缘提取图:分水岭算法实现:a.直接对图像进行分水岭算法处理代码如下:(原图还是上题一堆苹果)运行结果如右图:很明显,属于过度分割了。

下面有改进算法:b.改进算法代码如下:实现包括下列步骤:(1)读图像。

读入图像(2)对比度最大化。

注意到图像中有许多彼此连通的不同大小的对象。

为使通过watershed变换找到的低谷数目最小,我们使感兴趣的对象的对比度达到最大。

对比度增强的一个常用的技术是综合应用top—hat和bottom—hat变换。

top—hat变换定义为原图像和它的开之差。

图像的开是一与特定结构元素匹配的图像前景部分的集合。

bottom—hat变换定义为在原图像和它的闭之间的差。

图像的闭是一与特定结构元素匹配的图像背景的集合。

通用的结构元素是正方形,长方形,圆盘,菱形,球和线。

既然图像中我们感兴趣的目标对象看起来像圆盘,我们用strel函数建立一个半径为15个像素的圆盘形结构元素。

这个圆盘尺度是图像中的目标对象的平均半径的一个估计。

(3)图像相加减。

为使目标对象与分隔它们的间隙之间的对比达到最大,用“原图top—hat图像+bottom—hat图像”得到增强的结果图。

(4)转换感兴趣的对象。

调用watershed变换找出图像的亮度”低谷”,把imcomplement作用增强过的图像上,将感兴趣的目标对象转换为亮度低谷,得到增强图的补图。

(5)检测亮度低谷。

对所得补图运用imextendedmin函数检测低于某特别阈值的所有亮度低谷。

imextendedmin函数的输出是一个二值(逻辑值)图像。

二值图像中重要的是区域的位置而非区域的大小。

用imimposemin函数把补图改为只含有那些由imtendedmin函数找到的低谷,并将低谷的像素值变为O(8位图像可能的深谷)。

(6)watershed分割。

通过watershed变换,可找出来所有含有强加给最小值的区域。

图像处理中的边缘检测算法研究与性能评估

图像处理中的边缘检测算法研究与性能评估

图像处理中的边缘检测算法研究与性能评估引言:在当今数字图像处理领域,边缘检测一直是一个重要且挑战性的问题。

边缘提取是图像处理中的一项基本操作,对于目标检测、图像分割和图像识别等任务都具有重要意义。

边缘检测的目标是找到图像中明显的灰度跃变区域,以准确地确定物体的边缘位置。

本文将介绍几种常见的图像处理中的边缘检测算法,并对其性能进行评估。

一、经典边缘检测算法1. Sobel算子Sobel算子是一种基于差分的边缘检测算子,它结合了图像梯度的信息。

Sobel算子使用一个3×3的模板对图像进行卷积操作,通过计算水平和垂直方向上的梯度来找到边缘位置。

Sobel算子虽然简单,但在边缘检测中表现良好。

2. Prewitt算子Prewitt算子是另一种基于差分的边缘检测算子,与Sobel 算子类似,它也使用一个3×3的模板对图像进行卷积操作。

该算子通过计算水平和垂直方向上的梯度来检测边缘。

Prewitt 算子在边缘检测中也有较好的性能。

3. Canny边缘检测Canny边缘检测是一种广泛应用的边缘检测算法。

与Sobel 和Prewitt算子相比,Canny算法不仅能够检测边缘,还能够进行边缘细化和抑制不必要的边缘响应。

它通过多阶段的边缘检测过程,包括高斯滤波、计算梯度幅值和方向、非极大值抑制和双阈值处理等步骤,来提取图像中的边缘。

二、边缘检测算法的性能评估1. 准确性评估准确性是评估边缘检测算法好坏的重要指标。

在进行准确性评估时,可以使用一些评价指标,如PR曲线、F值等。

PR 曲线是以检测到的边缘像素为横坐标,以正确的边缘像素为纵坐标绘制的曲线,用于评估算法的召回率和准确率。

F值则是召回率和准确率的综合评价指标,能够综合考虑算法的检测效果。

2. 实时性评估实时性是边缘检测算法是否适用于实际应用的重要因素。

在实时性评估时,可以考虑算法的运行时间,以及算法对硬件资源的要求。

边缘检测算法应尽量满足实时性的要求,并能够在不同硬件平台上高效运行。

图像特征提取及描述算法分析

图像特征提取及描述算法分析

图像特征提取及描述算法分析图像特征提取及描述算法是计算机视觉领域的核心内容之一,其在图像处理、模式识别和计算机视觉任务中扮演着重要的角色。

本文将分析一些常用的图像特征提取及描述算法,包括边缘检测、角点检测、尺度不变特征变换(SIFT)和高级表观算子(HOG),以及它们在实际应用中的优缺点。

边缘检测是图像处理中常用的特征提取方法之一。

边缘是图像中灰度变化最明显的地方,通常包含了物体的轮廓和纹理信息。

常用的边缘检测算法有Sobel算子、Prewitt算子和Canny边缘检测算法。

Sobel算子和Prewitt算子是基于局部差分的算法,通过计算像素点邻域内灰度值的差异来检测边缘。

Canny边缘检测算法在Sobel算子的基础上添加了非最大抑制和双阈值处理,能够在减少噪声的同时保留重要的边缘信息。

边缘检测算法在许多图像处理和计算机视觉任务中都有广泛的应用,例如目标检测、图像分割和图像识别等。

角点检测是另一种常用的图像特征提取算法,它主要用于寻找图像中的角点或感兴趣点。

角点是图像中两条或多条边缘相交的地方,通常具有良好的鲁棒性和唯一性。

常用的角点检测算法有SIFT算法、Harris角点检测算法和FAST角点检测算法。

SIFT算法通过在不同尺度空间上进行高斯模糊和建立尺度空间极值点来寻找图像中的关键点。

Harris角点检测算法基于图像灰度的变化率来检测角点,通过计算图像的梯度和结构矩阵的特征值来判断像素点是否为角点。

FAST角点检测算法则是通过快速的像素比较来寻找图像中的角点。

角点检测算法在图像配准、目标跟踪和三维重建等领域有广泛的应用。

尺度不变特征变换(SIFT)是一种用于图像特征提取和描述的经典算法。

SIFT 算法通过在不同尺度空间上构建高斯金字塔和相对梯度直方图来提取图像的局部不变特征。

SIFT特征具有旋转不变性和尺度不变性,能够在不同角度和尺度下描述同一物体的特征。

SIFT算法在目标识别、图像匹配和三维重建等领域有广泛的应用。

图像边缘提取算法研究报告

图像边缘提取算法研究报告

图像边缘提取算法研究报告概述图像的边缘包含了图像最重要的信息。

什么是边缘?一般是指图像灰度变化率最大的位置。

从成因上看,一般图像边缘主要由四个方面的因素形成:(1>图像灰度在表面法向变化的不连续造成的边缘;(2>图像对像素在空间上不一致形成的边缘;(3>在光滑的表面上由于颜色的不一致形成的边缘:(4>物体的光影造成的边缘。

图像边缘提取的作用有:(1>改良图像质量;(2>分离对象;(3>理解和重构视觉场景;(4>识别特征;(5>其他。

b5E2RGbCAP 图像边缘检测是图像处理与计算机视觉共同的基本课题,1960年以来,相继发展了一系列采用梯度算子和拉普拉斯算子的边缘检测技术;为了降低图像噪声对边缘检测算法的干扰,1980年以来,又建立了高斯低通滤波与拉普拉斯算子复合的过零点检测Marr-Hildreth 理论;在另一个方向上,1980年代初期,Canny 从信号处理的角度出发,使边缘检测算法更具有实用性。

本报告主要介绍以上以上几个方面的内容,通过matlab 程序实现以上几种算法,对比各种算法的性能。

p1EanqFDPw 算法介绍及相应程序一、 基于微分算子的边缘检测检测图像边缘信息,可以把图像看做曲面,边缘就是图像的变化最剧烈的位置。

这里所讲的边缘信息包含两个方面:一是边缘的具体位置,即像素的坐标;而是边缘的方向。

微分算子有两个重要性质:定域性(或局部性>、敏感性(或无界性>。

敏感性就是说,它对局部的函数值变化很敏感,但是因其对变化过于敏感又有了天然的缺陷——不能抵抗噪声。

局部性意思是指,每一点的导数只与函数在该点邻近的信息有关。

DXDiTa9E3d 主要有两大类基于微分算子的边缘检测技术:一阶微分算子边缘检测与二阶微分算子边缘检测。

这些检测技术采用以下的基本步骤:RTCrpUDGiT (1)将相应的微分算子简化为离散的差分格式,进而简化为模板(记为T>。

边缘提取原理

边缘提取原理

边缘提取原理边缘提取是一种常用的图像处理技术,用于从图像中提取出物体的边缘信息。

边缘是图像中物体之间的分界线,其具有明显的灰度或颜色变化。

边缘提取的目的是通过检测这些变化来揭示图像中的物体轮廓,从而实现图像分析、目标识别和计算机视觉等应用。

边缘提取的原理可以简单描述为以下几个步骤:1.图像灰度化:将彩色图像转换为灰度图像。

这是因为边缘通常由灰度或颜色变化引起,因此只需要对图像进行灰度处理即可。

2.图像平滑化:使用滤波器对图像进行平滑化操作。

平滑化的目的是降低图像中的噪声,使得边缘检测更加准确。

常用的滤波器有高斯滤波器和中值滤波器。

3.边缘检测算法:边缘检测是边缘提取的核心步骤,它通过计算图像中像素点的梯度来检测边缘。

常用的边缘检测算法有Sobel算子、Prewitt算子和Canny算子等。

- Sobel算子是一种基于梯度的边缘检测算法,它通过计算图像中像素点的梯度幅值来检测边缘。

Sobel算子分为水平和垂直两个方向,分别计算像素点在x和y方向上的梯度。

- Prewitt算子也是一种基于梯度的边缘检测算法,它与Sobel算子类似,但使用的模板不同。

Prewitt算子的模板是一个3x3的矩阵,分为水平和垂直两个方向。

- Canny算子是一种基于多阈值的边缘检测算法,它通过计算图像中像素点的梯度幅值和方向来检测边缘。

Canny算子的优点是能够检测到细节边缘,并且对噪声具有较好的抑制能力。

4.边缘连接:在边缘检测后,通常会得到一些不连续的边缘片段。

边缘连接的目的是将这些片段连接成连续的边缘线条。

常用的边缘连接算法有霍夫变换和分水岭算法等。

- 霍夫变换是一种常用的边缘连接算法,它通过将图像空间转换为参数空间,并在参数空间中进行投票来检测直线、圆等形状的边缘。

- 分水岭算法是一种基于区域的边缘连接算法,它通过将图像分割成不同的区域,并在区域之间进行分水岭漫水填充来连接边缘。

边缘提取在计算机视觉、图像处理和模式识别等领域具有广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018/10/14 19
Canny算子
基本思想:首先对图像选择一定的Gauss滤波器进行平滑 滤波,然后采用非极值抑制技术进行处理得到最后的边缘 图像。 算法步骤: (1) 用高斯滤波器平滑图像。 (2) 用一阶偏导的有限差分来计算梯度的幅 值和方向。 (3) 对梯度幅值进行非极大值抑制。 (4) 用双阈值算法检测和连接边缘。
2018/10/14
9
Kirsch算子
图像中的每个位置都要经过8个模板的作用, 最大值被选做输出,达到最大值的模板对 应的方向就是边缘的方向。 a3 a1 a2 a (i, j ) a 算法步骤:
8 a 7
8
a6
1 2
a5
4
m(i, j ) max{ 1, max{5s k 3t k : k 0,1, ,7}} 其中 s k a k a k 1 a k 2 t k a k 3 a k 4 a k 7
2018/10/14
20
抗噪性能
2018/10/14
21
性能分析
虽然是基于最优化思想推导出的边缘检测 算子,但实际效果并不一定最优,原因在 于理论和实际有许多不一致的地方(只离散 了四个方向)。 该算子同样采用高斯函数对图像作平滑处 理,因此具有较强的抑制噪声能力,同样 该算子也会将一些高频边缘平滑掉,造成 边缘丢失。
2018/10/14 22
2018/10/14
23
2018/10/14 16
LOG算子
基本思想:先用高斯函数对图像滤波,然 后对滤波后的图像进行拉普拉斯运算,算 得的值等于零的点认为是边界点。
算法步骤:
(1)对图像先进行高斯滤波,再进行Laplace算子运算; (2)保留一阶导数峰值的位置记录,然后从中寻找Laplace跨零点; (3)采用插值方法对跨零点进行估计。
2018/10/14
17
抗噪性能
2018/10/14
18
性能分析
该算子克服了Laplician算子抗噪声能力比较 差的缺点,但是在抑制噪声的同时也可能 将原有的比较尖锐的边缘也平滑掉了,造 成尖锐边缘无法被检测到。 原因:作为一个二阶导数,拉普拉斯算子 具有对噪声无法接受的敏感性,拉普拉斯 算子产生双边缘,最后拉普拉斯不能检测 (1) Tf (i, j) f (i, j) f (i 1, j 1) f (i 1, j) f (i, j 1) (2) 借鉴canny的处理方法,两个方向分别处 理
2 2
2018/10/14
2
抗噪性能
2018/10/14
3
性能分析
• 算法处理处理同Roberts Operator
2018/10/14
7
抗噪性能
2018/10/14
8
性能分析
sobel算子和Prewitt算子都是对图像先作加 权平滑处理,然后再作微分运算,所不同 的是平滑部分的权值有些差异,因此对噪 声具有一定的抑制能力,但不能完全排除 检测结果中出现的虚假边缘。 虽然这两个算子边缘定位效果不错,但检 测出的边缘容易出现多像素宽度。
2018/10/14
7 6 5
3 4
10
抗噪性能
2018/10/14
11
Robinson算子
除了模板与kirsch算子不同,其余的运算输 出与kirsch算子完全一致。 注意算子的对称性(每隔四个符号相反),可 节约计算量
2018/10/14
12
抗噪性能
2018/10/14
13
二阶算子检测
模板
概述
成因:
(1)法向不连续; (2)空间深度不同; (3)曲面颜色不同; (4)光照不连续。
作用:
(1)改良图像质量;(2)理解和重构视觉场景;
(3)分离对象; (5)其他。
2018/10/14
(4)识别特征;
1
Roberts算子
是一种利用局部差分算子寻找边缘的算子, 两个模板分别为
1 0 0 -1 0 1 -1 0
2018/10/14 14
抗噪性能
2018/10/14
15
性能分析
采用不依赖于边缘方向的二阶微分算子, 对图像中的阶跃型边缘点定位准确,该算 子对噪声非常敏感,它使噪声成分得到加 强,这两个特性使得该算子容易丢失一部 分边缘的方向信息,造成一些不连续的检 测边缘,同时抗噪声能力比较差。
产生双边缘
0 1 0 1 -4 1 0 1 0
算法步骤:图像经模板作用后执行跨零点 检测(该过程比较复杂)。
参考文献:HUERTAS and MEDIONI, Detection of Intensity Changes with Subpixel
Accuracy Using Laplacian-Gaussian Masks,1986
利用局部差分算子寻找边缘,边缘定位精 度较高,但容易丢失一部分边缘,同时由 于图像没经过平滑处理,因此不具备一直 噪声的能力。 该算子对具有陡峭边缘且噪声低的图像效 果较好。
2018/10/14
4
Sobel算子
• 中心差分,但对中间水平线和垂直线上的四个邻 近点赋予略高的权重。
• 模板:
-1
-2 -1
0
0 0
2
2 1
1
0 -1
2
0 -2
1
0 -1
• 算法处理处理同Roberts Operator
2018/10/14
5
抗噪性能
2018/10/14
6
Prewitt算子
也属于中心差分类型,但没有给最邻近点较高的 权重。 模板:
-1 0 -1 0 -1 0 1 1 1 1 0 1 0 1 0 -1 -1 -1
相关文档
最新文档