2014年高考重庆理科数学试题及答案(word解析版)

合集下载

2014年重庆高考理科数学试题

2014年重庆高考理科数学试题

一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复平面内表示复数(12)i i -的点位于( ).A 第一象限 .B 第二象限 .C 第三象限 .D 第四象限2. 对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列 248.,,C a a a 成等比数列 369.,,D a a a 成等比数列3. 已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测的数据算得的线性回归方程可能是( )$.0.4 2.3A y x =+ $.2 2.4B y x =- $.29.5C y x =-+ $.0.3 4.4C y x =-+4. 已知向量(,3),(1,4),(2,1)a k b c ===r r r,且(23)a b c -⊥r r r ,则实数k =( ) 9.2A - .0B .C 3 D.1525.执行如题(5)图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )A.12s >B.35s >C.710s >D.45s >6. 已知命题:p 对任意x R ∈,总有20x>;:"1"q x >是"2"x >的充分不必要条件则下列命题为真命题的是( ).A p q ∧ .B p q ⌝∧⌝ .C p q ⌝∧ .D p q ∧⌝【答案】D 【解析】试题分析:由题设可知:p 是真命题,q 是假命题;所以,p ⌝是假命题,q ⌝是真命题; 所以,p q ∧是假命题,p q ⌝∧⌝是假命题,p q ⌝∧是假命题,p q ∧⌝是真命题;故选D. 考点:1、指数函数的性质;2、充要条件;3、判断复合命题的真假.学科zxxk7.某几何体的三视图如图所示,则该几何体的表面积为()A.54B.60C.66D.72 【答案】B【解析】试题分析:8.设21F F ,分别为双曲线)0,0(12222>>=-b a by a x 的左、右焦点,双曲线上存在一点P 使得,49||||,3||||2121ab PF PF b PF PF =⋅=+则该双曲线的离心率为( ) A.34 B.35 C.49D.39.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.16810.已知ABC ∆的内角21)sin()sin(2sin ,+--=+-+B A C C B A A C B A 满足,,面积S 满足 C B A c b a S ,,,,21分别为,记≤≤所对的边,则下列不等式一定成立的是( ) A.8)(>+c b bc B.()162ac a b +> C.126≤≤abc D.1224abc ≤≤【答案】A二、填空题.11. 设全集{|110},{1,2,3,5,8},{1,3,5,7,9},()U U n N n A B A B =∈≤≤===I 则ð______.所以答案应填:14-. 考点:1、对数的运算;2、二次函数的最值.13. 已知直线02=-+y ax 与圆心为C 的圆()()4122=-+-a y x 相交于B A ,两点,且ABC ∆为等边三角形,则实数=a _________.考生注意:14、15、16三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分. 14. 过圆外一点P 作圆的切线PA (A 为切点),再作割线PBC 分别交圆于B 、C , 若6=PA , AC =8,BC =9,则AB =________. 【答案】4 【解析】 试题分析:由切割线定理得:2PA PB PC =⋅,设PB x =,则||9PC x =+所以,()369,x x =+即29360x x +-=,解得:12x =-(舍去),或3x =又由是圆的切线,所以ACP BAP ∠=∠,所以ACP BAP ∆∆:、||||||PA AB AC PC ∴=,所以86412AB ⨯==所以答案应填:4.考点:1、切割线定理;2、三角形相似.15. 已知直线l 的参数方程为⎩⎨⎧+=+=ty tx 32(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为()2sin 4cos 00,02ρθθρθπ-=≥≤<,则直线l 与曲线C 的公共点的极径=ρ________.16.若不等式2212122++≥++-a a x x 对任意实数x 恒成立,则实数a 的取值范围是____________.由图可知:()min 1522f x f ⎛⎫==⎪⎝⎭,由题意得:215222a a ++≤,解这得:11,2a -≤≤ 所以答案应填:11,2⎡⎤-⎢⎥⎣⎦.考点:1、分段函数;2、等价转换的思想;3、数形结合的思想.zxxk三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题13分,(I )小问5分,(II )小问8分)已知函数()()⎪⎭⎫⎝⎛<≤->+=220sin 3πϕπωϕω,x x f 的图像关于直线3π=x 对称,且图像上相邻两个最高点的距离为π. (I )求ω和ϕ的值; (II )若⎪⎭⎫ ⎝⎛<<=⎪⎭⎫⎝⎛326432παπαf ,求⎪⎭⎫⎝⎛+23cos πα的值. 【答案】(I )2,6πωϕ==-;(II 315+【解析】试题分析:(I )由函数图像上相邻两个最学科网高点的距离为π求出周期,再利用公式2T πω=求出ω的值;考点:1、诱导公式;2、同角三角函数的基本关系;3、两角和与差的三角函数公式;4、三角函数的图象和性质.18. (本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字 是2,2张卡片上的数字是3,从盒中任取3张卡片. (Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望. (注:若三个数c b a ,,满足 c b a ≤≤,则称b 为这三个数的中位数).故X 的分布列为X1 2 3P1742 4384 112从而()174314712342841228E X =⨯+⨯+⨯=考点:1、组合;2、古典概型;3、离散型随机变量的分布列与数学期望. 19. (本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分)如题(19)图,四棱锥ABCD P -中,底面是以O 为中心的菱形,⊥PO 底面ABCD , 3,2π=∠=BAD AB ,M 为BC 上一点,且AP MP BM ⊥=,21. (Ⅰ)求PO 的长;(Ⅱ)求二面角C PM A --的正弦值.由0,0,n AP n MP ⋅=⋅=r u u u r r u u u r 得111113-3023330442x z x y z ⎧+=⎪⎪⎪-+=⎪⎩故可取1531,2,3n ⎛⎫= ⎪ ⎪⎝⎭u r20.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问3分,(Ⅲ)小问5分) 已知函数22()(,,)x x f x ae be cx a b c R -=--∈的导函数'()f x 为偶函数,且曲线()y f x =在点(0,(0))f 处的切线的斜率为4c -.(Ⅰ)确定,a b 的值; (Ⅱ)若3c =,判断()f x 的单调性;(Ⅲ)若()f x 有极值,求c 的取值范围.21. (本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分)如题(21)图,设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12,F F ,点D 在椭圆上,112DF F F ⊥,121||22||F F DF =12DF F ∆的面积为22. (Ⅰ)求该椭圆的标准方程;(Ⅱ)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径..从而122DF =,由112DF F F ⊥得222211292DF DF F F =+=,因此2322DF =.所以12222a DF DF =+=,故2222,1a b a c ==-=因此,所求椭圆的标准方程为:2212x y +=1121242223CP PP x === 考点:1、圆的标准方程;2、椭圆的标准方程;3、直线与圆的位置关系;4、平面向量的数量积的应用. 22.(本小题满分12分,(Ⅰ)小问4分,(Ⅱ)小问8分) 设2111,22(*)n n n a a a a b n N +==-++∈(Ⅰ)若1b =,求23,a a 及数列{}n a 的通项公式; (Ⅱ)若1b =-,问:是否存在实数c 使得221nn a c a +<<对所有*n N ∈成立?证明你的结论.当1n =时结论显然成立.即101k a +≤≤这就是说,当1n k =+时结论成立,故①成立.名师解读,权威剖析,独家奉献,打造不一样的高考!21。

2014年高考真题——理科数学(重庆卷)解析版 Word版含答案

2014年高考真题——理科数学(重庆卷)解析版 Word版含答案

2014年重庆高考数学试题(理)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内表示复数(12)i i -的点位于( ).A 第一象限 .B 第二象限 .C 第三象限 .D 第四象限【答案】A 【解析】..∴2)2-1(A i i i 选对应第一象限+=2.对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列 248.,,C a a a 成等比数列 239.,,D a a a 成等比数列【答案】D 【解析】.∴D 选要求角码成等差3.已知变量x 与y 正相关,且由观测数据算得样本的平均数 2.5x =, 3.5y =,则由观测的数据得线性回归方程可能为( ).0.4 2.3A y x =+ .2 2.4B y x =- .29.5C y x =-+ .0.3 4.4C y x =-+【答案】A 【解析】.∴)5.33(),(.,,0,A y x D C b a bx y 选,过中心点排除正相关则=∴>+=4.已知向量(,3),(1,4),(2,1)a k b c ===,且()23a b c -⊥,则实数k=9.2A -.0B C.3 D. 152【答案】C 【解析】.∴3),42(3)32(2,32,0)3-2(∴⊥)3-2(C k k bc ac c b a c b a 选解得即即=+=+==5.执行如题(5)图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是。

A .12s >B.1224abc ≤≤ 35s >C. 710s >D.45s > 【答案】C【解析】.∴10787981091C S 选=•••=6.已知命题:p 对任意x R ∈,总有20x>;:"1"q x >是"2"x >的充分不必要条件 则下列命题为真命题的是( ).A p q ∧ .B p q ⌝∧⌝ .C p q ⌝∧ .D p q ∧⌝【答案】D 【解析】.∴,,D q p 选复合命题为真为假为真7.某几何体的三视图如图所示,则该几何体的表面积为( )A.54B.60C.66D.72 【答案】B【解析】BS S S S S S 选,,,何体表的面积的上部棱锥后余下的几;截掉高为,高原三棱柱:底面三角形侧上下侧上下∴60s 2273392318152156344*3=++=+=•++===8.设21F F ,分别为双曲线)0,0(12222>>=-b a b y a x 的左、右焦点,双曲线上存在一点P 使得,49||||,3||||2121ab PF PF b PF PF =⋅=+则该双曲线的离心率为( )A.34B.35C.49D.3【答案】B 【解析】.,35,5,4,3,34∴,2-,49,3,,,22221B a c c b a b a b a c a n m ab mn b n m n m PF n PF m 选令解得则且设====∴=+====+>==9.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则 类节目不相邻的排法种数是( )A.72B.120C.144D.3 【答案】B【解析】解析完成时间2014-6-12qq373780592..120)A A A A A (A ∴A A A 2(2).A A (1),A 222212122333222212122333B 选共有个:歌舞中间有法:歌舞中间有一个,插空再排其它:先排歌舞有=+10.已知ABC ∆的内角21)sin()sin(2sin ,+--=+-+B A C C B A A C B A 满足,,面积满足C B A c b a S ,,,,21分别为,记≤≤所对的边,则下列不等式成立的是( ) A.8)(>+c b bc B.)(c a ac + C.126≤≤abc D. 1224abc ≤≤【答案】A【解析】2014-6-12qq373780592...8)(,82nC sinAsinBsi 8)(,]8,4[∈∴]2,1[∈4nC sinAsinBsi 2sin 21.1inC 8sinAsinBs ∴21inC 4sinAsinBs nA)sinBcosBsi cosAsinB 4sinAsinB(A in 4sinBcosBs B in 4sinAcosAs cos2A)-sin2B(1cos2B)-in2A(1cos2Asin2B -sin2Acos2B -sin2B in2A 2B)sin(2A -sin2B in2A sin2C sin2B in2A ∴21-sin2C 21B)-A -sin(C sin2B sin2A C)B -sin(A sin2A 333222Δ22A c b bc R R bca c b bc A R R R C ab S s s s s ABC 所以,选别的选项可以不考虑成立对>+∴=≥==>+======+=+=+=+=++=+++=+=+=++二、填空题 本大题共6小题,考生作答5小题,每小题5分,共25分,把答案填在答题卡相应位置上。

2014年重庆市高考理科数学试卷及答案解析(word版),推荐文档

2014年重庆市高考理科数学试卷及答案解析(word版),推荐文档

2014年普通高校招生全国统一考试(重庆卷)数学试题卷(理工农医类)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的1.在复平面内表示复数i(1 2i)的点位于()A.第一象限B.第二象限C.第三象限D.第四象限[核心考点]考查复数的运算,复数的几何意义。

[解析]i(1 2i) 2 i,其在复平面上对应的点为Z(2,1),位于第一象限。

[答案]A2.对任意等比数列a n ,下列说法一定正确的是()A. 31、a3、a?成等比数列B. a?、83、*6成等比数列C. a?、a4、a8成等比数列D. a3、a§、a?成等比数列[核心考点]考查等比数列的性质应用。

[解析]根据等比数列的性质,a f a3a9,故a3、a6、a9成等比数列。

[答案]D3.已知变量x与y正相关,且由观测数据算得样本的平均数x 3,y 3.5,则由观测的数据得线性回归方程可能为()A. $ 0.4x 2.3B. $ 2x 2.4C. $ 2x 9.5D. $ 0.3x 4.4[核心考点]考查两个变量的相关关系以及两个变量间的回归直线方程等知识的应用。

[解析]由变量x与y正相关可排除选项C、D,由样本中心点2.5,3.5在回归直线方程上可得回归直线方程可能为$ 0.4x 2.3O[答案]A4.已知向量a (k,3) ,b (1,4) , c (2,1),且(2a 3b) c ,则实数kB. 0A.C. 3[核心考点]考查向量的坐标运以及向量垂直的坐标表示。

题5图[解析]由题知,2a 3b (2k 3, 6),因为(2a 3b) c ,所以(2a 3b)gp 0,所以C. p qD. p q[核心考点]考查复合命题的真值表的应用,全称命题真假的判定以及充件的判定。

[解析]由题知,命题p为真命题,命题q为假命题,q为真命题,p q为真命题。

[答案]D7.某几何体的三视图如图所示,则该几何体的表面积为()A.54B.60C.66D.72[核心考点]根据几何体的三视图求该几何体的表面积。

2014·重庆(理科数学)

2014·重庆(理科数学)

2014·重庆卷(理科数学)1.[2014·重庆卷] 复平面内表示复数i(1-2i)的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限1.A [解析] i(1-2i)=2+i ,其在复平面内对应的点为(2,1),位于第一象限. 2.[2014·重庆卷] 对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9,成等比数列2.D [解析] 因为在等比数列中a n ,a 2n ,a 3n ,…也成等比数列,所以a 3,a 6,a 9成等比数列.3.[2014·重庆卷] 已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( )A .y ^=0.4x +2.3B .y ^=2x -2.4C .y ^=-2x +9.5D .y ^=-0.3x +4.43.A [解析] 因为变量x 与y 正相关,则在线性回归方程中,x 的系数应大于零,排除B ,D ;将x =3,y =3.5分别代入A ,B 中的方程只有A 满足,故选A.4.[2014·重庆卷] 已知向量a =(k ,3),b =(1,4),c =(2,1),且(2a -3b )⊥c ,则实数k =( )A .-92 B .0C .3 D.1524.C [解析] ∵2a -3b =2(k ,3)-3(1,4)=(2k -3,-6),又(2a -3b )⊥c ,∴(2k -3)×2+(-6)=0,解得k =3.5.[2014·重庆卷] 执行如图1-1所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )A .s >12B .s >35C .s >710D .s >455.C [解析] 第一次循环结束,得s =1×910=910,k =8;第二次循环结束,得s =910×89=45,k =7;第三次循环结束,得s =45×78=710,k =6,此时退出循环,输出k =6.故判断框内可填s >710.6.[2014·重庆卷] 已知命题p :对任意x ∈R ,总有2x >0,q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .綈p ∧綈qC .綈p ∧qD .p ∧綈q6.D [解析] 根据指数函数的图像可知p 为真命题.由于“x >1”是“x >2”的必要不充分条件,所以q 为假命题,所以綈q 为真命题,所以p ∧綈q 为真命题.7.[2014·重庆卷] ( )A .54B .60C .66D .727.B [解析] 由三视图可知该几何体是由一个直三棱柱去掉一个三棱锥所得,三棱柱的底面是一个两直角边长分别为3和4的直角三角形,高为5,截去的锥体的底面是两直角边的边长分别为3和4的直角三角形,高为3,所以表面积为S =12×3×4+3×52+2+52×4+2+52×5+3×5=60.8.[2014·重庆卷] 设F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得|PF 1|+|PF 2|=3b ,|PF 1|·|PF 2|=94ab ,则该双曲线的离心率为( )A.43B.53C.94D .3 8.B [解析] 不妨设P 为双曲线右支上一点,根据双曲线的定义有|PF 1|-|PF 2|=2a ,联立|PF 1|+|PF 2|=3b ,平方相减得|PF 1|·|PF 2|=9b 2-4a 24,则由题设条件,得9b 2-4a 24=94ab ,整理得b a =43,∴e =c a =1+⎝⎛⎭⎫b a 2=1+⎝⎛⎭⎫432=53.9.[2014·重庆卷] 某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A .72B .120C .144D .1689.B [解析] 分两步进行:(1)先将3个歌舞进行全排,其排法有A 33种;(2)将小品与相声插入将歌舞分开,若两歌舞之间只有一个其他节目,其插法有2A 33种.若两歌舞之间有两个其他节目时插法有C 12A 22A 22种.所以由计数原理可得节目的排法共有A 33(2A 33+C 12A 22A 22)=120(种).10.,[2014·重庆卷] 已知△ABC 的内角A ,B ,C 满足sin 2A +sin(A -B +C )=sin(C -A -B )+12,面积S 满足1≤S ≤2,记a ,b ,c 分别为A ,B ,C 所对的边,则下列不等式一定成立的是( )A .bc (b +c )>8B .ab (a +b )>16 2C .6≤abc ≤12D .12≤abc ≤2410.A [解析] 因为A +B +C =π,所以A +C =π-B ,C =π-(A +B ),所以由已知等式可得sin 2A +sin(π-2B )=sin[π-2(A +B )]+12,即sin 2A +sin 2B =sin 2(A +B )+12,所以sin[(A +B )+(A -B )]+sin[(A +B )-(A -B )]=sin 2(A +B )+12,所以2 sin(A +B )cos(A -B )=2sin(A +B )cos(A +B )+12,所以2sin(A +B )[cos(A -B )-cos(A +B )]=12,所以sin A sin B sin C =18.由1≤S ≤2,得1≤12bc sin A ≤2.由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C ,所以1≤2R 2·sin A sin B sin C ≤2,所以1≤R 24≤2,即2≤R ≤2 2,所以bc (b +c )>abc =8R 3sinA sinB sinC =R 3≥8.11.[2014·重庆卷] 设全集U ={n ∈N |1≤n ≤10},A ={1,2,3,5,8},B ={1,3,5,7,9},则(∁U A )∩B =________.11.{7,9} [解析] 由题知∁U A ={4,6,7,9,10}, ∴(∁U A )∩B ={7,9}. 12.[2014·重庆卷] 函数f (x )=log 2x ·log 2(2x )的最小值为________.12.-14 [解析] f (x )=log 2 x ·log 2(2x )=12log 2 x ·2log 2(2x )=log 2x ·(1+log 2x )=(log 2x )2+log 2x =⎝⎛⎭⎫log 2x +122-14,所以当x =22时,函数f (x )取得最小值-14.13.[2014·重庆卷] 已知直线ax +y -2=0与圆心为C 的圆(x -1)2+(y -a )2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a =________.13.4±15 [解析] 由题意可知圆的圆心为C (1,a ),半径r =2,则圆心C 到直线ax+y -2=0的距离d =|a +a -2|a 2+1=|2a -2|a 2+1.∵△ABC 为等边三角形,∴|AB |=r =2.又|AB |=2r 2-d 2,∴222-⎝ ⎛⎭⎪⎫|2a -2|a 2+12=2,即a 2-8a +1=0,解得a =4±15. 14.[2014·重庆卷] 过圆外一点P 作圆的切线P A (A 为切点),再作割线PBC 依次交圆于B ,C .若P A =6,AC =8,BC =9,则AB =________.14.4 [解析] 根据题意,作出图形如图所示,由切割线定理,得P A 2=PB ·PC =PB ·(PB +BC ),即36=PB ·(PB +9)∴PB =3,∴PC =12.由弦切角定理知∠P AB =∠PCA ,又∠APB=∠CP A ,∴△P AB ∽△PCA ,∴AB CA =PB,即AB =PB ·CA =3×86=4.15.[2014·重庆卷] 已知直线l 的参数方程为⎩⎪⎨⎪y =3+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0(ρ≥0,0≤θ<2π),则直线l 与曲线C 的公共点的极径ρ=________.15. 5 [解析] 由题意,得直线l 的普通方程为x -y +1=0,曲线C 的平面直角坐标方程为y 2=4x ,联立直线l 与曲线C 的方程,解得⎩⎪⎨⎪⎧x =1,y =2,所以直线l 与曲线C 的公共点的极径ρ=(1-0)2+(2-0)2= 5.16.[2014·重庆卷] 若不等式|2x -1|+|x +2|≥a 2+12a +2对任意实数x 恒成立,则实数a的取值范围是________.16.⎣⎡⎦⎤-1,12 [解析] 令f (x )=|2x -1|+|x +2|,则①当x <-2时,f (x )=-2x +1-x -2=-3x -1>5;②当-2≤x ≤12时,f (x )=-2x +1+x +2=-x +3,故52≤f (x )≤5;③当x >12时,f (x )=2x -1+x +2=3x +1>52.综合①②③可知f (x )≥52,所以要使不等式恒成立,则需a 2+12a+2≤52,解得-1≤a ≤12.17.,,[2014·重庆卷] 已知函数f (x )=3sin(ωx +φ)⎝⎛⎭⎫ω>0,-π2≤φ<π2的图像关于直线x =π3对称,且图像上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f ⎝⎛⎭⎫α2=34⎝⎛⎭⎫π6<α<2π3,求cos ⎝⎛⎭⎫α+3π2的值.17.解:(1)因为f (x )的图像上相邻两个最高点的距离为π,所以ƒ(x )的最小正周期T =π,从而ω=2πT=2.又因为f (x )的图像关于直线x =π3对称,所以2×π3+φ=k π+π2,k =0,±1,±2,….因为-π2≤φ<π2,所以φ=-π6.(2)由(1)得ƒ⎝⎛⎭⎫α2=3sin(2×α2-π6)=34, 所以sin ⎝⎛⎭⎫α-π6=14.由π6<α<2π3得0<α-π6<π2, 所以cos ⎝⎛⎭⎫α-π6=1-sin 2⎝⎛⎭⎫α-π6=1-⎝⎛⎭⎫142=154.因此cos ⎝⎛⎭⎫α+3π2=sin α=sin ⎣⎡⎦⎤(α-π6)+π6=sin ⎝⎛⎭⎫α-π6cos π6+cos ⎝⎛⎭⎫α-π6sin π6=14×32+154×12 =3+158.18.,[2014·重庆卷] 一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望. (注:若三个数a ,b ,c 满足a ≤b ≤c ,则称b 为这三个数的中位数)18.解:(1)由古典概型中的概率计算公式知所求概率为P =C 34+C 33C 39=584. (2)X 的所有可能值为1,2,3,且P (X =1)=C 24C 15+C 34C 39=1742,P (X =2)=C 13C 14C 12+C 23C 16+C 33C 39=4384, P (X =3)=C 22C 17C 39=112,故X 的分布列为从而E (X )=1×1742+2×4384+3×112=4728.19.,[2014·重庆卷]如图1-3所示,四棱锥P ­ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB =2,∠BAD =π3,M 为BC 上一点,且BM =12,MP ⊥AP .(1)求PO 的长; (2)求二面角A -PM -C19.解:(1)如图所示,连接AC ,BD ,因为四边形ABCD 为菱形,所以AC ∩ BD =O ,且AC ⊥BD .以O 为坐标原点,OA →,OB →,OP →的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系O -xyz .因为∠BAD =π3,所以OA =AB ·cos π6=3,OB =AB ·sin π6=1,所以O (0,0,0),A (3,0,0),B (0,1,0),C (-3,0,0),OB →=(0,1,0),BC →=(-3,-1,0).由BM =12,BC =2知,BM →=14BC →=⎝⎛⎭⎫-34,-14,0,从而OM →=OB →+BM →=⎝⎛⎭⎫-34,34,0,即M ⎝⎛⎭⎫-34,34,0.设P (0,0,a ),a >0,则AP →=(-3,0,a ),MP →=⎝⎛⎭⎫34,-34,a .因为MP ⊥AP ,所以MP →·AP →=0,即-34+a 2=0,所以a =32或a =-32(舍去),即PO =32.(2)由(1)知,AP →=⎝⎛⎭⎫-3,0,32,MP →=⎝⎛⎭⎫34,-34,32,CP →=⎝⎛⎭⎫3,0,32.设平面APM 的法向量为n 1=(x 1,y 1,z 1),平面PMC 的法向量为n 2=(x 2,y 2,z 2).由n 1·AP →=0, n 1·MP →=0,得⎩⎨⎧-3x 1+32z 1=0,34x 1-34y 1+32z 1=0,故可取n 1=⎝⎛⎭⎫1,533,2.由n 2·MP →=0,n 2·CP →=0,得⎩⎨⎧34x 2-34y 2+32z 2=0,3x 2+32z 2=0,故可取n 2=(1,-3,-2).从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-155,故所求二面角A -PM -C 的正弦值为105. 20.[2014·重庆卷] 已知函数f (x )=a e 2x -b e -2x -cx (a ,b ,c ∈R )的导函数f ′(x )为偶函数,且曲线y =f (x )在点(0,f (0))处的切线的斜率为4-c .(1)确定a ,b 的值;(2)若c =3,判断f (x )的单调性; (3)若f (x )有极值,求c 的取值范围.20.解:(1)对f (x )求导得f ′(x )=2a e 2x +2b e -2x -c ,由f ′(x )为偶函数,知f ′(-x )=f ′(x ),即2(a -b )(e 2x -e -2x )=0.因为上式总成立,所以a =b .又f ′(0)=2a +2b -c =4-c ,所以a =1,b =1.(2)当c =3时,f (x )=e 2x -e -2x -3x ,那么f ′(x )=2e 2x +2e -2x -3≥22e 2x ·2e -2x -3=1>0, 故f (x )在R 上为增函数.(3)由(1)知f ′(x )=2e 2x +2e -2x -c ,而2e 2x +2e -2x ≥22e 2x ·2e -2x =4,当且仅当x =0时等号成立.下面分三种情况进行讨论:当c <4时,对任意x ∈R ,f ′(x )=2e 2x +2e -2x -c >0,此时f (x )无极值.当c =4时,对任意x ≠0,f ′(x )=2e 2x +2e -2x -4>0,此时f (x )无极值.当c >4时,令e 2x =t ,注意到方程2t +2t -c =0有两根t 1,2=c ±c 2-164>0,则f ′(x )=0有两个根x 1=12ln t 1,x 2=12ln t 2.当x 1<x <x 2时,f ′(x )<0;当x >x 2时,f ′(x )>0. 从而f (x )在x =x 2处取得极小值.综上,若f (x )有极值,则c 的取值范围为(4,+∞).21.,[2014·重庆卷] 如图1-4所示,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.(1)求椭圆的标准方程;(2)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.21.解:(1)设F 1(-c ,0),F 2(c ,0),其中c 2=a 2-b 2. 由|F 1F 1||DF 1|=22得|DF 1|=|F 1F 2|22=22c . 从而S △DF 1F 2=12|DF 1||F 1F 2|=22c 2=22,故c =1.从而|DF 1|=22,由DF 1⊥F 1F 2得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=322,所以2a =|DF 1|+|DF 2|=22,故a =2,b 2=a 2-c 2=1.因此,所求椭圆的标准方程为x 22+y 2=1.(2)如图所示,设圆心在y 轴上的圆C 与椭圆x 22+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2.由圆和椭圆的对称性,易知,x 2=-x 1,y 1=y 2,|P 1P 2|=2|x 1|.由(1)知F 1(-1,0),F 2(1,0),所以F 1P 1=(x 1+1,y 1),F 2P 2=(-x 1-1,y 1).再由F 1P 1⊥F 2P 2得-(x 1+1)2+y 21=0.由椭圆方程得1-x 212=(x 1+1)2,即3x 21+4x 1=0,解得x 1=-43或x 1=0.当x 1=0时,P 1,P 2重合,此时题设要求的圆不存在.当x 1=-43时,过P 1,P 2分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C .由F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2,知CP 1⊥CP 2.又|CP 1|=|CP 2|,故圆C 的半径|CP 1|=22|P 1P 2|=2|x 1|=423.22.,,[2014·重庆卷] 设a 1=1,a n +1=a 2n -2a n+2+b (n ∈N *). (1)若b =1,求a 2,a 3及数列{a n }的通项公式. (2)若b =-1,问:是否存在实数c 使得a 2n <c <a 2n +1对所有n ∈N *成立?证明你的结论. 22.解:(1)方法一:a 2=2,a 3=2+1. 再由题设条件知(a n +1-1)2=(a n -1)2+1.从而{(a n -1)2}是首项为0,公差为1的等差数列, 故(a n -1)2=n -1,即a n =n -1+1(n ∈N *). 方法二:a 2=2,a 3=2+1.可写为a 1=1-1+1,a 2=2-1+1,a 3=3-1+1.因此猜想a n =n -1+1. 下面用数学归纳法证明上式. 当n =1时,结论显然成立.假设n =k 时结论成立,即a k =k -1+1,则a k +1=(a k -1)2+1+1=(k -1)+1+1=(k +1)-1+1, 这就是说,当n =k +1时结论成立. 所以a n =n -1+1(n ∈N *).(2)方法一:设f (x )=(x -1)2+1-1,则a n +1=f (a n ).令c =f (c ),即c =(c -1)2+1-1,解得c =14.下面用数学归纳法证明命题 a 2n <c <a 2n +1<1.当n =1时,a 2=f (1)=0,a 3=f (0)=2-1,所以a 2<14<a 3<1,结论成立.假设n =k 时结论成立,即a 2k <c <a 2k +1<1. 易知f (x )在(-∞,1]上为减函数,从而 c =f (c )>f (a 2k +1)>f (1)=a 2,即 1>c >a 2k +2>a 2.再由f (x )在(-∞,1]上为减函数,得c =f (c )<f (a 2k +2)<f (a 2)=a 3<1,故c <a 2k +3<1,因此a 2(k +1)<c <a 2(k +1)+1<1,这就是说,当n =k +1时结论成立.综上,存在 c =14使a 2n <C <a 2a +1对所有n ∈N *成立.方法二:设f (x )=(x -1)2+1-1,则a n +1=f (a n ). 先证:0≤a n ≤1(n ∈N *). ① 当n =1时,结论明显成立.假设n =k 时结论成立,即0≤a k ≤1. 易知f (x )在(-∞,1]上为减函数,从而 0=f (1)≤f (a k )≤f (0)=2-1<1.即0≤a k +1≤1.这就是说,当n =k +1时结论成立.故①成立. 再证:a 2n <a 2n +1(n ∈N *). ②当n =1时,a 2=f (1)=0,a 3=f (a 2)=f (0)=2-1,所以a 2<a 3,即n =1时②成立. 假设n =k 时,结论成立,即a 2k <a 2k +1. 由①及f (x )在(-∞,1]上为减函数,得 a 2k +1=f (a 2k )>f (a 2k +1)=a 2k +2, a 2(k +1)=f (a 2k +1)<f (a 2k +2)=a 2(k +1)+1.这就是说,当n =k +1时②成立.所以②对一切n ∈N *成立. 由②得a 2n <a 22n -2a 2n +2-1,即(a 2n +1)2<a 22n -2a 2n +2, 因此a 2n <14. ③又由①②及f (x )在(-∞,1]上为减函数,得f (a 2n )>f (a 2n +1),即a 2n +1>a 2n +2.所以a 2n +1>a 22n +1-2a 2n +1+2-1,解得a 2n +1>14. ④ 综上,由②③④知存在c =14使a 2n <c <a 2n +1对一切n ∈N *成立.。

2014年高考理科数学重庆卷-答案

2014年高考理科数学重庆卷-答案

10 9
k 1
10 9 8 10
∴判断框的条件是 S 7 ,故选:C. 10
【提示】程序运行的 S 9 8 k ,根据输出 k 的值,确定 S 的值,从而可得判断框的条件.
10 9
k 1
【考点】程序框图,判断语句,循环语句
1 / 11
6.【答案】D
【解析】根据指数函数的图像可知 p 为真命题.由于“ x 1 ”是“ x 2 ”的必要不充分条件,所以 q 为假 命题,所以 q 为真命题,所以 p q 为真命题.故选:D.
2
4
4
【提示】利用对数的运算性质可得
f
(x)
log2
x
1 2
2
1 4
,即可求得
f
(x)
最小值.
【考点】对数函数,二次函数的性质 13.【答案】 4 15
【解析】由题意可知圆的圆心为 C(1, a) ,半径 r 2 ,则圆心 C 到直线 ax y 2 0 的距离
3 / 11
d | a a 2 | | 2a 2 | .
4 / 11
②当 -2 x 1 时, f (x) 2x 1 x 2 x 3 ,故 5 f (x) 5 ;
2
2
③当 x 1 时, f (x) 2x 1 x 2 3x 1> 5 .
2
2
综合①②③可知 f (x) 5 ,要使不等式恒成立,则需 a2 1 a 2 5 ,解得 1 a 1 .故答案为:1 a 1 .
2014 年普通高校招生全国统一考试(重庆卷)
数学试题卷(理工农医类)答案解析
一、选择题 1.【答案】A 【解析】 i(1 2i) 2 i ,其在复平面内对应的点为 (2,1) ,位于第一象限,故选:A. 【提示】根据复数乘法的运算法则,我们可以将复数 z 化为 a bi(a,bR) 的形式,分析实部和虚部的符 号,即可得到答案. 【考点】复数的基本运算,复数在复平面中的表示 2.【答案】D 【解析】因为在等比数列中 an,a2n,a3n, 也成等比数列,所以 a3,a6,a9 成等比数列,故选:D.

普通高等学校招生全国统一考试数学理试题(重庆卷,解析版)5

普通高等学校招生全国统一考试数学理试题(重庆卷,解析版)5

2014年重庆高考数学试题(理)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内表示复数(12)i i -的点位于( ).A 第一象限 .B 第二象限 .C 第三象限 .D 第四象限【答案】A 【解析】..∴2)2-1(A i i i 选对应第一象限+=2.对任意等比数列{}n a ,下列说法一定正确的是( )139.,,A a a a 成等比数列 236.,,B a a a 成等比数列 248.,,C a a a 成等比数列 239.,,D a a a 成等比数列【答案】D 【解析】.∴D 选要求角码成等差3.已知变量x 与y 正相关,且由观测数据算得样本的平均数 2.5x =, 3.5y =,则由观测的数据得线性回归方程可能为( ).0.4 2.3A y x =+ .2 2.4B y x =- .29.5C y x =-+ .0.3 4.4C y x =-+【答案】A 【解析】.∴)5.33(),(.,,0,A y x D C b a bx y 选,过中心点排除正相关则=∴>+=4.已知向量(,3),(1,4),(2,1)a k b c ===,且()23a b c -⊥,则实数k=9.2A -.0B C.3 D. 152【答案】C 【解析】.∴3),42(3)32(2,32,0)3-2(∴⊥)3-2(C k k bc ac c b a c b a 选解得即即=+=+==5.执行如题(5)图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是。

A .12s >B.1224abc ≤≤ 35s >C. 710s >D.45s > 【答案】C【解析】.∴10787981091C S 选=•••=6.已知命题:p 对任意x R ∈,总有20x>;:"1"q x >是"2"x >的充分不必要条件 则下列命题为真命题的是( ) .A p q ∧ .B p q ⌝∧⌝ .C p q ⌝∧ .D p q ∧⌝【答案】D 【解析】.∴,,D q p 选复合命题为真为假为真7.某几何体的三视图如图所示,则该几何体的表面积为( )A.54B.60C.66D.72 【答案】B 【解析】BS S S S S S 选,,,何体表的面积的上部棱锥后余下的几;截掉高为,高原三棱柱:底面三角形侧上下侧上下∴60s 2273392318152156344*3=++=+=•++===8.设21F F ,分别为双曲线)0,0(12222>>=-b a b y a x 的左、右焦点,双曲线上存在一点P 使得,49||||,3||||2121ab PF PF b PF PF =⋅=+则该双曲线的离心率为( )A.34B.35C.49D.3【答案】B 【解析】.,35,5,4,3,34∴,2-,49,3,,,22221B a c c b a b a b a c a n m ab mn b n m n m PF n PF m 选令解得则且设====∴=+====+>==9.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则 类节目不相邻的排法种数是( )A.72B.120C.144D.3【答案】B【解析】解析完成时间2014-6-12qq373780592..120)A A A A A (A ∴A A A 2(2).A A (1),A 222212122333222212122333B 选共有个:歌舞中间有法:歌舞中间有一个,插空再排其它:先排歌舞有=+10.已知A B C ∆的内角21)sin()sin(2sin ,+--=+-+B A C C B A A C B A 满足,,面积满足C B A c b a S ,,,,21分别为,记≤≤所对的边,则下列不等式成立的是( )A.8)(>+c b bcB.)(c a ac +C.126≤≤abcD. 1224abc ≤≤【答案】A【解析】2014-6-12qq373780592...8)(,82nC sinAsinBsi 8)(,]8,4[∈∴]2,1[∈4nC sinAsinBsi 2sin 21.1inC 8sinAsinBs ∴21inC 4sinAsinBs nA)sinBcosBsi cosAsinB 4sinAsinB(Ain 4sinBcosBs B in 4sinAcosAs cos2A)-sin2B(1cos2B)-in2A(1cos2Asin2B -sin2Acos2B -sin2B in2A 2B)sin(2A -sin2B in2A sin2C sin2B in2A ∴21-sin2C 21B)-A -sin(C sin2B sin2A C)B -sin(A sin2A 333222Δ22A c b bc R R bca c b bc A R R R C ab S s s s s ABC 所以,选别的选项可以不考虑成立对>+∴=≥==>+======+=+=+=+=++=+++=+=+=++二、填空题 本大题共6小题,考生作答5小题,每小题5分,共25分,把答案填在答题卡相应位置上。

2014年重庆市高考理科数学

2014年重庆市高考理科数学

2014年普通高校招生全国统一考试(重庆卷)数学试题卷(理工农医类)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的 1. 在复平面内表示复数(12)i i -的点位于( ) A.第一象限 B.第二象限 C. 第三象限D.第四象限 【答案】A【解析】(12)2i i i -=+,故表示复数的点在第一象限内。

选择A 。

【分值】5分【解题思路】先将原虚数式化简,再判断虚部与实部的正负,实部为横坐标虚部为纵坐标。

直接判断该点位于第几象限。

【考查方向】本题考查复数的计算(乘法)和复数的几何意义,属于容易题。

【易错点】实部虚部所对应的坐标轴记反了。

2. 对任意等比数列{}n a ,下列说法一定正确的是( )A.1a 、3a 、9a 成等比数列B.2a 、3a 、6a 成等比数列C.2a 、4a 、8a 成等比数列D.3a 、6a 、9a 成等比数列【答案】D【解析】由等比数列的性质:下标成等差,对应项成等比,知选D 。

【分值】5分【解题思路】观察各个选项中给出的数列,若它们下标成等差则为等比数列。

【考查方向】本题考查等比数列的简单性质,属容易题。

【易错点】容易将下标成等比的一组数列当成等比数列。

3. 已知变量x 与y 正相关,且由观测数据算得样本的平均数3x =, 3.5y =,则由观测的数据得线性回归方程可能为( ) A. 0.4 2.3y x =+B. 2 2.4y x =-C. 29.5y x =-+D. 0.3 4.4y x =-+ 【答案】A【解析】由线性回归方程过点(,)x y ,将选择支逐一代入验证,只有A 适合,故选A 。

【分值】5分【解题思路】回归直线方程过样本点中心,所以将点()3,3.5带入选项中的直线方程检验,若符合,则即为所选。

【考查方向】本题考查线性回归方程的基本特点,涉及验证法,是容易题。

【易错点】不少学生忽略了书本上回归直线方程过样本点中心这句话。

2014年重庆市高考理科数学试卷及参考答案与试题解析

2014年重庆市高考理科数学试卷及参考答案与试题解析

2014年重庆市高考理科数学试卷及参考答案与试题解析一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)在复平面内复数Z=i(1-2i)对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)对任意等比数列{an},下列说法一定正确的是( )A.a1,a3,a9成等比数列 B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列 D.a3,a6,a9成等比数列3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是( )A.=0.4x+2.3B.=2x-2.4C.=-2x+9.5D.=-0.3x+4.44.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2-3)⊥,则实数k=( )A.-B.0C.3D.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是( )A.s>B.s>C.s>D.s>6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是( )A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q7.(5分)某几何体的三视图如图所示则该几何体的表面积为( )A.54B.60C.66D.728.(5分)设F1,F2分别为双曲线-=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为( )A. B. C. D.39.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.16810.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A-B+C)=sin(C-A-B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是( )A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B=.12.(5分)函数f(x)=log2•log(2x)的最小值为.13.(5分)已知直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC =8,BC=9,则AB=.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ-4cosθ=0(ρ≥0,0≤θ<2π),则直线l 与曲线C的公共点的极径ρ=.16.若不等式|2x-1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,-≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c 满足a≤b≤c,则称b为这三个数的中位数.)19.(13分)如图,四棱锥P-ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A-PM-C的正弦值.20.(12分)已知函数f(x)=ae2x-be-2x-cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4-c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.22.(12分)设a1=1,an+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;(Ⅱ)若b=-1,问:是否存在实数c使得a2n <c<a2n+1对所有的n∈N*成立,证明你的结论.2014年重庆市高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,在每小题给出的四个备选项中,只有一项是符合题目要求的.1.(5分)在复平面内复数Z=i(1-2i)对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据复数乘法的运算法则,我们可以将复数Z化为a=bi(a,b∈R)的形式,分析实部和虚部的符号,即可得到答案.【解答】解:∵复数Z=i(1-2i)=2+i∵复数Z的实部2>0,虚部1>0∴复数Z在复平面内对应的点位于第一象限故选:A.【点评】本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数Z化为a=bi(a,b∈R)的形式,是解答本题的关键.2.(5分)对任意等比数列{an},下列说法一定正确的是( )A.a1,a3,a9成等比数列 B.a2,a3,a6成等比数列C.a2,a4,a8成等比数列 D.a3,a6,a9成等比数列【分析】利用等比中项的性质,对四个选项中的数进行验证即可.【解答】解:A项中a3=a1•q2,a1•a9=•q8,(a3)2≠a1•a9,故A项说法错误,B项中(a3)2=(a1•q2)2≠a2•a6=•q6,故B项说法错误,C项中(a4)2=(a1•q3)2≠a2•a8=•q8,故C项说法错误,D项中(a6)2=(a1•q5)2=a3•a9=•q10,故D项说法正确,故选:D.【点评】本题主要考查了是等比数列的性质.主要是利用了等比中项的性质对等比数列进行判断.3.(5分)已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是( )A.=0.4x+2.3B.=2x-2.4C.=-2x+9.5D.=-0.3x+4.4【分析】变量x与y正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.【解答】解:∵变量x与y正相关,∴可以排除C,D;样本平均数=3,=3.5,代入A符合,B不符合,故选:A.【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.4.(5分)已知向量=(k,3),=(1,4),=(2,1)且(2-3)⊥,则实数k=( )A.-B.0C.3D.【分析】根据两个向量的坐标,写出两个向量的数乘与和的运算结果,根据两个向量的垂直关系,写出两个向量的数量积等于0,得到关于k的方程,解方程即可.【解答】解:∵=(k,3),=(1,4),=(2,1)∴2-3=(2k-3,-6),∵(2-3)⊥,∴(2-3)•=0'∴2(2k-3)+1×(-6)=0,解得,k=3.故选:C.【点评】本题考查数量积的坐标表达式,是一个基础题,题目主要考查数量积的坐标形式,注意数字的运算不要出错.5.(5分)执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是( )A.s>B.s>C.s>D.s>【分析】程序运行的S=××…×,根据输出k的值,确定S的值,从而可得判断框的条件.【解答】解:由程序框图知:程序运行的S=××…×,∵输出的k=6,∴S=××=,∴判断框的条件是S>,故选:C.【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S值是解题的关键.6.(5分)已知命题p:对任意x∈R,总有2x>0;q:“x>1”是“x>2”的充分不必要条件,则下列命题为真命题的是( )A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q【分析】由命题p,找到x的范围是x∈R,判断p为真命题.而q:“x>1”是“x>2”的充分不必要条件是假命题,然后根据复合命题的判断方法解答.【解答】解:因为命题p对任意x∈R,总有2x>0,根据指数函数的性质判断是真命题;命题q:“x>1”不能推出“x>2”;但是“x>2”能推出“x>1”所以:“x>1”是“x>2”的必要不充分条件,故q是假命题;所以p∧¬q为真命题;故选:D.【点评】判断复合命题的真假,要先判断每一个命题的真假,然后做出判断.7.(5分)某几何体的三视图如图所示则该几何体的表面积为( )A.54B.60C.66D.72【分析】几何体是三棱柱消去一个同底的三棱锥,根据三视图判断各面的形状及相关几何量的数据,把数据代入面积公式计算.【解答】解:由三视图知:几何体是直三棱柱消去一个同底的三棱锥,如图:三棱柱的高为5,消去的三棱锥的高为3,三棱锥与三棱柱的底面为直角边长分别为3和4的直角三角形,∵AB⊥平面BEFC,∴AB⊥BC,BC=5,FC=2,AD=BE=5,DF=5∴几何体的表面积S=×3×4+×3×5+×4+×5+3×5=60.故选:B.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.8.(5分)设F1,F2分别为双曲线-=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,则该双曲线的离心率为( )A. B. C. D.3【分析】不妨设右支上P点的横坐标为x,由焦半径公式有|PF1|=ex+a,|PF2|=ex-a,结合条件可得a=b,从而c==b,即可求出双曲线的离心率. 【解答】解:不妨设右支上P点的横坐标为x由焦半径公式有|PF1|=ex+a,|PF2|=ex-a,∵|PF1|+|PF2|=3b,|PF1|•|PF2|=ab,∴2ex=3b,(ex)2-a2=ab∴b2-a2=ab,即9b2-4a2-9ab=0,∴(3b-4a)(3b+a)=0∴a=b,∴c==b,∴e==.故选:B.【点评】本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于中档题.9.(5分)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.168【分析】根据题意,分2步进行分析:①、先将3个歌舞类节目全排列,②、因为3个歌舞类节目不能相邻,则分2种情况讨论中间2个空位安排情况,由分步计数原理计算每一步的情况数目,进而由分类计数原理计算可得答案.【解答】解:分2步进行分析:1、先将3个歌舞类节目全排列,有A33=6种情况,排好后,有4个空位,2、因为3个歌舞类节目不能相邻,则中间2个空位必须安排2个节目,分2种情况讨论:①将中间2个空位安排1个小品类节目和1个相声类节目,有C21A22=4种情况,排好后,最后1个小品类节目放在2端,有2种情况,此时同类节目不相邻的排法种数是6×4×2=48种;②将中间2个空位安排2个小品类节目,有A22=2种情况,排好后,有6个空位,相声类节目有6个空位可选,即有6种情况,此时同类节目不相邻的排法种数是6×2×6=72种;则同类节目不相邻的排法种数是48+72=120,故选:B.【点评】本题考查计数原理的运用,注意分步方法的运用,既要满足题意的要求,还要计算或分类简便.10.(5分)已知△ABC的内角A,B,C满足sin2A+sin(A-B+C)=sin(C-A-B)+,面积S满足1≤S≤2,记a,b,c分别为A,B,C所对的边,在下列不等式一定成立的是( )A.bc(b+c)>8B.ab(a+b)>16C.6≤abc≤12D.12≤abc≤24【分析】根据正弦定理和三角形的面积公式,利用不等式的性质进行证明即可得到结论. 【解答】解:∵△ABC的内角A,B,C满足sin2A+sin(A-B+C)=sin(C-A-B)+,∴sin2A+sin2B=-sin2C+,∴sin2A+sin2B+sin2C=,∴2sinAcosA+2sin(B+C)cos(B-C)=,2sinA(cos(B-C)-cos(B+C))=,化为2sinA[-2sinBsin(-C)]=,∴sinAsinBsinC=.设外接圆的半径为R,由正弦定理可得:=2R,由S=,及正弦定理得sinAsinBsinC==,即R2=4S,∵面积S满足1≤S≤2,∴4≤R2≤8,即2≤R≤,由sinAsinBsinC=可得,显然选项C,D不一定正确,A.bc(b+c)>abc≥8,即bc(b+c)>8,正确,B.ab(a+b)>abc≥8,即ab(a+b)>8,但ab(a+b)>16,不一定正确,故选:A.【点评】本题考查了两角和差化积公式、正弦定理、三角形的面积计算公式、基本不等式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.二、填空题:本大题共3小题,每小题5分共15分把答案填写在答题卡相应位置上.11.(5分)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},则(∁UA)∩B={7,9} .【分析】由条件利用补集的定义求得∁U A,再根据两个集合的交集的定义求得(∁UA)∩B.【解答】解:∵全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,9},∴(∁U A)={4,6,7,9 },∴(∁UA)∩B={7,9},故答案为:{7,9}.【点评】本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.12.(5分)函数f(x)=log2•log(2x)的最小值为.【分析】利用对数的运算性质可得f(x)=,即可求得f(x)最小值.【解答】解:∵f(x)=log2•log(2x)∴f(x)=log()•log(2x)=log x•log(2x)=log x(log x+log2)=log x(log x+2)=,∴当log x+1=0即x=时,函数f(x)的最小值是.故答案为:-【点评】本题考查对数不等式的解法,考查等价转化思想与方程思想的综合应用,考查二次函数的配方法,属于中档题.13.(5分)已知直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=4±.【分析】根据圆的标准方程,求出圆心和半径,根据点到直线的距离公式即可得到结论. 【解答】解:圆心C(1,a),半径r=2,∵△ABC为等边三角形,∴圆心C到直线AB的距离d=,即d=,平方得a2-8a+1=0,解得a=4±,故答案为:4±【点评】本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键.三、选做题:考生注意(14)(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分14.(5分)过圆外一点P作圆的切线PA(A为切点),再作割线PBC依次交圆于B、C,若PA=6,AC =8,BC=9,则AB= 4 .【分析】由题意,∠PAB=∠C,可得△PAB∽△PCA,从而,代入数据可得结论. 【解答】解:由题意,∠PAB=∠C,∠APB=∠CPA,∴△PAB∽△PCA,∴,∵PA=6,AC=8,BC=9,∴,∴PB=3,AB=4,故答案为:4.【点评】本题考查圆的切线的性质,考查三角形相似的判断,属于基础题.15.(5分)已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ-4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.【分析】直线l的参数方程化为普通方程、曲线C的极坐标方程化为直角坐标方程,联立求出公共点的坐标,即可求出极径.【解答】解:直线l的参数方程为,普通方程为y=x+1,曲线C的极坐标方程为ρsin2θ-4cosθ=0的直角坐标方程为y2=4x,直线l与曲线C联立可得(x-1)2=0,∴x=1,y=2,∴直线l与曲线C的公共点的极径ρ==.故答案为:.【点评】本题考查直线l的参数方程、曲线C的极坐标方程,考查学生的计算能力,属于中档题.16.若不等式|2x-1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是[-1,] .【分析】利用绝对值的几何意义,确定|2x-1|+|x+2|的最小值,然后让a2+a+2小于等于它的最小值即可.【解答】解:|2x-1|+|x+2|=,∴x=时,|2x-1|+|x+2|的最小值为,∵不等式|2x-1|+|x+2|≥a2+a+2对任意实数x恒成立,∴a2+a+2≤,∴a2+a-≤0,∴-1≤a≤,∴实数a的取值范围是[-1,].故答案为:[-1,].【点评】本题考查绝对值不等式的解法,突出考查一元二次不等式的解法及恒成立问题,属于中档题.四、解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.17.(13分)已知函数f(x)=sin(ωx+φ)(ω>0,-≤φ<)的图象关于直线x=对称,且图象上相邻两个最高点的距离为π.(Ⅰ)求ω和φ的值;(Ⅱ)若f()=(<α<),求cos(α+)的值.【分析】(Ⅰ)由题意可得函数f(x)的最小正周期为π 求得ω=2.再根据图象关于直线x=对称,结合-≤φ<可得φ 的值.(Ⅱ)由条件求得sin(α-)=.再根据α-的范围求得cos(α-)的值,再根据cos(α+)=sinα=sin[(α-)+],利用两角和的正弦公式计算求得结果.【解答】解:(Ⅰ)由题意可得函数f(x)的最小正周期为π,∴=π,∴ω=2.再根据图象关于直线x=对称,可得 2×+φ=kπ+,k∈z.结合-≤φ<可得φ=-.(Ⅱ)∵f()=(<α<),∴sin(α-)=,∴sin(α-)=.再根据 0<α-<,∴cos(α-)==,∴cos(α+)=sinα=sin[(α-)+]=sin(α-)cos+cos(α-)sin=+=.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,两角和差的三角公式、的应用,属于中档题.18.(13分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片.(Ⅰ)求所取3张卡片上的数字完全相同的概率;(Ⅱ)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数字a,b,c 满足a≤b≤c,则称b为这三个数的中位数.)【分析】第一问是古典概型的问题,要先出基本事件的总数和所研究的事件包含的基本事件个数,然后代入古典概型概率计算公式即可,相对简单些;第二问应先根据题意求出随机变量X的所有可能取值,此处应注意所取三张卡片可能来自于相同数字(如1或2)或不同数字(1和2、1和3、2和3三类)的卡片,因此应按卡片上的数字相同与否进行分类分析,然后计算出每个随机变量所对应事件的概率,最后将分布列以表格形式呈现.【解答】解:(Ⅰ)由古典概型的概率计算公式得所求概率为P=,(Ⅱ)由题意知X的所有可能取值为1,2,3,且P(X=1)=,P(X=2)=,P(X=3)=,P所以E(X)=.【点评】本题属于中档题,关键是要弄清涉及的基本事件以及所研究的事件是什么才能解答好第一问;第二问的只要是准确记住了中位数的概念,应该说完成此题基本没有问题.19.(13分)如图,四棱锥P-ABCD,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M为BC上的一点,且BM=,MP⊥AP.(Ⅰ)求PO的长;(Ⅱ)求二面角A-PM-C的正弦值.【分析】(Ⅰ)连接AC,BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O-xyz,分别求出向量,的坐标,进而根据MP⊥AP,得到•=0,进而求出PO的长;(Ⅱ)求出平面APM和平面PMC的法向量,代入向量夹角公式,求出二面角的余弦值,进而根据平方关系可得:二面角A-PM-C的正弦值.【解答】解:(Ⅰ)连接AC,BD,∵底面是以O为中心的菱形,PO⊥底面ABCD,故AC∩BD=O,且AC⊥BD,以O为坐标原点,OA,OB,OP方向为x,y,z轴正方向建立空间坐标系O-xyz,∵AB=2,∠BAD=,∴OA=AB•cos(∠BAD)=,OB=AB•sin(∠BAD)=1,∴O(0,0,0),A(,0,0),B(0,1,0),C(-,0,0),=(0,1,0),=(-,-1,0),又∵BM=,∴=(-,-,0),则=+=(-,,0),设P(0,0,a),则=(-,0,a),=(,-,a),∵MP⊥AP,∴•=-a2=0,解得a=,即PO的长为.(Ⅱ)由(Ⅰ)知=(-,0,),=(,-,),=(,0,), 设平面APM的法向量=(x,y,z),平面PMC的法向量为=(a,b,c),由,得,令x=1,则=(1,,2),由,得,令a=1,则=(1,-,-2),∵平面APM的法向量和平面PMC的法向量夹角θ满足:cosθ===-故sinθ==【点评】本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.20.(12分)已知函数f(x)=ae2x-be-2x-cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y=f(x)在点(0,f(0))处的切线的斜率为4-c.(Ⅰ)确定a,b的值;(Ⅱ)若c=3,判断f(x)的单调性;(Ⅲ)若f(x)有极值,求c的取值范围.【分析】(Ⅰ)根据函数f(x)=ae2x-be-2x-cx(a,b,c∈R)的导函数f′(x)为偶函数,且曲线y =f(x)在点(0,f(0))处的切线的斜率为4-c,构造关于a,b的方程,可得a,b的值;(Ⅱ)将c=3代入,利用基本不等式可得f′(x)≥0恒成立,进而可得f(x)在定义域R为均增函数;(Ⅲ)结合基本不等式,分c≤4时和c>4时两种情况讨论f(x)极值的存在性,最后综合讨论结果,可得答案.【解答】解:(Ⅰ)∵函数f(x)=ae2x-be-2x-cx(a,b,c∈R)∴f′(x)=2ae2x+2be-2x-c,由f′(x)为偶函数,可得2(a-b)(e2x-e-2x)=0,即a=b,又∵曲线y=f(x)在点(0,f(0))处的切线的斜率为4-c,即f′(0)=2a+2b-c=4-c,故a=b=1;(Ⅱ)当c=3时,f′(x)=2e2x+2e-2x-3≥2=1>0恒成立,故f(x)在定义域R为均增函数;(Ⅲ)由(Ⅰ)得f′(x)=2e2x+2e-2x-c,而2e2x+2e-2x≥2=4,当且仅当x=0时取等号, 当c≤4时,f′(x)≥0恒成立,故f(x)无极值;当c>4时,令t=e2x,方程2t+-c=0的两根均为正,即f′(x)=0有两个根x1,x2,当x∈(x1,x2)时,f′(x)<0,当x∈(-∞,x1)∪(x2,+∞)时,f′(x)>0,故当x=x1,或x=x2时,f(x)有极值,综上,若f(x)有极值,c的取值范围为(4,+∞).【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,是导数的综合应用,难度中档.21.(12分)如图,设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上.DF1⊥F1F2,=2,△DF1F2的面积为.(Ⅰ)求椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆与椭圆在x轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.【分析】(Ⅰ)设F1(-c,0),F2(c,0),依题意,可求得c=1,易求得|DF1|==,|DF2|=,从而可得2a=2,于是可求得椭圆的标准方程;(Ⅱ)设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,依题意,利用圆和椭圆的对称性,易知x2=-x1,y1=y2,|P1P2|=2|x1|,由F1P1⊥F2P2,得x1=-或x1=0,分类讨论即可求得圆的半径.【解答】解:(Ⅰ)设F1(-c,0),F2(c,0),其中c2=a2-b2,由=2,得|DF 1|==c,从而=|DF 1||F 1F 2|=c 2=,故c =1.从而|DF 1|=,由DF 1⊥F 1F 2,得=+=,因此|DF 2|=,所以2a =|DF 1|+|DF 2|=2,故a =,b 2=a 2-c 2=1,因此,所求椭圆的标准方程为+y 2=1;(Ⅱ)设圆心在y 轴上的圆C 与椭圆+y 2=1相交,P 1(x 1,y 1),P 2(x 2,y 2)是两个交点,y 1>0,y 2>0,F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2,由圆和椭圆的对称性,易知x 2=-x 1,y 1=y 2,|P 1P 2|=2|x 1|,由(Ⅰ)知F 1(-1,0),F 2(1,0),所以=(x 1+1,y 1),=(-x 1-1,y 1),再由F 1P 1⊥F 2P 2,得-+=0,由椭圆方程得1-=,即3+4x 1=0,解得x 1=-或x 1=0.当x 1=0时,P 1,P 2重合,此时题设要求的圆不存在;当x 1=-时,过P 1,P 2,分别与F 1P 1,F 2P 2垂直的直线的交点即为圆心C. 由F 1P 1,F 2P 2是圆C 的切线,且F 1P 1⊥F 2P 2,知CP 1⊥CP 2,又|CP 1|=|CP 2|,故圆C的半径|CP1|=|P1P2|=|x1|=.【点评】本题考查直线与圆锥曲线的综合问题,考查化归思想、方程思想分类讨论思想的综合应用,考查综合分析与运算能力,属于难题.22.(12分)设a1=1,an+1=+b(n∈N*)(Ⅰ)若b=1,求a2,a3及数列{an}的通项公式;(Ⅱ)若b=-1,问:是否存在实数c使得a2n <c<a2n+1对所有的n∈N*成立,证明你的结论.【分析】(Ⅰ)若b=1,利用an+1=+b,可求a2,a3;证明{(an-1)2}是首项为0,公差为1的等差数列,即可求数列{an}的通项公式;(Ⅱ)设f(x)=,则an+1=f(an),令c=f(c),即c=-1,解得c=.用数学归纳法证明加强命题a2n <c<a2n+1<1即可.【解答】解:(Ⅰ)∵a1=1,an+1=+b,b=1,∴a2=2,a3=+1;又(an+1-1)2=(an-1)2+1,∴{(an-1)2}是首项为0,公差为1的等差数列;∴(an-1)2=n-1,∴an=+1(n∈N*);(Ⅱ)设f(x)=,则an+1=f(an),令c=f(c),即c=-1,解得c=.下面用数学归纳法证明加强命题a2n <c<a2n+1<1.n=1时,a2=f(1)=0,a3=f(0)=-1,∴a2<c<a3<1,成立;设n=k时结论成立,即a2k <c<a2k+1<1∵f(x)在(-∞,1]上为减函数,∴c=f(c)>f(a2k+1)>f(1)=a2,∴1>c>a2k+2>a2,∴c=f(c)<f(a2k+2)<f(a2)=a3<1,∴c<a2k+3<1,∴a2(k+1)<c<a2(k+1)+1<1,即n=k+1时结论成立,综上,c=使得a2n <c<a2n+1对所有的n∈N*成立.【点评】本题考查数列递推式,考查数列的通项,考查数学归纳法,考查学生分析解决问题的能力,难度大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年普通高等学校招生全国统一考试(重庆卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2014年重庆,理1,5分】在复平面内表示复数i(12i)-的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【答案】A【解析】2i(12i)2i i 2i -=-+=+,对应点的坐标为(2,1),在第一象限,故选A . 【点评】本题考查的知识是复数的代数表示法及其几何意义,其中根据复数乘法的运算法则,将复数z 化为i a b +(),a b R ∈的形式,是解答本题的关键. (2)【2014年重庆,理2,5分】对任意等比数列{}n a ,下列说法一定正确的是( )(A )139,,a a a 成等比数列 (B )236,,a a a 成等比数列 (C )248,,a a a 成等比数列 (D )369,,a a a 成等比数列 【答案】D【解析】设{}n a 公比为q ,因为336936,a aq q a a ==,所以369,,a a a 成等比数列,故选D .【点评】本题主要考查了是等比数列的性质.主要是利用了等比中项的性质对等比数列进行判断.(3)【2014年重庆,理3,5分】已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由观测的数据得线性回归方程可能为( ) (A )0.4 2.3y x =+ (B )2 2.4y x =- (C )29.5y x =-+ (D )0.3 4.4y x =-+【答案】A【解析】根据正相关知回归直线的斜率为正,排除,C D ,回归直线经过点(),x y ,故选A . 【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.(4)【2014年重庆,理4,5分】已知向量(,3),(1,4),(2,1)a k b c ===,且(23)a b c -⊥,则实数0k =( )(A )92- (B )0 (C )3 (D )152【答案】C【解析】由已知(23)0230a b c a c b c -⋅=⇒⋅-⋅=,即2(23)3(2141)03k k +-⨯+⨯=⇒=,故选C .【点评】本题考查数量积的坐标表达式,是一个基础题,题目主要考查数量积的坐标形式,注意数字的运算不要出错.(5)【2014年重庆,理5,5分】执行如题图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )(A )12s > (B )35s > (C )710s > (D )45s >【答案】C【解析】由程序框图知:程序运行的981091k S k =⨯⨯⨯+,∵输出的6k =,∴9877109810S =⨯⨯=,∴判断框的条件是710S >,故选C .【点评】本题考查了当型循环结构的程序框图,根据框图的流程判断程序运行的S 值是解题的关键. (6)【2014年重庆,理6,5分】已知命题:p 对任意x R ∈,总有20x >;:"1"q x >是"2"x >的充分不必要条件则下列命题为真命题的是( )(A )p q ∧ (B )p q ⌝∧⌝ (C )p q ⌝∧ (D )p q ∧⌝ 【答案】D【解析】根据指数函数的性质可知,对任意x ∈R ,总有20x >成立,即p 为真命题,“1x >”是“2x >”的必要不充分条件,即q 为假命题,则p q ∧⌝,为真命题,故选D .【点评】本题主要考查复合命题的真假关系的应用,先判定p ,q 的真假是解决本题的关键,比较基础.(7)【2014年重庆,理7,5分】某几何体的三视图如下图所示,则该几何体的表面积为( )(A )54 (B )60 (C )66 (D )72 【答案】B【解析】在长方体中构造几何体'''ABC A B C -,如右图所示,4,'5,'2AB A A B B ===, 3AC =,经检验该几何体的三视图满足题设条件.其表面积'''''''''ABC ACC A ABB A BCC B A B C S S S S S S ∆∆=++++3515615146022=++++=,故选B .【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.(8)【2014年重庆,理8,5分】设12F F ,分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,双曲线上存在一点P 使得12129||||3,||||4PF PF b PF PF ab +=⋅=,则该双曲线的离心率为( )(A )43 (B )53(C )94 (D )3【答案】B【解析】由于22121212(||||)(||||)4||||PF PF PF PF PF PF +--=⋅,所以22949b a ab -=,分解因式得(34)(3)0433,4,5b a b a a b a b c λλλ-+=⇒=⇒===,所以离心率53c e a ==,故选B .【点评】本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于中档题. (9)【2014年重庆,理9,5分】某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )(A )72 (B )120 (C )144 (D )3 【答案】B【解析】用,,a b c 表示歌舞类节目,小品类节目,相声类节目,则可以枚举出下列10种排法:,,,,,,,,,abcaba ababac ababca abacab abacba acabab acbaba babaca bacaba cababa每一种排法中的三个a ,两个b 可以交换位置,故总的排法为323210120A A =种,故选B . 【点评】本题考查计数原理的运用,注意分步方法的运用,既要满足题意的要求,还要计算或分类简便.(10)【2014年重庆,理10,5分】已知ABC ∆的内角1,sin 2sin()sin()2A B C A A B C C A B +-+=--+,满足,面积S 满足12,,,,S a b c A B C ≤≤,记分别为所对的边,则下列不等式成立的是( ) (A )()8bc b c +> (B )()162ac a b +> (C )612abc ≤≤ (D )1224abc ≤≤ 【答案】A【解析】已知变形为1sin 2sin[()]sin[()]2A CB AC B A +-+=--+,展开整理得11sin 22cos()sin 2sin [cos cos()]22A C B A A A C B +-=⇒+-=,即112sin [cos()cos()]sin sin sin 28A CBC B A B C -++-=⇒=,而22111sin 2sin 2sin sin 2sin sin sin 224S ab C R A R B C R A B C R ==⋅⋅⋅=⋅⋅=,故2122224R R ≤≤⇒≤≤,故338sin sin sin [8,162]abc R A B C R =⋅=∈,排除,C D ,因为b c a +>,所以()8bc b c abc +>≥,故选A .【点评】本题考查了两角和差化积公式、正弦定理、三角形的面积计算公式、基本不等式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题. 二、填空题:本大题共6小题,考生作答5小题,每小题5分,共25分.把答案填在答题卡的相应位置. (11)【2014年重庆,理11,5分】设全集{|110},{1,2,3,5,8},{1,3,5,7,9}U n N n A B =∈≤≤==,则C'B'A'CBA()U C A B = .【答案】{}7,9【解析】∵全集{}110U n N n =∈≤≤,{}1,2,3,5,8A =,{}1,3,5,7,9B =,∴{}4,6,7,9U C A =,∴{}()7,9U C A B =.【点评】本题主要考查集合的表示方法、集合的补集,两个集合的交集的定义和求法,属于基础题.(12)【2014年重庆,理12,5分】函数2()log )f x x =的最小值为 .【答案】14-【解析】因为222221log log )log 422log 2x x x x ===+,设2log t x =,则:原式221111(22)()2244t t t t t =+=+=+-≥-,故最小值为14-.【点评】本题考查对数不等式的解法,考查等价转化思想与方程思想的综合应用,考查二次函数的配方法,属于中档题. (13)【2014年重庆,理13,5分】已知直线02=-+y ax 与圆心为C 的圆()()2214x y a -+-=相交于A B ,两点,且ABC ∆为等边三角形,则实数a = .【答案】4±【解析】易知ABC ∆的边长为2,圆心到直线的距离为等边三角形的高h =4a = 【点评】本题主要考查点到直线的距离公式的应用,利用条件求出圆心和半径,结合距离公式是解决本题的关键. 考生注意:(14)、(15)、(16)三题为选做题,请从中任选两题作答,若三题全做,则按前两题给分. (14)【2014年重庆,理14,5分】过圆外一点P 作圆的切线PA (A 为切点),再作割线PB ,PC 分别交圆于B ,C ,若6PA =,8AC =,9BC =,则AB = . 【答案】4【解析】设,AB x PB y ==,由PAB PCA ∆∆知:64,3986PA AB PB x yx y PC AC PA y ==⇒==⇒==+,所以4AB =.【点评】本题考查圆的切线的性质,考查三角形相似的判断,属于基础题.(15)【2014年重庆,理15,5分】已知直线l 的参数方程为23x ty t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 正半轴为极轴建立极坐标,曲线C 的极坐标方程为2sin 4cos 0ρθθ-=(0,02)ρθπ≥≤<则直线l 与曲线C 的公共点的极径ρ= .【解析】直线的极坐标方程为sin cos 1ρθρθ=+与2sin 4cos 0ρθθ-=联立得:24cos tan 2,5cos sin θθρθθ=== 【点评】本题考查直线l 的参数方程、曲线C 的极坐标方程,考查学生的计算能力,属于中档题.(16)【2014年重庆,理16,5分】若不等式2121222x x a a -++≥++对任意实数x 恒成立,则实数a 的取值范围是 __.【答案】112a -≤≤【解析】转化为左边的最小值2122a a ≥++,左边1111155(2)22222222x x x x x x x =-+-++≥-+---=-+≥,当12x =时取等号,故251121222a a a ≥++⇒-≤≤.【点评】本题考查绝对值不等式的解法,突出考查一元二次不等式的解法及恒成立问题,属于中档题. 三、解答题:本大题共6题,共75分.解答应写出文字说明,演算步骤或证明过程.(17)【2014年重庆,理17,13分】已知函数()()022f x x ππωφωφ⎛⎫=+>-≤< ⎪⎝⎭,的图像关于直线3x π=对称,且图像上相邻两个最高点的距离为π. (1)求ω和ϕ的值;(2)若2263f αππα⎛⎫⎫=<< ⎪⎪⎝⎭⎝⎭,求3cos 2πα⎛⎫+ ⎪⎝⎭的值. 解:(1)由已知()3f π=2ππω=,解出2,,6k k Z πωϕπ==-∈,因为[,)2ππϕ∈-,故只有πϕ=-.(2)1)sin()2664f αππαα⎛⎫=-=-= ⎪⎝⎭,由062ππα<-<,故cos()6πα-=, 3cos sin sin[()]sin()cos cos()sin 2666666πππππππααααα⎛⎫+==-+=-+- ⎪⎝⎭1142= 【点评】本题主要考查由函数()sin y A x ωϕ=+的部分图象求函数的解析式,两角和差的三角公式的应用,属于中档题.(18)【2014年重庆,理18,13分】一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3,从盒中任取3张卡片. (1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望(注:若三个数,,a b c 满足 a b c ≤≤,则称b 为这三个数的中位数).解:(1)由古典概型的概率计算公式得所求概率为:334339584C C p C +==. (2)3214453417(1)848242C C C p x +====;111212134323234343(2)8484C C C C C C C C p x +++===;1771(3)848412C p x ====.所以X 的分布列为:所以174314712342841228E =⨯+⨯+⨯=.【点评】本题属于中档题,关键是要弄清涉及的基本事件以及所研究的事件是什么才能解答好第一问;第二问的只要是准确记住了中位数的概念,应该说完成此题基本没有问题. (19)【2014年重庆,理19,13分】如下图,四棱锥P ABCD -,底面是以O 为中心的菱形,PO ⊥底面ABCD ,2,3AB BAD π=∠=,M 为BC 上一点,且1,2BM MP AP =⊥.(1)求PO 的长;(2)求二面角A PM C --的正弦值. 解:解法一:(1)设PO x =,则PA=PM =, 在ABM ∆中由余弦定理21cos1202AM =,因为MP AP ⊥,所以APM ∆为 直角三角形,由勾股定理:2222PA PM AM +=⇒=,解出x ,PO ∴=. (2)设点A 到平面PMC 的距离为d ,由体积法知:A PBC PABC V V --=,即11113333PBC ABC S d S PO d d ∆∆⋅⋅=⋅⋅⇒==, 点A 到棱PM 的距离为h PA ==,设所求二面角为θ,则sin d h θ===X 1 2 3 P 1742 4384112 OMDCBAP解法二:(1)连接AC ,BD ,∵底面是以O 为中心的菱形,PO ⊥底面ABCD ,故AC BD O =,且AC BD ⊥,以O 为坐标原点,OA ,OB ,OP 方向为x ,y ,z 轴正方向建立空间坐标系O xyz -,∵2AB =,3BAD π∠=,∴1cos 32OA AB BAD ⎛⎫=⋅∠= ⎪⎝⎭,1sin 12OB AB BAD ⎛⎫=⋅∠= ⎪⎝⎭,∴()0,0,0O ,()3,0,0A ,()0,1,0B ,()3,0,0C -,()0,1,0OB =,()3,1,0BC =--, 又∵12BM =,∴131,,0444BM BC ⎛⎫==-- ⎪ ⎪⎝⎭,则33,,044OM OB BM ⎛⎫=+=- ⎪ ⎪⎝⎭, 设()0,0,P a ,则()3,0,AP a =-,33,,44MP a ⎛⎫=- ⎪ ⎪⎝⎭,∵MP AP ⊥,∴2304AP MP a ⋅=-=, 解得32a =,即PO 的长为32.(2)由(1)知33,0,2AP ⎛⎫=- ⎪ ⎪⎝⎭,333,,442MP ⎛⎫=- ⎪ ⎪⎝⎭,33,0,2CP ⎛⎫= ⎪ ⎪⎝⎭,设平面APM 的法向量(),,n x y z =, 平面PMC 的法向量为(),,n a b c =,由00m AP m MP ⎧⋅=⎪⎨⋅=⎪⎩,得33023330442x z x y z ⎧-+=⎪⎪⎨⎪-+=⎪⎩,令1x =,则531,,23m ⎛⎫= ⎪ ⎪⎝⎭,由00n CP n MP ⎧⋅=⎪⎨⋅=⎪⎩,得33023330442a c abc ⎧+=⎪⎪⎨⎪-+=⎪⎩,令1a =,则()1,3,2n =--,∵平面APM 的法向量m 和平 面PMC 的法向量n 夹角θ满足:15415cos 54083m nm n⋅--===-⋅⋅,故210sin 1sin 5θθ=-=. 【点评】本题考查的知识点是空间二面角的平面角,建立空间坐标系,将二面角问题转化为向量夹角问题,是解答的关键.(20)【2014年重庆,理20,12分】已知函数22()(,,)x x f x ae be cx a b c R -=--∈的导函数'()f x 为偶函数,且曲线()y f x =在点(0,(0))f 处的切线的斜率为4c -. (1)确定,a b 的值;(2)若3c =,判断()f x 的单调性; (3)若()f x 有极值,求c 的取值范围.解:(1)22'()22x x f x ae be c -=+-,由'()'()f x f x -=恒成立知:222242222(22)(22)0x x x x x ae be c ae be c a b e b a --+-=+-⇒-+-≡,故a b =另外'(0)2242f a b c c a b =+-=-⇒+=,联立解出1a b ==.(2)当3c =时,222'()2232()10x x x x f x e e e e --=+-=-+>,故()f x 在定义域R 上为单调递增. (3)由(1)得()2222x x f x e e c -'=+-,而2222222224x x x x e e e e --+≥⋅=,当且仅当0x =时取等号,当4c ≤时,()0f x '≥恒成立,故()f x 无极值;当4c >时,令2x t e =,方程220t c t+-=的两根均为 正,即()0f x '=有两个根1x ,2x ,当()12,x x x ∈时,()0f x '<,当()()12,,x x x ∈-∞+∞时,()0f x '>,故当1x x =,或2x x =时,()f x 有极值,综上,若()f x 有极值,c 的取值范围为()4,+∞.【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,是导数的综合应用,难度中档.(21)【2014年重庆,理21,12分】如下图,设椭圆22221(0)x y a b a b+=>>的左右焦点分别为12,F F , 点D 在椭圆上,112DF F F ⊥,121||22||F F DF =,12DF F ∆的面积为22.(1)求椭圆的标准方程;(2)设圆心在y 轴上的圆与椭圆在x 轴的上方有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点,求圆的半径.解:(1)设(,)D c y -,代入椭圆方程中求出2b y a =-,故21b DF a=,而122F F c =,由已知:1211211222,22F F DF F F DF =⋅=,联立解出12122,2F F DF ==,即2222222,,2b c a b c a ===+,联立解出2,1a b c ===,所以椭圆的标准方程为2212x y +=.(2)由于所求圆的圆心C 在y 轴上,故圆和椭圆的两个交点,A B 关于y 轴对称,从而经过点,A B 所作的切线也关于y 轴对称,如下图所示.当切线互相垂直时,设两条切线交 于点P ,则CAPB 恰好形成一个边长为r 正方形.其中r 表示圆的半径,由几何关系222BF BP PF r =-=-,222112BF BP PF r =+=+,12222BF BF a +==,所以24222223r r r -++=⇒=,故所求圆的半径为423.【点评】本题考查直线与圆锥曲线的综合问题,考查化归思想、方程思想分类讨论思想的综合应用,考查综合分析与运算能力,属于难题.(22)【2014年重庆,理22,12分】设2111,22(*)n n n a a a a b n N +==-++∈.(1)若1b =,求23,a a 及数列{}n a 的通项公式;(2)若1b =-,问:是否存在实数c 使得221n n a c a +<<对所有*n N ∈成立?证明你的结论.解:(1)∵11a =,2122n n n a a a b +=-++,1b =,22a ∴=,321a =+;又()()221111n n a a +-=-+,∴(){}21n a -是首项为0,公差为1的等差数列;∴()211n a n -=-,∴11n a n =-+(*n N ∈). (2)设()()2111f x x =-+-,则()1n n a f a +=,令()c f c =,即()2111c c =-+-,解得14c =. 下面用数学归纳法证明加强命题2211n n a c a +<<<.1n =时,()210a f ==,()3021a f ==-,∴231a c a <<<,成立;设n k =时结论成立,即2211k k a c a +<<<,∵()f x 在(],1-∞上为减函数, ∴()()()2121k c f c f a f a +=>>=,∴2221k c a a +>>>,∴()()()22231k c f c f a f a a +=<<=<, ∴231k c a +<<,∴()()212111k k a c a +++<<<,即1n k =+时结论成立,综上,14c =使得221n n a c a +<<对所有的*n N ∈成立.. 【点评】本题考查数列递推式,考查数列的通项,考查数学归纳法,考查学生分析解决问题的能力,难度大.PCBAyO F 2F 1。

相关文档
最新文档