2019学年河南省信阳市罗山县七年级上学期期末数学试卷【含答案及解析】
信阳市七年级上册数学期末试题及答案解答

信阳市七年级上册数学期末试题及答案解答一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b2.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°3.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .124.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒5.在实数:3.1415935-π2517,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( ) A .1个B .2个C .3个D .4个6.如果﹣2xy n+2与 3x 3m-2y 是同类项,则|n ﹣4m|的值是( ) A .3 B .4 C .5 D .67.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( ) A .1601603045x x-= B .1601601452x x -= C .1601601542x x -= D .1601603045x x+= 8.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7B .﹣1C .9D .79.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >0 10.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513B .﹣511C .﹣1023D .102511.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨. A .415010⨯B .51510⨯C .70.1510⨯D .61.510⨯12.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( ) A .赚了10元B .赔了10元C .赚了50元D .不赔不赚二、填空题13.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.14.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.15.某农村西瓜论个出售,每个西瓜以下面的方式定价:当一个a 斤重的西瓜卖A 元,一个b 斤重的西瓜卖B 元时,一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫⎪⎝⎭元,已知一个12斤重的西瓜卖21元,则一个18斤重的西瓜卖_____元.16.在数轴上,点A ,B 表示的数分别是 8-,10.点P 以每秒2个单位长度从A 出发沿数轴向右运动,同时点Q 以每秒3个单位长度从点B 出发沿数轴在B ,A 之间往返运动,设运动时间为t 秒.当点P ,Q 之间的距离为6个单位长度时,t 的值为__________. 17.将520000用科学记数法表示为_____.18.已知一个角的补角是它余角的3倍,则这个角的度数为_____. 19.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____. 20.计算:3+2×(﹣4)=_____.21.若x 、y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y)2019的值为_____. 22.-2的相反数是__.23.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___. 24.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .三、解答题25.如图,OC 是AOB ∠内一条射线,且AOC BOC ∠∠<,OE 是AOB ∠的平分线,OD 是AOC ∠的角平分线,则(1)若108,36,AOB AOC ∠=︒∠=︒则OC 是DOE ∠平分线,请说明理由.(2)小明由第(1)题得出猜想:当3AOB AOC ∠=∠时,OC 一定平分,DOE ∠你觉得小明的猜想正确吗?若正确,请说明理由;若不正确,判断当AOB ∠和AOC ∠满足什么条件时OC 一定平分,DOE ∠并说明理由. 26.(1)3x+5(x+2)=2 (2)33-x ﹣1=242+x 27.解方程:131142x x x +-+=- 28.请根据图中提供的暖瓶和水杯的售价信息,回答下列问题:(1)一个暖瓶与一个水杯的售价分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,在新年期间,两家商场都在搞促销活动.甲商场规定:这两种商品都打8.5折;乙商场规定:两种商品都不打折,但买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和16个水杯,请问这个单位选择哪家商场购买更合算,并说明理由.29.用尺规作图按下列语句画图: (1)画射线BC ,连接AC ,AB ;(2)反向延长线段AB 至点D ,使得DA =AB .30. 计算: (1)(﹣16+34﹣512)×36 (2)(﹣3)2124÷×(﹣23)+4+22×8()3-四、压轴题31.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.32.如图1,线段AB 的长为a .(1)尺规作图:延长线段AB 到C ,使BC =2AB ;延长线段BA 到D ,使AD =AC .(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB 所在的直线画数轴,以点A 为原点,若点B 对应的数恰好为10,请在数轴上标出点C ,D 两点,并直接写出C ,D 两点表示的有理数,若点M 是BC 的中点,点N 是AD 的中点,请求线段MN 的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D 处开始,在点C ,D 之间进行往返运动;乙从点N 开始,在N ,M 之间进行往返运动,甲、乙同时开始运动,当乙从M 点第一次回到点N 时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.33.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数______表示的点重合; (3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC .则AB=______,AC=______,BC=______.(用含t 的代数式表示). (4)直接写出点B 为AC 中点时的t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】依据线段AB 长度为a ,可得AB=AC+CD+DB=a ,依据CD 长度为b ,可得AD+CB=a+b ,进而得出所有线段的长度和. 【详解】∵线段AB 长度为a , ∴AB=AC+CD+DB=a , 又∵CD 长度为b , ∴AD+CB=a+b ,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b , 故选A . 【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.2.C解析:C 【解析】 【分析】根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数. 【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=. 故答案为:C.【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.3.C解析:C 【解析】 【分析】根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可. 【详解】解:根据题意可得: 设BC x =,则可列出:()223x x +⨯= 解得:4x =,12BC AB =, 28AB x ∴==. 故答案为:C. 【点睛】 本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.4.D解析:D 【解析】 【分析】由题意分两种情况过点O 作OE AB ⊥,利用垂直定义以及对顶角相等进行分析计算得出选项. 【详解】解:过点O 作OE AB ⊥,如图:由40BOD ∠=︒可知40AOC ∠=︒,从而由垂直定义求得COE ∠=90°-40°或90°+40°,即有COE ∠的度数为50︒或130︒. 故选D. 【点睛】本题考查了垂直定义以及对顶角的应用,主要考查学生的计算能力.5.C解析:C【解析】【分析】无理数就是无限不循环小数,依据定义即可判断.【详解】解:在3.14159π17,0.1313313331…(每2个1之间依次多一个3)π、0.1313313331…(每2个1之间依次多一个3)这3个,故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.C解析:C【解析】【分析】同类项要求相同字母上的次数相同,由此求出m,n,代入即可求解.【详解】解:∵﹣2xy n+2与 3x3m-2y 是同类项,∴3m-2=1,n+2=1,解得:m=1,n=-1,∴|n﹣4m|=|-1-4|=5,故选C.【点睛】本题考查了同类项的概念,属于简单题,熟悉概念和列等式是解题关键.7.B解析:B【解析】【分析】甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,根据两车同时从A地出发到B地,乙车比甲车早到30分钟,列出方程即可得.【详解】甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,由题意得160 4x -1605x=12,故选B.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.8.D解析:D 【解析】 【分析】将x 与y 的值代入原式即可求出答案. 【详解】 当x=﹣13,y=4, ∴原式=﹣1+4+4=7 故选D . 【点睛】本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.9.C解析:C 【解析】 【分析】利用数轴先判断出a 、b 的正负情况以及它们绝对值的大小,然后再进行比较即可. 【详解】解:由a 、b 在数轴上的位置可知:a <0,b >0,且|a |>|b |, ∴a +b <0,ab <0,a ﹣b <0,a ÷b <0. 故选:C .10.D解析:D 【解析】 【分析】观察数据,找到规律:第n 个数为(﹣2)n +1,根据规律求出第10个数即可. 【详解】解:观察数据,找到规律:第n 个数为(﹣2)n +1, 第10个数是(﹣2)10+1=1024+1=1025 故选:D . 【点睛】此题主要考查了数字变化规律,根据已知数据得出数字的变与不变是解题关键.11.D解析:D 【解析】 【分析】将150万改写为1500000,再根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1.150万=1500000=61.510⨯, 故选:D. 【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.12.A解析:A 【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元. 考点:一元一次方程的应用二、填空题 13.5 【解析】 【分析】把x =2代入方程求出a 的值即可. 【详解】解:∵关于x 的方程5x+a =3(x+3)的解是x =2, ∴10+a =15, ∴a =5, 故答案为5. 【点睛】本题考查了方程的解解析:5 【解析】 【分析】把x =2代入方程求出a 的值即可. 【详解】解:∵关于x 的方程5x +a =3(x +3)的解是x =2, ∴10+a =15, ∴a =5, 故答案为5. 【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键.14.-5【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果,此时就需要将结果返回重新计算,直到结果,才能输出结果. 【详解】解:根据如图所示: 当输入的是的时候,, 此时结果解析:-5 【解析】 【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1>-,此时就需要将结果返回重新计算,直到结果1<-,才能输出结果. 【详解】解:根据如图所示:当输入的是1-的时候,1(3)21-⨯--=, 此时结果1>-需要将结果返回, 即:1(3)25⨯--=-, 此时结果1<-,直接输出即可, 故答案为:5-. 【点睛】本题考查程序设计题,解题关键在于数的比较大小和读懂题意.15.33 【解析】 【分析】根据题意中的对应关系,由斤重的西瓜卖元,列方程求出6斤重的西瓜的定价;再根据“一个斤重的西瓜定价为元”可得出(12+6)斤重西瓜的定价. 【详解】解:设6斤重的西瓜卖x 元解析:33 【解析】 【分析】根据题意中的对应关系,由12斤重的西瓜卖21元,列方程求出6斤重的西瓜的定价;再根据“一个()a b +斤重的西瓜定价为 36ab A B ⎛++⎫ ⎪⎝⎭元”可得出(12+6)斤重西瓜的定价.【详解】解:设6斤重的西瓜卖x 元,则(6+6)斤重的西瓜的定价为:363(21)6x x x =+++元, 又12斤重的西瓜卖21元,∴2x+1=21,解得x=10.故6斤重的西瓜卖10元.又18=6+12, ∴(6+12)斤重的西瓜定价为:6121021=3336⨯++(元). 故答案为:33.【点睛】 本题主要考查求代数式的值以及一元一次方程的应用,关键是理解题意,找出等量关系. 16.【解析】【分析】根据题意分别表示P,Q 的数为-8+2t 和10-3t ,并分到A 前和到A 后进行分析求值.【详解】解:由题意表示P,Q 的数为-8+2t ()和10-3t (),-8+3(t-6)() 解析:125【解析】【分析】根据题意分别表示P ,Q 的数为-8+2t 和10-3t ,并分Q 到A 前和Q 到A 后进行分析求值.【详解】解:由题意表示P ,Q 的数为-8+2t (09t <≤)和10-3t (06t <≤),-8+3(t-6)(69t <≤)Q 到A 前:103826t t -+-=,求得125t =,且满足06t <≤, Q 到A 后:82836t t -++--()=6,求得12t =,但不满足69t <≤,故舍去, 综上125t =. 故填125. 【点睛】本题考查数轴上的动点问题,运用数形结合的思想将动点问题转化为代数问题进行分析求解.17.2×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数解析:2×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将520000用科学记数法表示为5.2×105.故答案为:5.2×105.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α解析:45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.19.8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一解析:8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一元一次方程的解,解答本题的关键是把x=﹣2代入方程2x+a﹣4=0求解.20.﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是解析:﹣5【解析】【分析】根据有理数的乘法法则和加法法则可以解答本题.【详解】3+2×(﹣4)=3+(﹣8)=﹣5.故答案为:﹣5.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x+2=0,y﹣2=0,解得:x=﹣2,y=2,所以,()2019=()201解析:﹣1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x+2=0,y﹣2=0,解得:x=﹣2,y=2,所以,(xy)2019=(22)2019=(﹣1)2019=﹣1.故答案为:﹣1.【点睛】本题考查了非负数的性质.解答本题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.22.2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.解析:2【解析】【分析】根据相反数的定义即可求解.【详解】-2的相反数是2,故填:2.此题主要考查相反数,解题的关键是熟知相反数的定义.23.正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考解析:正方体.【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】解:正方体的主视图、左视图、俯视图都是大小相同的正方形,故答案为正方体.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.24.4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=解析:4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=50×40×h,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm 3).故答案为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键.三、解答题25.(1)OC 是角平分线;(2)正确,理由见解析.【解析】【分析】(1)根据108,36,AOB AOC ∠=︒∠=︒分别求出,,AOE COE DOC ∠∠∠的度数,进而得出答案;(2)设AOC x ∠=,进而得出3,AOB x ∠= 分别求出COE DOC ∠∠、的度数,进而得出猜想是否正确.【详解】解:(1)OE 平分AOB ∠,108AOB ∠=︒ ∴1542AOE AOB ∠=∠=︒ ∴18COE AOE AOC ∠=∠-∠=︒ OD 平分AOC ∠,36AOC ∠=︒∴1182DOC AOC ∠=∠=︒ COE DOC ∠=∠∴OC 是DOE ∠的平分线.(2)正确,理由如下设AOC x ∠=3AOB AOC ∠=∠3AOB x ∴∠=OE 平分AOB ∠1 1.52AOE AOB x ∴∠=∠= 2x COE AOE AOC ∴∠=∠-∠= OD 平分AOC ∠122x DOC AOC ∴∠=∠= COE DOC ∠=∠OC 是DOE ∠的平分线.【点睛】本题考查的是角度中的角平分线的问题,解题关键是根据题意得出角度之间的关系即可.26.(1)x =﹣1;(2)x =﹣6【解析】【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解.(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【详解】解:(1)3x+5x+10=28x =﹣8x =﹣1;(2)2(x ﹣3)﹣6=3(2x+4)2x ﹣6x =12+6+6﹣4x =24x =﹣6.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.27.x=-3【解析】【分析】方程去分母,去括号,移项合并,将x 系数化为1,即可求出解.【详解】去分母得,4+(1+3x )=4x-2(x-1),去括号得,4+1+3x=4x-2x+2,移项得,3x+2x-4x=2-4-1,合并同类项得,x=-3.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.28.(1)一个暖瓶的售价是30元,一个水杯的售价是8元;(2)这个单位在甲商场购买更算.【解析】【分析】(1)根据“暖瓶+水杯=38元”和“2个暖瓶的价格+3个水杯的价格=84元”这两个关系式,设暖瓶为x 元,用x 将水杯的售价表示出来,然后列出一元一次方程求解即可.(2)根据售价×折扣=实际售价,分别计算两个方案各自的售价,然后对比判断即可解决.【详解】(1)设一个暖瓶售价x 元,则一个水杯售价是(38)x -元.依题意得:23(38)84x x +-=,解得:30x =.38-30=8(元).因此,一个暖瓶的售价是30元,一个水杯的售价是8元.(2)这个单位在甲商场购买更算.理由:在甲商场购买所需费用为:43016885%210.8⨯+⨯⨯=()(元);在乙商场购买所需费用为:43016-48216⨯+⨯=()(元);因为210.8<216,所以这个单位在甲商场购买更算.【点睛】本题考查了一元一次方程解决问题和方案选择问题,解决本题的关键是正确理解题意,找到等量关系,能够根据各自的方案计算其所需的费用.29.(1)见详解;(2)见详解.【解析】【分析】(1)根据尺规作图过程画射线BC ,连接AC ,AB 即可;(2)根据尺规作图过程反向延长线段AB 至点D ,使得DA =AB 即可.【详解】解:如图所示:(1)(1)射线BC ,连接AC ,AB 即为所求作的图形;(2)如图所示即为所求作的图形.【点睛】本题考查了作图−−复杂作图、直线、射线、线段,解决本题的关键是根据语句准确画图.30.(1)6;(2)﹣283. 【解析】【分析】第一题利用乘法分配律进行计算第二题按照混合运算的法则进行逐步计算【详解】(1)原式=1353636366271566412-⨯+⨯-⨯=-+-= (2)原式=428832289444933333⎛⎫⎛⎫⨯⨯-++⨯-=-+-=- ⎪ ⎪⎝⎭⎝⎭【点睛】关于有理数的运算,运用运算律可以简便运算,对于混合运算,要严格按照运算的先后顺序进行运算.四、压轴题31.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键.32.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767.【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35(3)设乙从M点第一次回到点N时所用时间为t,则t=223522MN⨯==35(秒)那么甲在总的时间t内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123这时甲和乙所对应的有理数为112 3④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有5t4﹣1123﹣30﹣15+2t4=1123,t4=91621(秒)此时甲的位置:5×91621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767这时甲和乙所对应的有理数为﹣767.四次相遇所用时间为:5+10+203+91621=3137(秒),剩余运行时间为:35﹣3137=347(秒)当时间为35秒时,乙回到N点停止,甲在剩余的时间运行距离为5×347=5257=1767.位置在﹣767+1767=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、1123、﹣767.【点睛】本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.33.(1)-2;1;7;(2)4;(3)3+3t;9+5t;6+2t;(4)3.【解析】【分析】(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)分别写出点A、B、C表示的数为,用含t的代数式表示出AB、AC、BC即可;(4)由点B为AC中点,得到AB=BC,列方程,求解即可.【详解】(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得:a=﹣2,c=7.∵b是最小的正整数,∴b=1.故答案为﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4.故答案为4.(3)点A表示的数为:-2-t,点B表示的数为:1+2t,点C表示的数为:7+4t,则AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6.故答案为3t+3,5t+9,2t+6.(4)∵点B为AC中点,∴AB=BC,∴3t+3=2t+6,解得:t=3.【点睛】本题考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.。
2019-2020学年河南省信阳市罗山县七年级(上)期末数学试卷

2019-2020学年河南省信阳市罗山县七年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各对数中,互为相反数的是()A.﹣2与3B.﹣(+3)与+(﹣3)C.4与﹣4D.5与2.(3分)已知一个单项式的系数是2,次数是3,则这个单项式可以是()A.﹣2xy2B.3x2C.2xy3D.2x33.(3分)据介绍,2019年央视春晚直播期间,全球观众参与百度APP红包互动活动次数达208亿次.“208亿”用科学记数法表示为()A.2.08×1010B.0.208×1011C.208×108D.2.08×10114.(3分)若,则x2+y3的值是()A.B.C.D.5.(3分)若方程2x﹣kx+1=5x﹣2的解为﹣1,则k的值为()A.10B.﹣4C.﹣6D.﹣86.(3分)如图是一个正方体展开图,把展开图折叠成正方体后,“你”字相对面上的字是()A.我B.中C.国D.梦7.(3分)将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是()A.B.C.D.8.(3分)施大叔在一次买卖中均以120元卖出两件衣服,一件赚20%,一件赔20%,在这次交易中施大叔()A.赔了10元B.赚了10元C.不赔不赚D.赔了8元9.(3分)小明早晨上学时,每小时走5千米,中午放学沿原路回家时,每小时走4千米,结果回家所用的时间比上学所用的时间多10分钟,问小明家离学校有多远?设小明家离学校有x千米,那么所列方程是()A.=﹣10B.+=C.5x=4x+10D.﹣=10.(3分)如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是由第1个图案经过平移而得,那么第n个图案中有白色六边形地面砖()块.A.6+4(n+1)B.6+4n C.4n﹣2D.4n+2二.填空题(每小题3分,共15分)11.(3分)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反:则分别叫作正数与负数.若收入60元记作+60元,则支出30元记作元.12.(3分)如果4x2m+2y n﹣1与﹣3x3m+1y3n﹣5是同类项,则m﹣n的值为.13.(3分)大雁迁徙时常排成人字形,这个人字形的一边与其飞行方向夹角是54°44′8″,从空气动力学角度看,这个角度对于大雁队伍飞行最佳,所受阻力最小.则54°44′8″的补角是.14.(3分)若5x+2与﹣2x+9互为相反数,则x的值为.15.(3分)如图1所示∠AOB的纸片,OC平分∠AOB,如图2把∠AOB沿OC对折成∠COB(OA与OB重合),从O点引一条射线OE,使∠BOE=∠EOC,再沿OE把角剪开,若剪开后得到的3个角中最大的一个角为80°,则∠AOB=°.三、解答题(共8题,共75分)16.(10分)完成下列各题:(1)计算:;(2)解方程:﹣=1.17.(9分)已知A=a﹣2(a﹣b2),B=﹣a+.(1)化简:2A﹣6B;(2)已知|a+2|+(b﹣3)2=0,求2A﹣6B的值.18.(9分)“中欧班列”是指按照固定车次线路条件开行,往来于中国与欧洲及“一带一路”沿线各国的集装箱国际铁路联运班列.其中从我国义乌到亚欧国家的一趟班列近似直线(东西方向),若某班列从我国某城市出发(规定向东为正,向西为负),下面记录数据分别为每一天的行程(单位:km):﹣1008,1100,﹣976,1010,﹣872,946.问6天后,此班列在该城市什么方向?距离多远?共计行程多少千米?19.(9分)按下列程序计算,把答案写在表格内:(1)填写表格:输入n31﹣2﹣3…答案12…(2)请将题中计算程序用含n的代数式表示出来,并将该式化简.20.(9分)如图,已知AB:BC:CD=2:3:4,E、F分别为AB、CD中点,且EF=15.求线段AD的长.21.(9分)如图,数轴上A点表示的数是﹣2,B点表示的数是5,C点表示的数是10.(1)若要使A、C两点所表示的数是一对相反数,则“原点”表示的数是:.(2)若此时恰有一只老鼠在B点,一只小猫在C点,老鼠发现小猫后立即以每秒一个单位的速度向点A方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t(秒)的代数式表示老鼠和小猫在移动过程中分别与点A之间的距离;②小猫逮住老鼠时的“位置”恰好在,求时间t.22.(9分)某市居民生活用电基本价格为每度0.40元,若每月用电量超过a度,超过部分按基本电价的70%收费.(1)某户5月份用电84度,共交电费30.72元,求a的值.(2)若该户6月份的电费平均每度为0.36元,求6月份共用电多少度应该交电费多少元?23.(11分)如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(其中∠P=30°)的直角顶点放在点O处,一边OQ在射线OA上,另一边OP与OC都在直线AB的上方.将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)如图2,经过t秒后,OP恰好平分∠BOC.①求t的值;②此时OQ是否平分∠AOC?请说明理由;(2)若在三角板转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠POQ?请说明理由;(3)在(2)问的基础上,经过多少秒OC平分∠POB?(直接写出结果).2019-2020学年河南省信阳市罗山县七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:A、只有符号不同的两个数互为相反数,故A错误;B、都是﹣3,故B错误;C、只有符号不同的两个数互为相反数,故C正确;D、互为倒数,故D错误;故选:C.2.【解答】解:此题规定了单项式的系数和次数,但没规定单项式中含几个字母.A、﹣2xy2系数是﹣2,错误;B、3x2系数是3,错误;C、2xy3次数是4,错误;D、2x3符合系数是2,次数是3,正确;故选:D.3.【解答】解:208亿=20800000000=2.08×1010.故选:A.4.【解答】解:根据题意得,x﹣=0,y+1=0,解得x=,y=﹣1,所以,x2+y3=()2+(﹣1)3=﹣1=﹣.故选:D.5.【解答】解:依题意,得2×(﹣1)﹣(﹣1)k+1=5×(﹣1)﹣2,即﹣1+k=﹣7,解得,k=﹣6.故选:C.6.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“我”与面“中”相对,面“的”与面“国”相对,“你”与面“梦”相对.故选:D.7.【解答】解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:C.8.【解答】解:设赚了20%的衣服的进价是x元,则(1+20%)x=120解得x=100,则实际赚了20元;设赔了20%的衣服进价是y元,则(1﹣20%)y=120,解得y=150,则赔了150﹣120=30元.∵30>20,∴赔大于赚,在这次交易中,该商人是赔了30﹣20=10(元).故选:A.9.【解答】解:设小明家离学校x千米,根据题意得,=+.故选:B.10.【解答】解:∵第一个图案中,有白色的是6个,后边是依次多4个.∴第n个图案中,是6+4(n﹣1)=4n+2.故选:D.二.填空题(每小题3分,共15分)11.【解答】解:由题意可知,收入与支出是互为相反意义的量,∴支出30元记为﹣30元,故答案为﹣30.12.【解答】解:单项式4x2m+2y n﹣1与﹣3x3m+1y3n﹣5是同类项,∴2m+2=3m+1,n﹣1=3n﹣5,解得:m=1,n=2.∴m﹣n=1﹣2=﹣1.故答案为:﹣1.13.【解答】解:180°﹣54°44′8″=179°59'60''﹣54°44'8''=125°15'52'',故答案为:125°15'52''.14.【解答】解:根据题意得:(5x+2)+(﹣2x+9)=0,去括号得:5x+2﹣2x+9=0,合并同类项得:3x=﹣11,系数化1得:x=.15.【解答】解:由题意得∠BOE=∠EOC,∠AOE′=∠COE′,∠EOE′=80°∴∠COE′=∠COE=40°,∴∠BOE=∠AOE′=20°,∴∠AOB=120°,故答案为:120.三、解答题(共8题,共75分)16.【解答】解:(1)原式==3﹣2+9=10(2)﹣=1.3(3x+1)﹣2(x﹣1)=69x+3﹣2x+2=69x﹣2x=6﹣2﹣37x=1x=17.【解答】解:(1)∵A=a﹣2(a﹣b2),B=﹣a+b2,∴2A﹣6B=2(a﹣2a+b2)﹣6(﹣a+b2)=a﹣4a+b2+4a﹣b2=a+b2;(2)∵|a+2|+(b﹣3)2=0,∴a=﹣2,b=3,则原式=﹣2+3=1.18.【解答】解:(﹣1008)+1100+(﹣976)+1010+(﹣872)+946=200(km),|﹣1008|+1100+|﹣976|+1010+|﹣872|+946=5912(km),答:6天后,此班列在该城市东边,距离200km,共计行程5912km.19.【解答】解:(1)当n=1时,答案=4;当n=﹣2时,答案=﹣8;当n=﹣3时,答案=﹣12;故答案为4,﹣8,﹣12;(2)按程序列出代数式(n2+3n)﹣(n2﹣n)=4n.20.【解答】解:设AB=2x,BC=3x,CD=4x,∵E、F分别是AB和CD的中点,∴BE=AB=x,CF=CD=2x,∵EF=15cm,∴BE+BC+CF=15cm,∴x+3x+2x=15,解得:x=,∴AD=AB+BC+CD=2x+3x+4x=9x=cm21.【解答】解:(1)根据相反数的意义,可知“原点”到两点的距离分别为:(10+2)÷2=6,∴“原点”表示的数为:﹣2+6=4,故答案为:4;(2)①老鼠在移动过程中与点A之间的距离为:7﹣t,小猫在移动过程中与点A之间的距离为:12﹣2t;②根据题意,得:7﹣t=12﹣2t,解得:t=5,此时小猫逮到老鼠的位置是:5﹣5=0,即在原点,故答案为:原点.22.【解答】解:(1)当m=84时,则有:0.40a+(84﹣a)×0.40×70%=30.72,解得:a=60故a的值是60.(2)设该户六月份共用电x度.则0.40×60+(x﹣60)×0.40×70%=0.36x,解得:x=90(度).0.36x=0.36×90=32.40(元).故6月份共用电90度,应该交电费32.40元.23.【解答】解(1)①∵∠AOC=30°,∴∠BOC=180°﹣30°=150°.∵OP平分∠BOC,∴∠COP=∠BOC=75°.∴∠COQ=90°﹣75°=15°.∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°.所以t=15°÷3°=5秒;②是,理由如下:∵∠COQ=15°,∠AOQ=15°,∴OQ平分∠AOC;(2)∵OC平分∠POQ,∴∠COQ=∠POQ=45°.根据旋转的速度,设∠AOQ=3t,∠AOC=30°+6t,由∠AOC﹣∠AOQ=45°,可得30°+6t﹣3t=45°,解得t=5秒;当30°+6t﹣3t=225°,也符合条件,解得t=65所以5秒或65秒时OC平分∠POQ;(3)设经过t秒后OC平分∠POB.∵OC平分∠POB,∴∠BOC=∠BOP.∵∠AOQ+∠BOP=90°,∴∠BOP=90°﹣3t.又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,∴180°﹣30°﹣6t=(90°﹣3t),解得t=秒.。
2019-2020学年河南省信阳市罗山县七年级(下)期末数学试卷

2019-2020学年河南省信阳市罗山县七年级(下)期末数学试卷
一、选择题(每小题3分,共30分).
1.(3分)﹣8的立方根是()
A.2B.﹣2C.±2D.﹣2
2.(3分)下列各数中,是无理数的是()
A.B.C.D.3.1415
3.(3分)某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是()
A.100
B.被抽取的100名学生家长
C.被抽取的100名学生家长的意见
D.全校学生家长的意见
4.(3分)学校七年级学生做校服,校服分小号、中号、大号、特大号四种,随抽取若干名学生调查身高得如下统计分布表:
型号身高x/cm人数频率
小号145≤x<155200.2
中号155≤x<165a0.45
大号165≤x<17530b
特大号175≤x<18550.05
求a=(),b=()
A.45,0.3B.25,0.3C.45,0.03D.35,0.3
5.(3分)如图,直线a∥b,点B在a上,且AB⊥BC.若∠1=35°,那么∠2等于()
A.45°B.50°C.55°D.60°
6.(3分)如图,已知AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC=()。
罗山县七年级期末试卷数学

一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √16B. √-9C. πD. √22. 下列各式中,正确的是()A. a² = b²,则a = bB. a² = b²,则a = -bC. a² = b²,则a = ±bD. a² = b²,则a² = b²3. 若a,b,c成等差数列,且a+b+c=12,那么ab+bc+ca的值为()A. 36B. 18C. 9D. 04. 已知函数y=kx+b(k≠0),若点(1,3)和(2,5)都在该函数的图象上,那么k和b的值分别是()A. k=2,b=1B. k=2,b=3C. k=1,b=2D. k=1,b=35. 在△ABC中,∠A=60°,∠B=45°,那么∠C的度数是()A. 75°B. 90°C. 105°D. 120°6. 若等差数列{an}的前n项和为Sn,且S5=20,S10=60,那么公差d的值为()A. 1B. 2C. 3D. 47. 下列函数中,是奇函数的是()A. y=x²B. y=x³C. y=|x|D. y=x8. 已知一次函数y=kx+b(k≠0)的图象与x轴交于点A(-2,0),与y轴交于点B(0,3),那么该函数的解析式为()A. y=2x+3B. y=-2x+3C. y=3x-2D. y=-3x+29. 在平面直角坐标系中,点P(2,-3)关于原点的对称点是()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,3)10. 下列各组数中,能构成等比数列的是()A. 2,4,8,16B. 3,6,12,24C. 1,-2,4,-8D. 5,10,15,20二、填空题(每题4分,共40分)11. 若a,b,c成等差数列,且a+b+c=18,那么abc的值为______。
河南省信阳市2019年七年级上学期数学期末调研试卷(模拟卷二)

河南省信阳市2019年七年级上学期数学期末调研试卷(模拟卷二)一、选择题1.如图是某个几何体的展开图,该几何体是( )A .三棱柱B .圆锥C .四棱柱D .圆柱2.如图所示的图形绕虚线旋转一周,所形成的几何体是( )A .B .C .D .3.方程3x -1=14x -去分母后,正确的是( ) A.4x ﹣1=3x ﹣3B.4x ﹣1=3x+3C.4x ﹣12=3x ﹣3D.4x ﹣12=3x+3 4.下列各式中是一元一次方程的是( ) A.1x -1=0 B.3x 2=2 C.3x+y=1 D.0.3﹣0.2=﹣x5.关于x ,y 的代数式(−3kxy+3y )+(9xy −8x+1)中不含二次项,则k=A.4B.13C.3D.146.单项式4223ab c -的系数与次数分别是( ) A .2,5- B .2,5 C .2,63- D .2,73- 7.下列说法错误的是( )A .5y 4是四次单项式B .5是单项式C .243a b 的系数是13 D .3a 2+2a 2b ﹣4b 2是二次三项式 8.当x=4时,式子5(x +b)-10与bx +4的值相等,则b 的值为( ). A.-7B.-6C.6D.7 9.数轴A 、B 两点相距4个单位长度,且A ,B 两点表示的数的绝对值相等,那么A 、B 两点表示的数是( ) A .−4,4 B .−2,2 C .2,2 D .4,010.下列一组数:﹣8,0,﹣32,﹣(﹣5.7),其中负数的个数有( )A .1个B .2个C .3个D .4个11.下列说法正确的是( )A.最小的正整数是1B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.一个数的绝对值一定比0大12.甲从点A出发沿北偏东35°方向走到点B,乙从点A出发沿南偏西20°方向走到点C,则∠BAC等于()A.15°B.55°C.125°D.165°二、填空题13.如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=50°,则∠BOD的度数是__________.14.一个人从A点出发向北偏东30°方向走到B点,再从B点出发向南偏东15°方向走到C点,那么∠ABC等于________ 度15.如果a,b为定值,关于x的一次方程23kx a+﹣6x bk-=2,无论k为何值时,它的解总是1,则a+2b=_____.16.观察下列各式,并回答下列问题:===;……(1)写出第④个等式:________;(2)将你猜想到的规律用含自然数(1)n n…的代数式表示出来,并证明你的猜想.17.如图,两个正方形边长分别为2、a(a>2),图中阴影部分的面积为_____.18.将数轴上表示﹣1的点A向右移动5个单位长度,此时点A所对应的数为_____.19.若,则=__________.20.为数轴上两点,点表示的数为-20,点所表示的数为40.现有一只电子蚂蚁从点出发,以4个单位每秒的速度向左运动.当时,运动时间等于__________.三、解答题21.已知线段AB=8厘米,在直线AB上画线段BC=3厘米,求线段AC的长.22.某校班级篮球联赛中,每场比赛都要分胜负,每队胜1场得3分,负1场得1分,如果某班在第一轮的28场比赛中得48分,那么这个班胜了多少场?23.请从下列三类试题中选答一题,(满分10分)(1)小新出生时父亲28岁,现在父亲的年龄是小新的3倍,求现在小新的年龄.(2)两辆汽车从相距240 km 的两地同时出发相向而行,甲车的速度比乙车的速度的2倍慢20 /km h ,1.5h 后两车相遇,两车的速度各是多少?(3)用A4纸在某誉印社复印文件,复印页数不超过20页时,每页收费0.12元;复印页数超过20页时,超过部分每页收费0.09元,在图书馆复印同样的文件,每页收费0.1元.复印张数为多少时,两处收费相同?24.如图,将两块三角板的直角顶点重合.(1)写出以点C 为顶点的相等的角;(2)若∠ACB =150°,求∠DCE 的度数;(3)写出∠ACB 与∠DCE 之间所具有的数量关系.25.化简:35(24)b a a b +--26.(1)解方程:42832x x-+=-;(2)求代数式()222320.5 3.532x y x x y x y x --++--的值,其中25x =,37y =-. 27.100÷(﹣2)2﹣(﹣2)÷(﹣2)28.把下列各数填在相应的括号内:–19,2.3,–12,–0.92,35,0,–14.,0.563,π正数集合{ ……};负数集合{ ……};负分数集合{ ……};非正整数集合{ ……}【参考答案】***一、选择题13.8014.4515. SKIPIF 1 < 0解析:32-16.(1) SKIPIF 1 < 0 ;(2)猜想: SKIPIF 1 < 0解析:(1=;(2(n =+17.SKIPIF 1 < 0 解析:2122a a -+ 18.19.-20.10或30三、解答题 21.线段AC 的长是5厘米或11厘米.22.10场23.(1)14 (2)100 (3)60(1)设小新现在的年龄为x 岁,则父亲现在的年龄是3x 岁,由题意得,3x −x=28,解得:x=14;答:小新现在的年龄为14岁。
2019-2020学年河南省信阳市数学七年级(上)期末学业水平测试模拟试题

2019-2020学年河南省信阳市数学七年级(上)期末学业水平测试模拟试题一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A.3a+bB.3a-bC.a+3bD.2a+2b2.下列几何体中,是圆柱的为A .B .C .D .3.下列关于角的说法正确的个数是:( )①由两条射线组成的图形一定是角 ②角的边长,角越大 ③在角的一边的延长线取一点D ④角可以看作由一条射线绕着它的端点旋转而成的图形A .1B .2C .3D .44.如图,电子蚂蚁P 、Q 在边长为1个单位长度的正方形ABCD 的边上运动,电子蚂蚁P 从点A 出发,以个单位长度/秒的速度绕正方形作顺时针运动,电子蚂蚁Q 从点A 出发,以个单位长度/秒的速度绕正方形作逆时针运动,则它们第2017次相遇在( )A.点AB.点BC.点CD.点D5.某小组有m 人,计划做n 个“中国结”,若每人做5个,则可比计划多做9个;若每人做4个,则将比计划少做15个,现有下列四个方程:①5m+9=4m ﹣15;②= ③=;④5m ﹣9=4m+15.其中正确的是( )A.①②B.②④C.②③D.③④ 6.一件商品提价25%后发现销路不是很好,欲恢复原价,则应降价( )A .40%B .20%C .25%D .15% 7.已知有理数a 、b 、c 在数轴上的对应点如图所示,|a-b|+|b-c|-|c-a|的结果( )A.a-bB.b+cC.0D.a-c 8.下面运算中,结果正确的是( )A.()235a a =B.325a a a +=C.236a a a ⋅=D.331(0)a a a ÷=≠ 9.如图,两个正方形的面积分别为36,25,两阴影部分的面积分别为a ,b (a >b ),则a-b 等于( )A.9B.10C.11D.1210.下列运算正确的是( ).A.-(-3)2=-9 B.-|-3|=3 C.(-2)3=-6 D.(-2)3=811.若a与b互为相反数,则a﹣b等于()A.2a B.﹣2a C.0 D.﹣212.计算(﹣9)﹣(﹣3)的结果是()A.﹣12 B.﹣6 C.+6 D.12二、填空题13.如图,甲从A点出发向北偏东60°方向走到点C,乙从点A出发向南偏西25°方向走到点B,则∠BAC的度数是__________.14.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则2x+3y的值为____.15.某西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.当降至2.6元/千克出售时,每天可赢利_____元.16.若11xy=⎧⎨=-⎩是方程2kx y-=的一组解,则k=__________.17.若多项式A满足A+(2a2-b2)=3a2-2b2,则A=______.18.我们知道,正整数的和1+3+5+…+(2n﹣1)=n2,若把所有正偶数从小到大排列,并按如下规律分组:(2),(4,6,8),(10,12,14,16,18),(20,22,24,26,28,30,32),…,现有等式A m=(i,j)表示正偶数m是第i组第j个数(从左到右数),如A8=(2,3),则A2018=_____ 19.计算:3-|-5|=____________.20.a的相反数是,则a的倒数是___________。
2019-2020学年信阳市罗山县七年级下学期期末数学试卷(含答案解析)

2019-2020学年信阳市罗山县七年级下学期期末数学试卷一、选择题(本大题共10小题,共30.0分)1. 3.下列说法中,正确的是.A. 0.4的算术平方根是0.2B. 16的平方根是4C. 的立方根是±4D. 的立方根是2.√2,|−2|,√(−3)2,(−1)3四个数中最大的数是()A. √(−3)2B. |−2|C. √2D. (−1)33.为了解七年级4000名学生参加数学统测成绩的情况,从中随机抽取200名学生的数学成绩进行分析.下列说法正确的是()A. 样本容量是200名B. 每名学生是个体C. 200名学生的数学成绩是总体的一个样本D. 4000名学生是总体4.近年来,移动支付已成为主要支付方式之一.为了解某校800名学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:支付方式使用人数支付0<x≤500500<x≤1000x>1000金额(元)仅使用A支付18人9人3人仅使用B支付10人14人1人下面有四个推断:①从全校学生中随机抽取1人,该学生上个月仅使用A支付的概率为0.3;②从全校学生中随机抽取1人,该学生上个月A,B两种支付方式都使用的概率为0.45;③估计全校仅使用B支付的学生人数为200人;④这100名学生中,上个月仅使用A和仅使用B支付的学生支付金额的中位数为800元.其中合理推断的序号是()A. ①②B. ①③C. ①④D. ②③5. 如图,直线m//n ,若∠1=105°,则∠2的度数为( )A. 55°B. 60°C. 75°D. 105°6. 如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,其中一个三角板的斜边与纸条一边重合,则∠1的度数是( )A. 30°B. 40°C. 45°D. 50°7. 若点P(m,n)在第二象限,则点P(m 2,−n)在( )A. 第一象限B. 第一象限C. 第三象限D. 第四象限8. 两地相距280千米的水路,轮船顺水航行用了14小时,逆水航行用20小时,求轮船速度和水流的速度.设轮船的水流速度是x 千米/时,静水速度是y 千米/时,则可列方程组( )A. {14(x +y)=28020(x −y)=280 B. {14(x −y)=28020(x +y)=280 C. {14(y −x)=28020(x +y)=280D. {14(x +y)=28020(y −x)=2809. 一元一次不等式x +1>2的解在数轴上表示为( )A. B. C.D.10. 在平面直角坐标系中,点(20194,26)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题(本大题共5小题,共15.0分) 11. 化简:±√4= ______ .12. 如图,是一个运算程序的示意图,若开始输入x 的值为625,则第2020次输出的结果为______.13. 某校学生来自甲、乙、丙三个地区,其人数比为2:7:3,用扇形图表示其分布情况,则∠AOB = ______ .14. 代数式1−k 的值大于−1且不大于3,则k 的取值范围是______. 15. 已知直线a//b ,用一块含30°角的直角三角板按图中所示的方式放置,若∠1=25°,则∠2=______.三、解答题(本大题共8小题,共75.0分) 16. 计算下列各题:(1)√−643+√16(2)(−24)×(112−16+38) (3)−22÷23−(−0.5+1)217. 求不等式组{2x +5>13x −8≤10的整数解,并在数轴上表示出来.18. 下列问题分别适合用哪种方式进行调查? (1)工厂对准备出厂的一批轿车的刹车系统进行测试. (2)了解某市九年级全体学生的体育达标情况. (3)某质检部门调查某罐头厂生产的一批罐头的质量. (4)对某厂生产的摩托车头盔进行防撞击性能测试.19. △ABC 在方格纸中的位置如图所示,方格纸中每个小正方形的边长均为1.(1)将△ABC 向下平移3格,再向右平移2格,画出平移后的△A 1B 1C 1; (2)计算△A 1B 1C 1的面积.20. 如图,三角形ABC中,点D在AC上.(1)请你过点D做DE平行BC,交AB于E.(要求尺规画图,保留痕迹,不写做法)(2)如果点E在∠C的平分线上,∠C=44°,那么∠DEC=______.21. 用8张全等的小长方形纸片拼成了图①所示的大长方形,然后用这些纸片又拼成了图②所示的大正方形,但中间却多了一个面积为4cm2的小正方形的洞.求小长方形纸片的长与宽.22. 如图,AB//CD,∠AFE=140°,∠C=30°,求∠CEF的度数.23. 已知:如图,△ABC和△BDE都是等腰直角三角形,∠ACB=∠BDE=90°,点F是AE的中点,连接DF,CF.(1)如图1,点D,E分别在AB,BC边上,填空:CF与DF的数量关系是______,位置关系是______;(2)如图2,将图1中的△BDE绕B顺时针旋转45°得到图2,请判断(1)中CF与DF的数量关系和位置关系是否仍然成立,如果成立,请加以证明;如果不成立,请说明理由;(3)如图3,将图1中的△BDE绕B顺时针旋转90°得到图3,如果BD=2,AC=3√2,请直接写出CF的长.【答案与解析】1.答案:D解析:解答本题的关键是熟练掌握一个正数有两个平方根,且它们互为相反数,其中正的平方根叫它的算术平方根;负数没有平方根;正数、负数和0都有立方根.解:根据平方根、算术平方根、立方根的性质依次分析各选项即可作出判断.A.0.4的算术平方根是,本选项错误;B.16的平方根是±4,本选项错误;C.64的立方根是4,本选项错误;D.的立方根是,本选项正确;故选D.2.答案:A解析:解:因为|−2|=2,√(−3)2=3,(−1)3=−1,即−1<√2<2<3所以(−1)3<√2<|−2|<√(−3)2故选A.先化简|−2|、√(−3)2、(−1)3,再比较大小,最后得结论.本题考查了绝对值的化简、算术平方根的计算、立方的计算、实数的大小比较等知识点.化简并比较各实数的大小是解决本题的关键.3.答案:C解析:解:A.样本容量是200,故本选项不合题意;B.每名学生的数学成绩是个体,故本选项不合题意;C.200名学生的数学成绩是总体的一个样本,故本选项符合题意;D.4000名学生的数学成绩是总体,故本选项不合题意.根据总体、个体、样本、样本容量的定义即可判断.本题考查了总体、个体、样本、样本容量的定义,总体是我们把所要考察的对象的全体,个体是把组成总体的每一个考察对象,样本是从总体中取出的一部分个体叫做这个总体的一个样本;样本容量是一个样本包括的个体数量,样本容量没有单位.4.答案:B=0.3,解析:解:①从全校学生中随机抽取1人,该学生上个月仅使用A支付的概率估计为18+9+3100故①正确,=0.4,②从全校学生中随机抽取1人,该学生上个月A,B两种支付方式都使用的概率估计为100−5−55100故②错误,=200人,故③正确,③估计全校仅使用B支付的学生人数为=800×25100④这100名学生中,上个月仅使用A和仅使用B支付的学生支付金额的中位数无法确定,故④错误,故选:B.利用样本估计总体的思想一一判断即可解决问题.本题考查利用频率估计概率,样本估计总体等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.5.答案:C解析:解:∵m//n.∴∠1+∠2=180°.∴∠2=180°−105°=75°.故选:C.本题考查平行线的性质.本题考查了平行线的性质:两直线平行,同旁内角互补.6.答案:C解析:解:如图∴∠2=∠3=45°, ∴∠1=90°−∠2=45°. 故选:C .根据平行线的性质,即可得到∠2的度数,再根据角的和差关系即可得到∠1的度数. 本题考查了平行线的性质,解题时注意:两直线平行,内错角相等.7.答案:D解析:解:∵点P(m,n)在第二象限, ∴m <0,n >0, ∴m 2>0,−n <0, ∴点P(m 2,−n)在第四象限. 故选:D .平面坐标系中点的坐标特点为:第一象限(+,+),第二象限(−,+),第三象限(−,−),第四象限(−,+);根据此特点可知此题的答案.此题主要考查了点的坐标,正确理解点的坐标意义是解题关键.8.答案:D解析:解:设轮船的水流速度是x 千米/时,静水速度是y 千米/时, 根据题意得:{14(x +y)=28020(y −x)=280.故选:D .设轮船的水流速度是x 千米/时,静水速度是y 千米/时,根据路程=速度×时间结合轮船顺水航行用了14小时、逆水航行用20小时,即可得出关于x 、y 的二元一次方程组,此题得解.本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.9.答案:A解析:解:x +1>2, x >1,在数轴上表示为:,故选:A .先求出不等式的解集,再在数轴上表示出来即可.本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.10.答案:A>0,26>0,解析:解:∵20194,26)所在的象限是第一象限.∴在平面直角坐标系中,点(20194故选:A.,26)所在的在平面直角坐标系中,第一象限的点的横坐标大于0,纵坐标大于0,据此判断出点(20194象限是哪个即可.此题主要考查了点的坐标,以及点所在的象限的判断,要熟练掌握.11.答案:±2解析:解:±√4=±2.故答案为:±2.根据平方根,即可解答.本题考查了平方根,解决本题的关键是熟记平方根的定义.12.答案:1解析:本题考查了求代数式的值,能根据求出的结果得出规律是解此题的关键.依次求出每次输出的结果,根据结果得出规律,即可得出答案.x=125,解:当x=625时,15x=25,当x=125时,15x=5,当x=25时,15x=1,当x=5时,15当x=1时,x+4=5,x=1,当x=5时,15…依此类推,以5,1循环,(2020−2)÷2=1010,即输出的结果是1,故答案为1.13.答案:60°解析:解:∵某校学生来自甲、乙、丙三个地区,其人数比为2:7:3, ∴甲占总人数的22+7+3=16, ∴∠AOB =360°×16=60°.故答案为:60°.求出甲所占的百分比,进而可得出结论.本题考查的是扇形统计图,扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.14.答案:−2≤k <2解析:解:由已知可得{1−k >−11−k ≤3解不等式得−2≤k <2. 故填−2≤k <2.根据题意列出不等式组,再求解集.主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.答案:35°解析:解:过点B 作EF//a . ∵a//b , ∴EF//a//b .∴∠1=∠ABF ,∠2=∠FBC . ∵△ABC 是含30°角的直角三角形, ∴∠ABC =60°. ∵∠ABF +∠CBF =60°, ∴∠2=60°−25=35°. 故答案为:35°.过点B 作EF//a.利用平行线的性质,把∠1、∠2集中在∠ABC 上,利用角的和差求值即可. 本题考查了平行线的性质及角的和差关系.掌握平行线的性质是解决本题的关键.。
河南省信阳市罗山县2023-2024学年七年级上学期期末质量监测数学试卷(含解析)

河南省信阳市罗山县2023-2024学年七年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.中国人很早就开始使用负数,最早记载负数的是我国古代的数学著作《九章算数》,在算筹中规定“正算赤,负算黑”.那么的相反数是( )A.B.2023C.D.2.在-25%,0.0001,0,,中,负数有( )A.1个B.2个C.3个D.4个3.2022年10月12日下午,“天宫课堂”第三课在中国空间站开讲,神舟十四号飞行乘组三位航天员陈冬、刘洋、蔡旭哲进行授课,央视新闻抖音号进行全程直播,某一时刻观看人数达到421.1万,421.1万用科学记数法可以表示为( )A.B.C.D.4.若单项式与单项式是同类项,则的值为()A.2B.C.4D.5.若2(a+3)的值与﹣4互为相反数,则a的值为()A.﹣5B.﹣1C.D.6.《九章算术》中有这样一道数学问题,原文如下:清明游园,共坐八船,大船满六,小船满四,三十八学子,满船坐观.请问客家,大小几船?其大意为:清明时节出去游园,所有人共坐了8只船,大船每只坐6人,小船每只坐4人,38人刚好坐满,问:大小船各有几只?若设有只小船,则可列方程为()A.B.C.D.7.如所示各图中,∠1与∠2是对顶角的是()A.B.C.D.8.如图,OA 的方向是北偏东15°,OC 的方向是北偏西40°,若∠AOC=∠AOB,则OB的方向是()A.北偏东70°B.东偏北25°C.北偏东50°D.东偏北15°9.如图所示,正方体的展开图为()A.B.C.D.10.已知关于的一元一次方程的解为,那么关于的一元一次方程的解为( )A.B.C.D.二、填空题11.写出一个负数,使这个数的绝对值小于3,这个负数可以是.12.已知(m﹣3)﹣3m=0是关于x的一元一次方程,则m的值为.13.已知,则.(填“”、“”或“”)14.幻方是相当古老的数学问题,我国古代的《洛书》中记载了最早的幻方---九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则的值为.15.将长为,宽为的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为,则张白纸粘合后的总长度为.三、解答题16.计算:(1)(2)17.已知:,求的值.18.如图,两摞规格完全相同的课本整齐地叠放在讲台上.请根据图中所给出的数据信息,回答下列问题:(1)每本课本的厚度为___________cm;(2)若有一摞上述规格的课本x本,整齐地叠放在讲台上,请用含x的代数式表示出这一摞课本的顶部距离地面的高度;(3)当时,若从中取走14本,求余下的课本的顶部距离地面的高度.19.某校举行了以“珍爱生命、远离水患”为主题的知识竞赛.下表是善思小组6位同学参加此次竞赛的成绩(以100分为标准,超过100分记为“+”,不足100分记为“-”),请根据表中信息解决下列问题.编号123456知识竞赛成绩/分(1)求这6位同学本次竞赛的最高得分.(2)最高分超出最低分多少分?(3)求这6位同学本次竞赛成绩的总分.20.如图,点,是线段上两点,点为线段的中点,,.(1)求的长;(2)若,求的长.21.如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着,,1,9,且任意相邻4个台阶上数的和都相等.尝试:(1)前4个台阶上数的和是多少?(2)第5个台阶上的数是多少?应用(3)求从下到上前31个台阶上数的和.发现(4)试用含(为正整数)的式子表示出数“”所在的台阶数.22.罗山县某超市对出售的,两种商品开展春节促销活动,活动方案有如下两种:(同一种商品不可同时参与两种活动)商品标价(单位:元)120150方案一每件商品出售价格按标价降价按标价降价方案二若所购商品达到或超过101件(不同商品可累计)时,每件商品按标价降价 2后出售(1)某单位购买商品50件,商品40件,共花费9600元,试求的值.(2)在(1)的条件下,若某单位购买商品件(为正整数),购买商品的件数比商品件数的2倍还多1件,且总数超过101件,请问该单位该如何选择才能获得最大优惠?请说明理由.23.在数学实践活动课上,“卓越”小组准备研究如下问题:如图,为直尺的一条边,四边形为一正方形纸板(、、、均为直角)(1)【操作发现】如图①小组成员小方把正方形的一条边与重合放置,刘老师在与同学们交流研讨时又做出了的平分线,交正方形的边于点.则此时的度数为______ ;与的度数之间的关系为______ .(2)【问题探究】受小方同学的启发,小组成员小丽将正方形纸板按如图②放置,若此时记的度数为,其他条件不变,请帮小丽同学探究:与的度数之间的关系是否发生改变,并说明理由.(3)【拓展延伸】组内其他同学也都继续探索,将正方形按如图③放置,刘老师同样做出了的平分线,请直接写出与的度数之间的关系.参考答案1.B解析:解:的相反数是2023,故选:B.2.B解析:解:﹣(﹣5)=5,﹣||,∴在﹣25%,0.0001,0,﹣(﹣5),﹣||中,负数有﹣25%,﹣||,共2个.故选:B.3.B解析:解:421.1万==.故选:B.4.C解析:解:单项式与单项式是同类项,,解得:,,,故选:C.5.B解析:解:2(a+3)的值与﹣4互为相反数,解得故选B6.A解析:解:设有只小船,则大船有只,根据题意,得,故选:A.7.B解析:解:A.∠1与∠2没有公共顶点,不是对顶角;B.∠1与∠2有公共顶点,并且两边互为反向延长线,是对顶角;C.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角;D.∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角.故选:B.8.A解析:∵OA的方向是北偏东15°,OC的方向是北偏西40°,∴∠AOC=15°+40°=55°.∵∠AOC=∠AOB,∴∠AOB=55°,15°+55°=70°,故OB的方向是北偏东70°.故选A.9.D解析:解:根据正方体表面展开图的“相对的面”的判断方法可知,“不等号”与“等号”不是相对的面,故选项A不合题意;“当“圆圈”在前面时,“等号”在右面时,上面的“不等号”的方向与题意不一致,故选项B不合题意;“等号”方向与“圆圈”与题意不一致,故选项C不合题意;通过折叠可得,选项A符合题意.故选:D.10.D解析:∵,,∴,∵,∴,故选D.11.(不唯一)解析:解:一个负数的绝对值小于3,这个负数大于且小于0,这个负数可能是、、、故答案为:(答案不唯一).12.解析:解:∵(m﹣3)﹣3m=0是关于x的一元一次方程,∴且解得故答案为:13.解析:解:∵,,,∴.故答案为:.14.9解析:设第一方格数字为x,最后一格数字为y,如下图所示:由已知得:x+7+2=15,故x=6;因为x+5+y=15,将x=6代入求得y=4;又因为2+m+y=15,将y=4代入求得m=9;故答案为:9.15.解析:一张白纸为0,两张白纸为40×2-5×1;三张白纸为40×3-5×2;……N张白纸为40n-5(n-1)=故答案为:.16.(1)(2)解析:(1).(2).17.,7解析:解:原式∵,∴,,∴,,∴原式.18.(1)(2)高出地面的距离为;(3)余下的课本的顶部距离地面的高度106cm.解析:(1)解:书的厚度为:;故答案为:;(2)解:∵x本书的高度为,课桌的高度为,∴高出地面的距离为;(3)解:当时,根据题意得.答:余下的课本的顶部距离地面的高度106cm.19.(1)这6位同学本次竞赛的最高得分是150分(2)最高分超出最低分80分(3)这6位同学本次竞赛成绩的总分是618分解析:(1)解:∵∴编号为6的同学成绩最高,为(分).答:这6位同学本次竞赛的最高得分是150分;(2)解:∵∴编号为2的同学成绩最低,为(分),∴(分).答:最高分超出最低分80分;(3)解:(分).答:这6位同学本次竞赛成绩的总分是618分20.(1)(2)解析:(1)解:点为线段的中点,,,,;(2)点为线段的中点,,,,,,.21.(1);(2);(3);(4)数“1”所在的台阶数为解析:解:(1)前4个台阶上数的和是;(2)因为任意相邻4个台阶上数的和都相等,所以第5个台阶上的数与第1个台阶上的数相同,即(3)根据题意,得台阶上的数每4个一循环,且循环的4个数的和为3.因为,所以从下到上前31个台阶上数的和为;(4)数“1”所在的台阶数为.22.(1)(2)选方案二优惠更大,理由见解析解析:(1)解:由题意,得.整理,得.则,所以.(2)当总数达到或超过101时,方案一需付款:.方案二需付款:因为,所以选方案二优惠更大.23.(1),(2)不变,理由见解析(3)解析:(1)解:如图,四边形为正方形,,,平分,,;故答案为:,;(2)解:与的度数之间的关系没有发生改变.理由如下:如图,,,平分,,,即;(3)解:如图,的平分线为,,,,,.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019学年河南省信阳市罗山县七年级上学期期末数学
试卷【含答案及解析】
姓名___________ 班级____________ 分数__________
一、选择题
1. (2015秋•罗山县期末)下列4个数中:(﹣1)2016,|﹣2|,π,﹣32,其中正数的个数有()个.
A.1 B.2 C.3 D.4
2. (2015•潍坊)2015年5月17日是第25个全国助残日,今年全国助残日的主题是“关注孤独症儿童,走向美好未来”.第二次全国残疾人抽样调查结果显示,我国0~6岁精神残疾儿童约为11.1万人.11.1万用科学记数法表示为()
A.1.11×104 B.11.1×104 C.1.11×105 D.1.11×106
3. (2015秋•罗山县期末)下列关于单项式的说法中,正确的是()
A.系数是3,次数是2
B.系数是,次数是2
C.系数是,次数是3
D.系数是,次数是3
4. (2015秋•罗山县期末)在解方程﹣=1时,去分母正确的是()
A.3(x﹣1)﹣2(2+3x)=1
B.3(x﹣1)+2(2x+3)=1
C.3(x﹣1)+2(2+3x)=6
D.3(x﹣1)﹣2(2x+3)=6
5. (2015秋•罗山县期末)有理数a、b在数轴上的位置如图所示,则下列各式错误的是()
A.b<0<a B.|b|>|a| C.ab<0 D.a+b>0
6. (2015秋•罗山县期末)以下3个说法中:
①在同一直线上的4点A、B、C、D只能表示5条不同的线段;
②经过两点有一条直线,并且只有一条直线;
③同一个锐角的补角一定大于它的余角.
说法都正确的结论是()
A.②③ B.③ C.①② D.①
7. (2012•孝感)已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β﹣∠γ
的值等于()
A.45° B.60° C.90° D.180°
8. (2015秋•罗山县期末)某商场把一个双肩背书包按进价提高50%标价,然后再按八折
出售,这样商场每卖出一个书包就可赢利8元.设每个双肩背书包的进价是x元,根据题
意列一元一次方程,正确的是()
A.(1+50%)x•80%﹣x=8
B.50%x•80%﹣x=8
C.(1+50%)x•80%=8
D.(1+50%)x﹣x=8
二、填空题
9. (2008•莆田)的倒数是.
10. (2015秋•单县期末)己知关于x的方程3a﹣x=+3的解为2,则a值是.
11. (2015秋•罗山县期末)57.32°= ° ′ ″.
12. (2015秋•罗山县期末)如图,直线AB、CD相交于点O,∠DOF=90°,OF平分∠AOE,若∠BOD=28°,则∠EOF的度数为.
13. (2015秋•罗山县期末)若a2n+1b2与5a3n﹣2b2是同类项,则n= .
14. (2015秋•罗山县期末)如果关于x的方程2x+1=3和方程的解相同,那么k的值为.
15. (2010•衡阳)如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…,第n(n是正整数)个图案中由个基础图形组成.
三、计算题
16. (2015秋•罗山县期末)计算:
(1)(﹣3)2÷2÷(﹣)+4+22×(﹣)
(2)2﹣(﹣+)×36.
四、解答题
17. (2015秋•罗山县期末)已知关于x的方程(1﹣x)=1+a的解与方程= +2a的解互为相反数,求x与a的值.
18. (2015秋•罗山县期末)化简后再求值:x﹣2(3y2﹣2x)﹣4(2x﹣y2),其中|x﹣2|+(y+1)2=0.
19. (2015秋•罗山县期末)如图,D是AB的中点,E是BC的中点,BE=AC=2cm,求线段DE的长.
20. (2015秋•罗山县期末)小购买了一套经济适用房,地面结构如图所示(墙体厚度、地砖间隙都忽略不计,单位:米),他计划给卧室铺上木地板,其余房间都铺上地砖.根据图中的数据,解答下列问题:(结果用含x、y的代数式表示)
(1)求整套住房需要铺多少平方米的地砖?
(2)求厅的面积比其余房间的总面积多多少平方米?
21. (2015秋•罗山县期末)如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,
∠DOE=90°
(1)请你数一数,图中有多少个小于平角的角;
(2)求出∠BOD的度数;
(3)请通过计算说明OE是否平分∠BOC.
22. (2015秋•罗山县期末)随着人们的生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如表),以50km
为标准,多于50km的记为“+”,不足50km的记为“﹣”,刚好50km的记为“0”.
(1)请求出这7天中平均每天行驶多少千米?
(2)若每行驶100km需用汽油6升,汽油每升5.5元,试估计小明家一个月(按30天计)的汽油费用是多少元?
23. (2015秋•罗山县期末)为更好的参与“阳光体育”大课间活动,某班将买一些乒乓
球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的兵兵球和乒乓球拍.兵乓球拍毎副定价30元,兵兵球毎盒定价5元,两店促销活动如下:甲店毎买一副
球拍赠一盒乒乓球,乙店两种商品均按定价的9折优惠.
(1)若该班需球拍5副,乒乓球x盒(不小于5盒),请用含x的代数式表示此时甲店
和乙店分别所需费用.
(2)当购买乒乓球多少盒时,两种优惠办法付款一样?
(3)当购买10副球拍30盒乒乓球时,请你去办这件事,你打算去如何购买才能最省钱?需要花费多少元?
参考答案及解析
第1题【答案】
第2题【答案】
第3题【答案】
第4题【答案】
第5题【答案】
第7题【答案】
第8题【答案】
第10题【答案】
第11题【答案】
第13题【答案】
第14题【答案】
第15题【答案】
第16题【答案】
第17题【答案】
第18题【答案】
第19题【答案】
第20题【答案】
第21题【答案】
第22题【答案】
第23题【答案】。