流水行船问题

合集下载

流水行船问题及答案

流水行船问题及答案

流水行船问题顺水速度=船速+水速逆水速度=船速-水速例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港到达乙港的距离为240千米,船从甲港到乙港为顺风,求船往返甲港和乙港所需要的时间?顺水速度:13+3=16千米/小时逆水速度:13-3=10千米/小时返甲港所需时间:240÷10=24小时返乙港所需时间:240÷16=15小时1、一艘轮船在静水中航行,每小时行15千米,水流的速度为每小时3千米。

这艘轮船顺水航行270千米到达目的地,用了几个小时?如果按原航道返回,需要几小时?顺水速度:15+3=18千米/小时逆水速度:15-3=12千米/小时到达目的地用时:270÷18=15小时按原航道返回需用时:270÷12=22.5小时例题2:甲乙两码头相距144千米,一只船从甲码头顺水航行8小时到达乙码头,已知船在静水中每小时行驶15千米,问这船返回甲码头需几小时?顺水速度:144÷8=18千米/小时水速:18-15=3千米/小时逆水速度:15-3=12千米/小时返回甲码头需用时:144÷12=12小时1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?顺水速度:560÷20=28千米/小时水速:28-24=4千米/小时逆水速度:24-4=20千米/小时返回甲码头需用时:560÷20=28小时2、两个码头相距360千米,一艘汽艇顺水行完全程需9小时,这条河水流速度为每小时5千米,求这艘汽艇逆水行完全程需几小时?顺水速度:360÷9=40千米/小时船速:40-5=35千米/小时逆水速度:35-5=30千米/小时逆水行完全程需用时:360÷30=12小时例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。

流水行船问题的公式和例题(完整版)

流水行船问题的公式和例题(完整版)

流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。

在小学数学中涉及到的题目,一般是匀速运动的问题。

这类问题的主要特点是,水速在船逆行和顺行中的作用不同。

流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。

公式( 1 )表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。

这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。

公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。

根据加减互为逆运算的原理,由公式( 1 )可得:水速=顺水速度- 船速(3)船速=顺水速度- 水速(4)由公式(2)可得:水速=船速- 逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。

另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。

因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度- 逆水速度)÷ 2 (8)*例1 一只渔船顺水行25 千米,用了5小时,水流的速度是每小时 1 千米。

此船在静水中的速度是多少(适于高年级程度)解:此船的顺水速度是:25÷ 5=5(千米/小时)5-1=4(千米/小时)综合算式:25÷ 5-1=4(千米/小时)答:此船在静水中每小时行 4 千米。

* 例 2 一只渔船在静水中每小时航行 4 千米,逆水4 小时航行12 千米。

水流的速度是每小时多少千米(适于高年级程度)解:此船在逆水中的速度是:12÷ 4=3(千米/小时)因为逆水速度=船速- 水速,所以水速=船速-逆水速度,即:4-3=1 (千米/ 小时)答:水流速度是每小时 1 千米。

小升初数学专题 流水行船问题

小升初数学专题 流水行船问题

1.一条轮船往返于A、B两地之间,由A地到B地是顺水航行,由B地到A地是逆水航行.已知船在静水中的速度是每小时20千米,由A地到B地用了6小时,由B地到A地所用的时间是由A 地到B地所用时间的1.5倍,求水流速度.解:设水流速度是每小时x千米(20+x)×6=(20-x)×6×1.5120+6x=180-9x15x=60x=4答:水流速度是每小时4千米.2.水流速度是每小时15千米.现在有船顺水而行,8小时行480千米.若逆水行360千米需几小时?解:顺水船速:480÷8=60(千米)静水中的速度:60-15=45(千米)逆水船速:45-15=30(千米)逆水时间:360÷30=12(小时)答:逆水行360千米需12小时3.有一船行驶于120千米长的河中,逆行需10小时,顺行要6小时,求船速和水速。

解:逆流速:120÷10=12(千米/时)顺流速:120÷6=12(千米/时)船速:(20+12)÷2=16(千米/时)水速:(20—12)÷2=4(千米/时)答:船速是每小时行16千米,水速是每小时行4千米。

4.一只轮船从甲码头开往乙码头,逆流每小时行15千米,返回时顺流而下用了18小时.已知这段航道的水流是每小时3千米,求甲、乙两个码头间水路长多少千米?解:(15+3×2)×18=21×18=378(千米)答:甲乙两港相距378千米.5.一艘船在河里航行,顺流而下每小时行16千米.已知这艘船下行3小时恰好与上行4小时所行的路程相等,求静水船速和水速?解:逆水速度:16×3÷4=12(千米/时)则船速:(12+16)÷2=14(千米/时)水速:(16-12)÷2=2(千米/时)答:船速为14千米/时;水速为2千米/时.6.一海轮在海中航行.顺风每小时行45千米,逆风每小时行31千米.求这艘海轮每小时的划速和风速各是多少?解:(45+31)÷2=76÷2=38(千米/小时)45-38=7(千米/小时)答:这艘海轮每小时的划速是38千米,风速是每小时7千米.7.轮船以同一速度往返于两码头之间.它顺流而下,行了8小时;逆流而上,行了10小时.如果水流速度是每小时3千米,求两码头之间的距离.解:(3×2)÷(18-110)=6÷1 40=240(千米)答:两码头之间的距离是240千米.8.有甲、乙两船,甲船和漂流物同时由河西向东而行,乙船也同时从河东向西而行。

小学奥数-流水行船问题的要点及解题技巧

小学奥数-流水行船问题的要点及解题技巧

小学奥数-流水行船问题的要点及解题技巧1、什么叫流水行船问题船在水中航行时,除了自身的速度外,还受到水流的影响,在这种情况下计算船只的航行速度、时间和行程,研究水流速度与船只自身速度的相互作用问题,叫作流水行船问题。

2、流水行船问题中有哪三个基本量?流水行船问题是行程问题中的一种,因此行程问题中的速度、时间、路程三个基本量之间的关系在这里也当然适用.3、流水行船问题中的三个基本量之间有何关系?流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。

根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速。

由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速。

这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。

另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。

船在水中的相遇及追及问题都与水速没有关系:相遇:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速。

追及:甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速。

或:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速。

小学奥数流水行船问题的要点及解题技巧例题精讲:例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港顺流而下到达乙港用了15小时,从乙港返回甲港需要多少小时?【思路导航】根据条件,用船在静水中的速度+水速=顺水速度,知道了顺水速度和顺水时间,可以求出甲乙两港之间的路程。

流水行船问题的公式和例题含答案

流水行船问题的公式和例题含答案

流水行船问题的公式和例题含答案LEKIBM standardization office【IBM5AB- LEKIBMK08- LEKIBM2C】流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。

在小学数学中涉及到的题目,一般是匀速运动的问题。

这类问题的主要特点是,水速在船逆行和顺行中的作用不同。

流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。

公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。

这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。

公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。

根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。

另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。

因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。

此船在静水中的速度是多少?解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。

5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。

流水行船问题公式

流水行船问题公式

流水行船问题公式
流水行船问题公式:
顺水
(船速+水速)×顺水时间=顺水行程
船速+水速=顺水速度
逆水
(船速-水速)×逆水时间=逆水行程
船速-水速=逆水速度
静水
(顺水速度+逆水速度)÷2=静水速度(船速)
水速
(顺水速度-逆水速度)÷2=水速
流水行船问题:
船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。

船本身有动力,即使水不流动,船也有自己的速度,但在流动的水中,或者受到流水的推动,或者受到流水的顶逆,使船在流水中的速度发生变化,而竹筏等没有速度,它的速度就是水的速度。

流水行船问题应用题

流水行船问题应用题

流水行船问题应用题以下是一些涉及流水行船问题的应用题,每个问题都附有答案:1.一艘船顺流而行,每小时可以行驶20公里。

如果船顺流行驶4小时,船行了多远?答案:船顺流行驶80公里。

2.另一艘船逆流而行,每小时可以行驶15公里。

如果船逆流行驶3小时,船行了多远?答案:船逆流行驶了45公里。

3.一艘船顺流行驶8小时,总共行驶了160公里。

每小时船的速度是多少?答案:船的速度是20公里/小时。

4.一艘船逆流行驶5小时,总共行驶了75公里。

每小时船的速度是多少?答案:船的速度是15公里/小时。

5.两艘船同时出发,一艘顺流每小时行驶25公里,另一艘逆流每小时行驶20公里。

如果它们同时出发后2小时相遇,两艘船之间的距离是多少?答案:两艘船之间的距离是90公里。

6.一艘船在静水中的速度是18公里/小时,如果船逆流行驶6小时,总共行驶了72公里。

逆流的速度是多少?答案:逆流的速度是12公里/小时。

7.一艘船逆流行驶9小时,总共行驶了135公里。

逆流的速度是15公里/小时,如果船在静水中行驶,船的速度是多少?答案:船在静水中的速度是24公里/小时。

8.一艘船逆流行驶4小时,总共行驶了60公里。

逆流的速度是15公里/小时,如果船在静水中行驶,船的速度是多少?答案:船在静水中的速度是20公里/小时。

9.一艘船逆流行驶7小时,总共行驶了98公里。

逆流的速度是14公里/小时,如果船在静水中行驶,船的速度是多少?答案:船在静水中的速度是21公里/小时。

10.两艘船同时出发,一艘逆流每小时行驶18公里,另一艘顺流每小时行驶24公里。

如果它们同时出发后3小时相遇,两艘船之间的距离是多少?答案:两艘船之间的距离是90公里。

这些问题旨在帮助学生应用流水行船的概念,并计算船在不同条件下的行驶距离和速度。

流水行船问题的公式和例题(完整版)

流水行船问题的公式和例题(完整版)

流水行船问题‎的公式和例题‎流水问题是研‎究船在流水中‎的行程问题,因此,又叫行船问题‎。

在小学数学中‎涉及到的题目‎,一般是匀速运‎动的问题。

这类问题的主‎要特点是,水速在船逆行‎和顺行中的作‎用不同。

流水问题有如‎下两个基本公‎式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指‎船顺水航行时‎单位时间里所‎行的路程;船速是指船本‎身的速度,也就是船在静‎水中单位时间‎里所行的路程‎;水速是指水在‎单位时间里流‎过的路程。

公式(1)表明,船顺水航行时‎的速度等于它‎在静水中的速‎度与水流速度‎之和。

这是因为顺水‎时,船一方面按自‎己在静水中的‎速度在水面上‎行进,同时这艘船又‎在按着水的流‎动速度前进,因此船相对地‎面的实际速度‎等于船速与水‎速之和。

公式(2)表明,船逆水航行时‎的速度等于船‎在静水中的速‎度与水流速度‎之差。

根据加减互为‎逆运算的原理‎,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船‎在静水中的速‎度、船的实际速度‎和水速这三者‎中的任意两个‎,就可以求出第‎三个。

另外,已知某船的逆‎水速度和顺水‎速度,还可以求出船‎速和水速。

因为顺水速度‎就是船速与水‎速之和,逆水速度就是‎船速与水速之‎差,根据和差问题‎的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1一只渔船顺水‎行25千米,用了5小时,水流的速度是‎每小时1千米‎。

此船在静水中‎的速度是多少‎?(适于高年级程‎度)解:此船的顺水速‎度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中‎的速度是“顺水速度-水速”。

5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中‎每小时行4千‎米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【例4】 甲、乙两港相距 360千米,一艘轮船从甲港 到乙港,顺水航行 15小时到达,从乙港返回甲港, 逆水航行20小时到达。现在有一艘机帆船,船速是每 小时12千米,它往返两港需要多少小时?
分析:有路程和顺水时间、逆水时间能求水速。
360÷15=24(千米/时)…顺水速度 360÷20=18(千米/时)…逆水速度 (24-18)÷2=3(千米/时)…水速 360÷(12+3)=24(小时)…顺水时间 360÷(12-3)=40(小时)…逆水时间 24+40=64(小时) 答:往返两港需要64小时。
谢谢
【例3】 一只轮船在静水中的速度是每小时21千米,船从甲 城开出逆水航行了8小时,到达相距144千米的乙城。这只轮 船从乙城返回甲城需多少小时? 分析:已知路程和逆水时间能求逆水速度,有逆水速 和船速能求水速。 逆水速度:144÷8=18(千米/时) 水速:21-18=3(千米/时) 顺水速度:21+3=24(千米/时) 顺水时间:144÷24=6(小时) 答:这只轮船从乙城返回甲城需要6小时
例3、甲、乙两船的静水船速分别是每小 时24千米和每小时32千米。两船从相距 336千米的两港同时出发,相向而行,几 小时相遇?如同向而行,甲船在前,乙船 在后,几小时后乙船可追上甲船?
例4、甲、乙两船从同一条河的相距98千 米的上、下两港同时出发,若相向而行, 则2小时相遇;若同向而行,则14小时后 乙追上甲。求甲乙两船在静水中的速度各 是多少?
【例6】 一只小船,第一次顺流航行56千 米,逆流航行20千米,共用12小时;第二 次用同样的时间,顺流航行40千米,逆流 航行28千米。求这只小船在静水中的速度。
(三)
1、甲、乙之间的水路是234千米,一只船从甲港到乙港需9 小时,从乙港返回甲港需13小时,问船速和水速各为每小时 多少千米? 解:从甲到乙顺水速度:234÷9=26(千米/小时)。 从乙到甲逆水速度:234÷13=18(千米/小时)。 船速是:(26+18)÷2=22(千米/小时)。 水速是:(26-18)÷2=4(千米/小时)。 答:船速每小时22千米,水速每小时4千米。
静水船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2
例1、某船在静水中的速度为每小时15千米, 它从上游甲地开到下游乙地共用了8小时, 水速为每小时3千米,该船从乙地返回甲地 需要多少小时?
例2、某船从甲地顺流到乙地,航行速度为 32千米/时,水流速度4千米/时,2.5天到达, 此船从乙地返回甲地需多长时间?
例3、一架飞机往返于A、B两市之间,两 市相距3600千米,从A市到B市顺风,用时 3小时,从B市返回A市逆风,用时5小时, 求飞机的速度和风速?
例4 、某船往返于两码头之间,它顺流而 下需行5小时,逆流而上需行10小时,如 果水流的速度为3千米/时,求两码头之间 的距离?
例5 、一架飞机带油料最多可以用9个小 时,飞机去时顺风,每小时可以飞1500千 米,返回时逆风,每小时可以飞1200千米。 问这架飞机最多可以飞出多少千米就需要 返回?
流水行船问题的基本数量关系式
顺水速度=静水船速+水速
水速=顺水速度-静水船速
静水船速=顺水速度-水速
逆水速度=静水船速—水速
水速=静水船速-逆水速度
静水船速=逆水速度+水速
船在河中航行时千米,水速每小时( ) 千米。
顺水速度 逆水速度 (12+6)÷2=9(千米/时)…船 速 (12-6)÷2=3(千米/时)…水速 静水船速+水速 静水船速-水速
(一)
流水问题知多少?
静水行船
顺水行船
逆水行船
流水行船中的速度
静水船速:船在静水中航行的速度,即 船本身划行的速度。 顺水速度:当船航行方向与水流方向一致 时的速度,即顺水行船的速度。 逆水速度:当船航行方向与水流方向相反 时的速度,即逆水行船的速度。 水速:水流动的速度,即没有外力的作 用水中漂浮的速度。
(二)
例1、小张租一条小船向上游划去,途中 不慎将草帽掉入水中,当他发现并掉过船 头,草帽与船已相距2千米,已知小船的 速度是每小时4千米,水流速度是每小时1 千米。那么他追上草帽需多少时间?
例2、甲、乙两船的静水速度分别为22千 米每小时、18千米每小时,两船先后自港 口顺水开出,乙比甲早出发2小时,若水 流速度是每小时4千米,问甲开出后几小 时可追上乙?
4、一只船在河里航行,顺流而下每小时行18千米.已知这只船 下行2小时恰好与上行3小时所行的路程相等.求船速和水速。
5、两个码头相距352千米,一船顺流而下,行完全程需要11小 时.逆流而上,行完全程需要16小时,求这条河水流速度。
6、A、B两码头间河流长为90千米,甲、乙两船分别从A、B码 头同时启航.如果相向而行3小时相遇,如果同向而行15小时甲 船追上乙船,求两船在静水中的速度。
【例5】 一只船在静水中每小时航行20千米, 在水流速度为每小时4千米的江中,往返甲、乙 两码头共用了12.5小时,求甲、乙两码头间距 离。
20+4=24(千米/时)……顺水速度 20-4=16(千米/时) ……逆水速度 解:设顺水用x小时,则逆水需要(12.5-x)小时 24x=16×(12.5-x) 24x=200-16x 40x=200 x=5 24×5=120(千米)答:甲、乙两码头 相距120米。
相关文档
最新文档