脉冲波形的产生和整形
单元6脉冲波形的产生与整形

使用时间常数较大的RC电路、数字逻辑门电路或可编程逻辑阵列等。
方法
用于定时、计数、分频等领域,如产生精确的时间延迟、控制脉冲宽度调制等。
应用
脉冲的相位整形
定义
通过改变脉冲的相位,使其满足特定要求的过程。
方法
使用移相器、延迟线或数字信号处理技术等。
用于信号合成、解调、多路复用等领域,如产生特定相位的参考信号、实现相位调制等。
脉冲波形的应用领域
通信 控制 检测 医学成像 脉冲波形在数字通信中用于传输数据,如脉码调制(PCM)和脉冲编码调制(PCM)。 脉冲波形用于检测各种物理量,如光、温度、压力和位移等。 脉冲波形用于控制各种电子设备和系统的开关状态,如电机控制和自动控制系统。 脉冲波形用于产生X射线和超声波等医学成像技术。
章节三
脉冲波形的整形
CHAPTER ONE
脉冲的幅度整形
通过改变脉冲的幅度,使其满足特定要求的过程。
使用电子器件(如比较器、运放等)或数字信号处理技术(如窗口函数)进行幅度调整。
用于信号处理、通信、测量等领域,如调整信号的功率、提高信噪比等。
脉冲的宽度整形
通过改变脉冲的宽度,使其满足特定要求的过程。
UNDERWORK
6
单元6脉冲波形产生与整形的实验与实践
WORKHARVEST
章节一
引言
CHAPTER ONE
脉冲波形的基本概念
脉冲波形是指一种短暂的、非连续的电信号,通常具有快速上升和下降的特性。 脉冲波形可以由各种电子和数字电路产生,用于控制、检测和通信等领域。 脉冲波形的基本参数包括脉冲宽度、脉冲幅度和脉冲频率等。
单元6脉冲波形的产生与整形
CLICK HERE TO ADD A TITLE
07脉冲波形的产生和整形

VI VO1 VO
使电路迅速跳变到VO VOH
VA
VTH
R1
R2 R2
VI
VI
VT
(1
R1 R2
)VTH
当VI 1时,VO 1。
当VI 至VA VTH时,进入传输特性的放大区,故
VA VO1 VO
使电路迅速跳变到VO VOL
VA
VTH
VDD
(VDD
VT )
7.2.2施密特触发器的应用 用于波形变换
7.2.2施密特触发器的应用 用于鉴幅
7.2.2 施密特触发器的应用 用于脉冲整形
7.2.3 用施密特触发器构成的多谐振荡器
T
T1
T2
RC ln VDD VDD
VT VT
RC ln VT VT
调节R和C的大小,可以改变振荡周期
输出脉冲占空比可调
同样,若触摸金属片A时,人体感应电信号经R4、 R5加至T1基极,也能使T1导通,触发555,达到上述 效果。
练习:救护车报警音响电路
VCC (+12V)
R1 10kΩ
VCC RD
8
4
7
R2
150kΩ
555 3
vI1 6 ( A )
vC
vI2 2
R3
C1 10μF
15 0.01μF
R4
R5 10kΩ
环节,加大t
pd
。
2
第二步:为获取更大 延迟,将C的接地 端改至G1输出。
通过调整R、C 改(f R不能太大) RC常数远大于Tpd , 因此周期主要计算 RC环节
7.4.5 石英晶体多谐振荡器
1922年美国 卡第提出用石英 压电效应调制电磁振荡的频率。
脉冲波形的产生与整形详解

④CMOS型555在传输过渡时间里产生的尖 峰电流小,仅为2~3mA;而双极型555的尖峰电 流高达300~400mA。 ⑤CMOS型555的输人阻抗比双极型的要高 出几个数量级,高达1010Ω。 ⑥CMOS型555的驱动能力差,输出电流仅 为1~3mA,而双极型的输出驱动电流可达200mA.
一般说来,在要求定时长、功耗小、负载轻的场 合宜选用CMOS型555;而在负载重、要求驱动电流 大、电压高的场合,宜选用双极型的555。
二、用门电路组成的施密特触发器
将两级反相器串接起来,同时通过分压电阻把输出端的 电压反馈到输入端,就构成了施密特触发器电路。 CMOS门,阈值电压
1 VTH VDD,且R1 R2 2
R2
vI
R1
1
v O1
1 G2
vO
' vO
v 'I
G1
6.3.3 用CMOS反相器构成的施密特触发器
6.3.4 图6.3.3电路的电压传输特性 (a)同相输出 (b)反相输出
单稳态触发器
单稳态触发器的工作特性具有如下的显著特点: (1)电路在无外加触发信号作用期间,处于稳态; (2)在外界触发脉冲作用下,能从稳态翻转到暂稳 态,在暂稳态维持一段时间以后,再自动返回 稳态; (3)暂稳态维持时间的长短取决于电路本身的参数 (阈值电压及外接R、C),与触发脉冲的宽度和 幅度无关。
§6.3
施密特触发器
Schmitt Trigger
施密特触发器(电路)是一种特殊的双稳态时序 电路,与一般双稳态电路比较,它具有两个明显的特点: 1.施密特触发器是一种优良的波形整形电路, 只要输入信号电平达到触发电平,输出信号就会从一 个稳态转变到另一个稳态,且通过电路内部的正反馈 过程可使输出电压的波形变得很陡。 2.对正向和负向增长的输入信号,电路有不同 的阈值电平,这是施密特触发器的滞后特性或回差特 性,提高了干扰能力,可有效滤除噪声。
数电第十篇-脉冲波形的产生与整形

03
锯齿波的线性整形
通过调整锯齿波的斜率, 使其线性化,从而改善脉 冲的形状。
锯齿波的幅度整形
通过改变锯齿波的幅度, 可以调整脉冲的宽度和高 度,实现脉冲的整形。
锯齿波的对称整形
通过调整锯齿波的上升沿 和下降沿,使其对称,从 而改善脉冲的形状。
三角波的整形
01
三角波的对称整形
时间测量
01
利用脉冲波形产生与整形技术,测量系统可以精确测量时间间
隔、速度和加速度等参数。
频率和周期测量
02
通过脉冲波形产生与整形技术,测量系统能够实现高精度的频
率和周期测量。
距离和位移测量
03
利用脉冲波形产生与整形技术,测量系统能够实现非接触式距
离和位移测量。
在控制系统中的应用
伺服电机控制
脉冲波形产生与整形技术 用于控制伺服电机的运动, 实现精确的位置和速度控 制。
三角波的产生
一种常见的脉冲波形,其形状类似于三角形,具有对 称性。
输入 标题
差分电路
利用差分电路可以产生三角波。差分电路将输入的矩 形脉冲进行差分运算,形成三角波。
三角波
波形发生器
通过模拟电路(如运算放大器等)也可以产生三角波。 模拟电路将输入信号进行线性放大或缩小,形成三角
波波形。
模拟电路
波形发生器(如函数发生器)也可以产生三角波。波 形发生器内部通常包含差分电路,将输入信号进行差 分运算,形成三角波波形。
02
脉冲波形的整形
矩形脉冲的整形
矩形脉冲的对称整形
通过调整矩形脉冲的上升沿和下降沿, 使其对称,从而改善脉冲的形状。
矩形脉冲的幅度整形
矩形脉冲的延迟整形
通过引入适当的延迟,可以调整矩形 脉冲的起始时间和持续时间,实现脉 冲的整形。
脉冲波形的产生和整形

第十章脉冲波形的产生和整形内容提要本章主要介绍矩形波的产生和整形电路。
在矩形波产生电路中介绍几种常用的多谐振荡器-对称式和非对称多谐振荡器、环形振荡器以及用施密特触发器和555定时器构成的多谐振荡器等。
此外对几种不同类型的压控振荡器也做了介绍。
在整形电路中,介绍了施密特触发器和单稳态触发器。
本章也讨论了最常用的555定时器及其所构成的施密特触发器、单稳态触发器及多谐振荡器的电路及工作原理。
本章内容10.4 多谐振荡器10.5 555定时器及其应用一、产生矩形脉冲的途径形如图10.1.1所示。
其中:图10.1.1脉冲周期T :周期行重复的脉冲序列中,两个相邻脉冲之间的时间间隔。
有时也用频率f=1/ T表示单位时间内脉冲重复的次数上升时间t r :脉冲上升沿从0.1V m 上升到 0.9V m 所需要的时间图10.1.1W :从脉冲前沿到达0.5V m 起,到脉冲后沿到达0.5V m 为止的一段时间。
下降时间t :脉冲下降沿从图10.1.1占空比q :脉冲宽度与脉冲周期的比值,即q =t w 注:在脉冲整型或产生电路用于数字系统时,有时对脉冲有些特殊要求,如脉冲周期和幅度的稳定性10.2 施密特触发器(Schmitt Trigger)换时对应的输入电平,与输入信号从高电平下降过程在电路状态转换时,通过电路内部的正反馈过程使输出电压波形的边沿变得很陡。
注:利用这两个特点不仅能将边沿变化缓慢地信号波形整形为边沿陡峭的矩形波,而且可以将叠加在矩形波脉冲高、低电平上的噪声有效地清除。
图10.2.111I v 1R 2R I v ′o v 1o v ov ′G 1G 2图6.2.1 用C M O S 反相器构成的施密特触发器(a )电路I v v ′I v o v 设反相器G 1和G 2均为CMOS 门,其阈值电压为=011≈+=v R R v A ①当v I =0时, v o1= V OH , v o = V OL ≈0,此时G 1门的输入电压为逐渐升高到使得v A=时,反相器进入电压传输特性的放大区(转折区),故v A的增加,会引起下面的正反馈,即v1o v vA设施密特触发器在输入信号v I 正向增加时的门槛电T +,称为正向阈值电压,此时v o =0, G 1门的输入电压为++=T 212TH V V R R R v A =121T V V R R R R ++=于也存在正反馈,即ov 使电路迅速跳变到v o =V OL ≈ 0此时施密特触发器在v I 下降时对应输出电压由高电平转为低电平时的输入电压为DD 211T 2120211I 212TH V V V R R R R R R v R R R v R R R v A ++++++=-==TH21T V )1V R R −=(-由于V TH = V DD / 2,故只要v ITH21T T T V 2V V V R R =∆-+-=THT I V R R V V )(211+==+THT I V R R V V )(211−==−施密特触发器的电压传输特性为图10.2.2所示图10.2.2TH V DDV Iv ov V O L+T V -T V TV ∆TH V DD V Iv Av 0+T V -T V TV ∆(a )同相输出(b )反相输出V O HV O LV O H用门电路组成的施密特触发器TH DDV Iv +T -T TH V V Av 0+T V -T V TV ∆(a )同相输出(b )反相输出图100..2.3由C M OS 反相器构成的施密特触发器的电压传输特性V O LV O H图10.2.3(a)是以v o 做为输出的, v o 和v I 同相位;而图10.2.3(b)是以v ′A 做为输出的,利用施密特触发器可以将边沿变化缓慢的周期性信号变换为边沿很陡的矩形脉冲DD V I v +(b )反相输出反相器构成的施密特触发器的电压传输特性利用施密特触发器将一系列幅度不同的脉冲信号,其中幅度大于正向阈值电压的幅度鉴别出来。
脉冲波形产生及整形

• §10.4 多谐振荡器 • §10.5 555定时器及其应用
§10.2 施密特触发器
主要用途:把边沿变化缓慢的信号波形变换为边沿陡峭的矩形波。
特点: ⑴电路有两种稳定状态。两种稳定状态的维持和转换完全取决于外加触发信号。 ⑵电压传输特性特殊,电路有两个阈值电压(正向阈值电压VT+和负向阈值电压VT-)。 ⑶状态翻转时有正反馈过程,从而输出边沿陡峭的矩形脉冲。
图 脉冲定时
• §10.1 概述
第十章 脉冲波形的产生和整形
• §10.2 施密特触发器
• §10.3 单稳态触发器
• §10.4 多谐振荡器 • §10.5 555定时器及其应用
§10.4 多谐振荡器 1.多谐振荡器没有稳定状态,只有两个暂稳态 2.通过电容的充电和放电,使两个暂稳态相互交替,从而产生自激振荡,无需外触发。 3.输出周期性的矩形脉冲信号,由于含有丰富的谐波分量,故称作多谐振荡器。
在对称式多谐振荡器的基础上,串接一块石英晶体,就可以构成一个石英晶体振荡器电路。 该电路将产生稳定度极高的矩形脉冲,其振荡频率由石英晶体的串联谐振频率fo决定。
图 石英晶体振荡器电路
• §10.1 概述
第十章 脉冲波形的产生和整形
• §10.2 施密特触发器
• §10.3 单稳态触发器
• §10.4 多谐振荡器 • §10.5 555定时器及其应用
施密特触发器的应用 一. 用于波形变换
将变化缓慢的波形变换成矩形波(如将三角波或正弦波变换成同周期的矩形波)。
二. 用于脉冲整形
在数字系统中,矩形脉冲经传输后往往发生波形畸变,或者边沿产生振荡等。通过施密特触发 器整形,可以获得比较理想的矩形脉冲波形。
波形畸变
第六章脉冲波形的产生与整形

① 可将叠加在矩形 脉冲高、低电平上 的噪声有效滤除;
② 可以将边沿变 化缓慢的信号波形 整形为边沿陡峭的 矩形波。
5
6.2.1 用门电路组成的施密特触发器
VOH
VDD,VOL
0,VTH
1 2
V
ቤተ መጻሕፍቲ ባይዱ
,
DD
且R1
R2
分压电阻
同相输出端
反相器
反相器
反相输出端
结构:将两级反相器串接起来,同时通过分压电阻把输出端 的电压反馈到输入端,从而构成施密特触发器。
6
如何计算?
vI
vI R1
vo R2
R2
vo
R2 R1 R2
vI
R1 R1 R2
vo
(一)VI上升阶段分析:
①
当vI=0时,有:
vI
R1 R1 R2
vo
无论vo是高电平还是低电平,都使得
vI VTH, 所12 VDD
以G1门输出高电平,G2门输出低电平,即vo1=VDD,vo=0
② 当vI从0逐渐升高时,考虑到此过程同相输出端状态尚未翻
脉冲周期
占空比:脉冲宽度与脉冲周期的比值:q=TW/T
3
6.2 施密特触发器 6.3 单稳触发器 6.4 多谐振荡器 6.5 555定时器及其应用
4
6.2 施密特触发器 (P309页)
施密特触发器的主要特点:
① 输入信号在上升和下降 过程中,电路状态转换所 对应的输入电平不同。
② 在电路状态转换时,通 过电路内部的正反馈过程, 可以使输出电压波形的边 沿变陡。
第六章 脉冲波形的产生和整形
引言: 在第四章和第五章时序逻辑电路中讲到的触发器状态的翻
脉冲波形产生与整形

4.构成多谐振荡器
工作原理:
电容上初始电压为零,即uI=0,则uO=1,并经R向 C充电,当充至uI=U+时,输出翻转uO=0。电容C又经R 进行放电,当放电至uI=U-时,输出翻转uO=1。
6.3 单稳态触发器
工作特点: 第一,它有稳态和暂稳态两个不同的工作状态; 第二,在外加脉冲作用下,触发器能从稳态翻转 到暂稳态; 第三,在暂稳态维持一段时间后,将自动返回稳 态,暂稳态维持时间的长短取决于电路本身的参数, 与外加触发信号无关。 例:楼道的路灯 。
6.1 概述
一、脉冲信号
脉冲是脉动和短促的意思,凡是具有不连续波形的信 号均可称为脉冲信号。广义讲,各种非正弦信号都是脉冲 信号。
(a)矩形波
(b)方波
(c)尖脉冲
(d)锯齿波
6.1 概述
在数字系统中常常需要用到各种幅度、宽度以及具有
陡峭边沿的矩形脉冲信号,如触发器的时钟脉冲(CP)。
获取这些脉冲信号的方法通常有两种: ①脉冲产生电路直接产生; ②利用已有的周期信号整形、变换得到。
6.3.1 用集成门电路构成的单稳态触发器
1. 电路组成及工作原理 暂稳态是靠RC电路的充放电过程来维持的。 由于图示电路的RC电路接成微分电路形式,
故该电路又称为微分型单稳态触发器。
图6-14 集成门电路构成的单稳态触发器
当uI上升,使得uI1 =UTH时,电路会产生如下正 反馈过程:
电 路 会 迅 速 转 换 为 G1 导 通 、 G2 截 止 , 输 出 为 UOH,即uO=VDD的状态(第二稳态)。此时的uI值 称为施密特触发器的上限触发转换电平UT+。显然, uI继续上升,电路的状态不会改变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、555定时器的应用:
单稳——单稳态触发器 双稳——施密特触发器 无稳——多谐振荡器
脉冲波形的整形 脉冲波形的产生
26
第17讲 脉冲波形的产生和整形
结
束
作业:P504 题10.25
27
10.5.1 555定时器的结构及工作原理
(1) 电路结构:
控制电压 阈值输入
触发输入 放电端
3个阻值为5K 的电阻组成的分压器;两个模拟 电压比较器 C1、C2 ; 一个基本 R-S 触发器 ; 4 一个放电三极管TD 和缓冲器G4。
(2) 555定时器的工作原理:
VCC 8
RD 4
5k
5脚悬空时, 比较器C1、
1、脉冲周期T; 2、脉冲幅度Vm 3、脉冲宽度tw 4、上升时间tr
5、下降时间tf
6、占空比q q= tw / T
2
10.5
555定时器及其应用
555定时器是一种多用途的数字-模拟混合 集成电路, 利用它能极方便地构成单稳态触发 器、多谐振荡器和施密特触发器及其它实用电路。 由于使用灵活、方便,555定时器在波形 的产生与变换、信号的测量与控制、家用电器、 电子玩具等许多领域中都得到广泛的应用。 555定时器有双极型和CMOS两种类型,其型 号分别有555(556双555)和7555(7556)等。 双极型555定时器电源电压范围为5 ~ 16v, 最大负载电流可达200mA;CMOS555定时器电源 电压范围为3 ~18v,最大负载电流在4mA以下。 3
第17讲 脉冲波形的产生和整形
10.1 概 述
获得矩形脉冲波形的两种方法 :
1)利用各种形式的多谐振荡器电路, 直接产生矩形脉冲;
2)通过整形电路把已有的周期性变化 的波形变换为矩形脉冲。实现这一变换功能 的过程,称作“整形”。
常用的整形电路 有单稳态触发器和施密 特触发器 。
1
图10.1.1 描述矩形脉冲特性的主要参数
2 V 3 1 V 3
vc
CC CC
t tPH
tPL
2)矩形波低电平时间tPL,即放电时间:
tPL =R2Cln2≈0.7R2C 1 1.43 f t t ( R 2 R )C
PH PL 1 2
O
t
Vcc
占空比q :脉冲高电平时间与 周期的百分比。
t R R q t t R 2R
PH 1 2 PH PL 1
R1
7 R2 6
8
4 3 555 1
vo
0.01F
24
2
vc
2
C
5
占空比可调的多谐振荡器
f 1 1.43 t t ( R R )C
PH PL 1 2
R q 100 ℅ R R
1 1 2
充 电
放电
25
本章小结
1、施密特触发器、单稳态触发器、多谐振荡器的工 作特点和主要用途; 2、555定时器的结构和工作原理;
3 3 比较器C2输出低电平, 基本RS触发器被置1,放电三极 管TD截止,输出端v0为高电平。 3 3 比较器C2输出高电平, 基本RS触发器状态不变,v0和 TD的状态保持。
3) 当vI1< 2 VCC, vI2> 1 VCC时,比较器C1输出高电平,
6
4) 当vI1> 2 VCC, vI2< 1 VCC时, v 5
C
CC
C
V 当vC上升到 2 3 CC 时, 定时器状态翻转为0,内部放电 管TD导通; 1 电容C通过R2,TD放电,vC下降,降至 3 V 时,vO又从0翻 23 转到1,内部放电管TD截止。
CC
3
振荡频率的计算:
tPH =(R1+R2)Cln2≈0.7(R1+R2)C
1)矩形波高电平时间tPH,即充电时间: vOo
C
R
VCC
VCC Cext Rext A1 单稳态触发器 VO1 Q 74121 A2
VIV
B
1D C1 R
Q
VO
I
VI VO1 VO
tW tW tW
噪声
20
小结
单稳态触发器具有一个稳态。由门电路构成 的单稳态触发器和基本RS触发器在结构上也极为 相似,只有用于反馈的耦合网络不同。 单稳态触发器可以由门电路构成,也可以由 555定时器构成。在单稳态触发器中,由一个暂稳 态过渡到稳态,其“触发”信号也是由电路内部 电容充(放)电提供的,暂稳态的持续时间即脉 冲宽度也由电路的阻容元件决定。 单稳态触发器不能自动地产生矩形脉冲,但 却可以把其它形状的信号变换成为矩形波,用途 很广。
3 3 比较器C1输出低电平,
CO
VCC 8 5k
RD 4
vI1 6 vI2 2 7
5k
-
+C1
R
& Q
G
比较器C2输出低电平, 输出端v0为高电平, 放电三极管TD截止。
+
- C2
T
&
&
1
3
5k
S
Q
v0
555的功能表 阈值端 触发端 RD vI2 vI1 1 大于 2VCC / 3 大于 VCC / 3 1 小于 2VCC / 3 小于 VCC / 3
“回差特性 ” V= V - V
T+
T-
VOL
VTVT+
施密特触发器的电压传输特性
VI
8
2、555定时器构成施密特触发器
2 V 3 1 V 3
vI
CC
CC
0 vo 0
t
t
工作波形图
vo
0
1 V 3
CC
2 V 3
CC
vI
如果5脚外接控制电压vCO , 则改变vCO的大小,就可以 调节回差电压的范围。
13
10. 5. 3 用555定时器构成的单稳态触发器
1、单稳态触发器具有以下特点:
1)电路有一个稳态、一个暂稳态; 2)在外来触发脉冲作用下,电路由稳态转到暂稳态; 暂稳态维持一段时间后,电路会自动返回稳态。 3)暂稳态维持时间的长短取决于电路本身的参数,与 触发脉冲的宽度和幅度无关。
由外界触发
暂稳态
自动返回
稳定状态 稳定状态 1.为什么电路可以自动返回稳态 ? 着重 理解 : 2.在“暂稳态”上停留的时间有多 14 长 ? 该时间由什么决定 ?
单稳态触发器的电路形式:
单稳态触发器可以由分立元件 构成、门电路构成、还有专门的单稳集 成电路以及由555电路构成等等。
下面介绍555电路构成的单稳态触发器:
18
vi 2)从单稳态 触发器的工作波形可看 出,输出端vo1的上升沿 相对于输入信号vi 的上 升沿延迟了tW时间。 这种延迟作用 常应用于时序控制。
vo1Leabharlann vR0t1t
tW
0
t
t
Vth
0
vo 2
0
19
t
(3)噪声消除电路 利用单稳电路,将输出脉宽调节到大于 噪声宽度而小于信号宽度,即可消除噪声。
tw=RCln3≈1.1RC
16
3 、单稳态触发器的应用 单稳的应用多种多样,如 :整形、延时控 制、定时顺序控制等等。
(1)定时 利用单稳电路产生脉宽为tW的矩形输
出脉冲作为定时信号,去控制某电路,使
其在tW时间内动作(或不动作)。
17
单稳触
与门
tW
发器
(2)延时
1)如延时开关:当按一下开关时路灯 就亮了,但当手松开后灯并没有立即灭 掉,而是经过一段时间后才灭掉,这里 就是单稳态电路的延时应用。
21
10. 5. 4 由555定时器构成多谐振荡器
多谐振荡器也叫矩形波振荡器,是一种自激振 荡电路,在接通电源后,不需要外加触发信号,就 能产生一定频率和幅值的矩形脉冲。是无稳态电路。
22
1、由555定时器构成多谐振荡器
2 V 3 1 V 3
CC CC
vc
O
vo
O tPH tPL
t
t
当电源接通时,电容C上初始电压为0,电源VCC通过 1 R1和R2对电容C充电,vC上升,在v < 3 V 时,由于2端、 6端相连,定时器处于置1状态,内部放电管TD截止; 2 1 VCC 电路状态保持, vo仍为1; 当vC上升到:3 VCC <v <
3 3 比较器C2输出高电平, 基本RS触发器被置0,放电三极 管TD导通,输出端v0为低电平。
5
VCC 8
5k
RD 4 + C1 R & Q & S Q &
控制电压vCO 5 阈值输入vI1 6 触发输入vI2 2
VR1
VR2 - C2
5k
-
G4 1
3
+
v0
vo 7
’
5k
TD
1 GND
2) 当vI1< 2 VCC, vI2< 1 VCC时,比较器C1输出高电平,
9
电压传输特性
3、施密特触发器的应用
利用施密特触发器的回差特性,可以用 于对信号进行整形、波形变换、幅度限幅等 。 (1)用于波形变换
VT+ VTVT-’ 0 VO 0
V’O
VI
t t
0
t
10
(2)用于脉冲整形
(a)当传输线上电 容较大时,波形的 上升沿和下降沿将 明显变坏。 (b)当传输线较长而 且接收端的阻抗与 传输线的阻抗不匹 配时,在波形的上 升沿和下降沿将产 生振荡现象。 (c)当其他脉冲信 号叠加到矩形脉冲 信号时,信号上将 11 出现附加的噪声。 图6.2.9 用施密特触发器对脉冲整形