电磁感应典型例题和练习
电磁感应练习50题

电磁感应练习50题(含答案)1、如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L=0.2m,长为2d,d=0.5m,上半段d导轨光滑,下半段d导轨的动摩擦因素为μ=,导轨平面与水平面的夹角为θ=30°.匀强磁场的磁感应强度大小为B=5T,方向与导轨平面垂直.质量为m=0.2kg的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接在两导轨间的电阻为R=3Ω,导体棒的电阻为r=1Ω,其他部分的电阻均不计,重力加速度取g=10m/s2,求:(1)导体棒到达轨道底端时的速度大小;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q;(3)整个运动过程中,电阻R产生的焦耳热Q.答案分析:(1)研究导体棒在粗糙轨道上匀速运动过程,受力平衡,根据平衡条件即可求解速度大小.(2)进入粗糙导轨前,由法拉第电磁感应定律、欧姆定律和电量公式结合求解电量.(3)导体棒在滑动时摩擦生热为Q f=2μmgdcosθ,再根据能量守恒定律求解电阻产生的焦耳热Q.解答:解:(1)导体棒在粗糙轨道上受力平衡:由 mgsin θ=μmgcos θ+BIL得:I=0.5A由BLv=I(R+r)代入数据得:v=2m/s(2)进入粗糙导轨前,导体棒中的平均电动势为: ==导体棒中的平均电流为: ==所以,通过导体棒的电量为:q=△t==0.125C(3)由能量守恒定律得:2mgdsin θ=Q电+μmgdcos θ+mv2得回路中产生的焦耳热为:Q电=0.35J所以,电阻R上产生的焦耳热为:Q=Q电=0.2625J答:(1)导体棒到达轨道底端时的速度大小是2m/s;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q是0.35C;(3)整个运动过程中,电阻R产生的焦耳热Q是0.2625J.点评:本题实质是力学的共点力平衡与电磁感应的综合,都要求正确分析受力情况,运用平衡条件列方程,关键要正确推导出安培力与速度的关系式,分析出能量是怎样转化的.2、如图所示,两平行金属导轨间的距离L=0.40m,金属导轨所在的平面与水平面夹角θ=37º,在导轨所在平面内,分布着磁感应强度B=0.50T、方向垂直于导轨所在平面的匀强磁场。
法拉第电磁感应定律 典例与练习

法拉第电磁感应定律典例与练习【典型例题】类型一、法拉第电磁感应定律的应用例1、(2015 安徽) 如图所示,abcd为水平放置的平行“匚”形光滑金属导轨,间距为l。
导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B,导轨电阻不计。
已知金属杆MN倾斜放置,与导轨成θ角,单位长度的电阻为r,保持金属杆以速度v沿平行于cd的方向滑动(金属杆滑动过程中与导轨接触良好)。
则A.电路中感应电动势的大小为sinBlvθB.电路中感应电流的大小为sinBvrθC.金属杆所受安培力的大小为2sinlvrBθD.金属杆的热功率为22sinlrvBθ【答案】B【解析】导体棒切割磁力线产生感应电动势E=Blv,故A错误;感应电流的大小sinsinE BvIl rrθθ==,故B正确;所受的安培力为2sinl B lvF BIrθ==,故C错误;金属杆的热功率222sinsinl B vQ I rrθθ==,故D错误。
【考点】考查电磁感应知识。
举一反三【变式】如图所示,水平放置的平行金属导轨,相距L=0.50 m,左端接一电阻R =0. 20n,磁感应强度B=0.40 T,方向垂直于导轨平面的匀强磁场,导体棒a b垂直放在导轨上,并能无摩擦地沿导轨滑动,导轨和导体棒的电阻均可忽略不计,当a b以v=4.0 m/s的速度水平向右匀速滑动时,求:(1)a b棒中感应电动势的大小,并指出a、b哪端电势高?(2)回路中感应电流的大小;(3)维持a b 棒做匀速运动的水平外力F 的大小。
【答案】(1)0.8V ;a 端电势高;(2)4.0A ;(3)0. 8 N 。
【解析】(1)根据法拉第电磁感应定律,a b 棒中的感应电动势为0.40.5 4.00.8E BLv V V ==⨯⨯= 根据右手定则可判定感应电动势的方向由b a →,所以a 端电势高。
(2)导轨和导体棒的电阻均可忽略不计,感应电流大小为 0.8 4.00.2E I A A R === (3)由于a b 棒受安培力,棒做匀速运动,故外力等于安培力 4.00.50.40.8F BIL N N ==⨯⨯=, 故外力的大小为0. 8 N 。
高考物理《法拉第电磁感应定律》真题练习含答案专题

高考物理《法拉第电磁感应定律》真题练习含答案专题1.如图所示,用粗细相同的铜丝做成边长分别为 L 和2L 的两只闭合线框a 和b ,以相同的速度从磁感应强度为B 的匀强磁场区域中匀速地拉到磁场外,若感应电动势分别为E a 、E b ,则E a ∶E b 为( )A .1∶4B .1∶2C .2∶1D .4∶1 答案:B解析:线框切割磁感线时的感应电动势为E =BLv ,解得E a ∶E b =1∶2,B 正确.2.[2024·湖北省名校联盟联考]今年11月底,襄阳三中举行了秋季运动会,其中“旋风跑”团体运动项目很受学生欢迎.如图是比赛过程的简化模型,一名学生站在O 点,手握在金属杆的一端A 点,其他四名学生推着金属杆AB ,顺时针(俯视)绕O 点以角速度ω匀速转动.已知OA =l ,AB =L 运动场地附近空间的地磁场可看作匀强磁场,其水平分量为B x ,竖直分量为B y ,则此时( )A .A 点电势高于B 点电势B .AB 两点电压大小为B y ω(L 2+2lL )2C .AB 两点电压大小为B y ω(L +l )22D .AB 两点电压大小为B x ωL(L +l) 答案:B解析:地磁场在北半球的磁感应强度斜向下,其竖直分量B y 竖直向下,则金属杆切割B y 产生动生电动势,由右手定则可知电源内部的电流从A 点到B 点,即B 点为电源的正极,故A 点电势低于B 点电势,A 错误;动生电动势的大小为E =Bl v -,解得U BA =B y L ω(L +l )+ωl 2 =B y Lω(L +2l )2,B 正确,C 、D 错误.3.(多选)动圈式扬声器的结构如图(a )和图(b )所示,图(b )为磁铁和线圈部分的右视图,线圈与一电容器的两端相连.当人对着纸盆说话,纸盆带着线圈左右运动能将声信号转化为电信号.已知线圈有n 匝,线圈半径为r ,线圈所在位置的磁感应强度大小为B ,则下列说法正确的是( )A.纸盆向左运动时,电容器的上极板电势比下极板电势高B.纸盆向左运动时,电容器的上极板电势比下极板电势低C.纸盆向右运动速度为v时,线圈产生的感应电动势为2nrBvD.纸盆向右运动速度为v时,线圈产生的感应电动势为2nπrBv答案:BD解析:根据右手定则,可知上极板带负电,下极板带正电,因此下极板电势更高,A项错误,B项正确;每匝有效切割长度为2πr,则E=2πnBvr,C项错误,D项正确.4.如图所示,一根弧长为L的半圆形硬导体棒AB在水平拉力F作用下,以速度v0在竖直平面内的U形框架上匀速滑动,匀强磁场的磁感应强度为B,回路中除电阻R外,其余电阻均不计,U形框左端与平行板电容器相连,质量为m的带电油滴静止于电容器两极板中央,半圆形硬导体棒AB始终与U形框接触良好.则以下判断正确的是()A.油滴所带电荷量为mgdBLv0B.电流自上而下流过电阻RC.A、B间的电势差U AB=BLv0D.其他条件不变,使电容器两极板距离减小,电容器所带电荷量将增加,油滴将向下运动答案:B解析:由右手定则可知,导体棒中电流方向从B到A,电流自上而下流过电阻R,故B正确;弧长为L的半圆形硬导体棒切割磁感线的有效长度D=2Lπ,则A、B间的电势差为U AB=2BLv0π,C错误;油滴受力平衡可得qE=mg,E=U ABd,则油滴所带电荷量为q=πmgd2BLv0,A错误;其他条件不变,使电容器两极板距离减小,由C=εS4πkd知电容器的电容变大,又由Q=UC可知,电容器所带电荷量将增加,电场力变大,油滴将向上运动,故D错误.5.(多选)如图所示,矩形金属框架三个竖直边ab 、cd 、ef 的长都是l ,电阻都是R ,其余电阻不计.框架以速度v 匀速平动地穿过磁感应强度为B 的匀强磁场,设ab 、cd 、ef 三条边先后进入磁场时,ab 边两端电压分别为U 1、U 2、U 3,则下列判断结果正确的是( )A .U 1=13 Blv B .U 2=2U 1C .U 3=0D .U 1=U 2=U 3 答案:AB解析:当ab 边进入磁场时I =E R +R 2=2Blv 3R ,则U 1=E -IR =13Blv ;当cd 边也进入磁场时I =E R +R 2 =2Blv 3R ,则U 2=E -I R 2 =23 Blv ,三条边都进入磁场时U 3=Blv ,A 、B 正确.6.[2024·湖北省武汉市月考](多选)如图所示,电阻不计的平行长直金属导轨水平放置,间距L =1 m .导轨左右端分别接有阻值R 1=R 2=4 Ω的电阻.电阻r =2 Ω的导体棒MN 垂直放置在导轨上,且接触良好,导轨所在区域内有方向竖直向的匀强磁场,大小为B =2 T .在外力作用下棒沿导轨向左以速度v =2 m /s 做匀速直线运动,外力的功率为P ,MN 两端的电势差为U MN ,则以下说法正确的是( )A .U MN =4 VB .U MN =2 VC .P =16 WD .P =4 W 答案:BD解析:棒产生的感应电动势大小为E =BLv =4 V ,外电阻是R 1和R 2并联总电阻为R =2 Ω,MN 两端的电势差为U MN =R R +r E =2 V ,A 错误,B 正确;回路电流为I =ER +r =1 A ,电路总功率为P 总=EI =4 W ,由能量守恒可知外力的功率和电路总功率相同,有P =4 W ,C 错误,D 正确.7.[2024·吉林省长春市模拟]在如图甲所示的电路中,电阻R 1=R 2=R ,圆形金属线圈半径为r 1,线圈导线的电阻也为R ,半径为r 2(r 2<r 1)的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系如图乙所示,图线与横、纵轴的交点坐标分别为t 0和B 0,其余导线的电阻不计.闭合开关S ,至t =0的计时时刻,电路中的电流已经稳定,下列说法正确的是( )A .线圈中产生的感应电动势大小为B 0πr 21t 0B .t 0时间内流过R 1的电量为B 0πr 22RC .电容器下极板带负电D .稳定后电容器两端电压的大小为B 0πr 223t 0答案:D解析:由法拉第电磁感应定律知感应电动势为E =ΔΦΔt =ΔB Δt S =πr 22 B 0t 0,A 错误;由闭合电路欧姆定律得感应电流为I =E R +R 1+R 2 =πr 22 B 03Rt 0 ,t 0时间内流过R 1的电量为q =It 0=πr 22 B 03R,B 错误;由楞次定律知圆形金属线圈中的感应电流方向为顺时针方向,金属线圈相当于电源,电源内部的电流从负极流向正极,则电容器的下极板带正电,上极板带负电,C 错误;稳定后电容器两端电压的大小为U =IR 1=B 0πr 223t 0,D 正确.8.(多选)如图所示,长为a ,宽为b ,匝数为n 的矩形金属线圈恰有一半处于匀强磁场中,线圈总电阻为R ,线圈固定不动.当t =0时匀强磁场的磁感应强度的方向如图甲所示,磁感应强度B 随时间t 变化的关系图像如图乙所示,则( )A .线圈中的感应电流的方向先逆时针再顺时针B .回路中感应电动势恒为nB 0ab2t 0C .0~2t 0时刻,通过导线某横截面的电荷量为nB 0abRD .t =0时刻,线圈受到的安培力大小为nB 20 a 2b2t 0R答案:BC解析:由题意可知线圈中磁通量先垂直纸面向外减小,再垂直纸面向里增大,根据楞次定律可知线圈中的感应电流方向始终为逆时针方向,A 错误;根据法拉第电磁感应定律可得线圈中感应电动势的大小为E =n ΔΦΔt =nS ΔB Δt =nabB 02t 0 ,根据闭合电路欧姆定律可得,线圈中电流大小为I =E R =nabB 02Rt 0 ,t =0时刻,线圈受到的安培力大小为F =nB 0I·a =n 2a 2bB 202Rt 0 ,B 正确,D 错误;0~2t 0时刻,通过导线某横截面的电荷量为q =I·2t 0=nabB 0R,C 正确.9.如图所示,足够长通电直导线平放在光滑水平面上并固定,电流I 恒定不变.将一个金属环以初速度v 0沿与导线成一定角度θ(θ<90°)的方向滑出,此后关于金属环在水平面内运动的分析,下列判断中正确的是( )A .金属环做直线运动,速度先减小后增大B .金属环做曲线运动,速度一直减小至0后静止C .金属环最终做匀速直线运动,运动方向与直导线平行D .金属环最终做匀变速直线运动,运动方向与直导线垂直 答案:C解析:金属环周围有环形的磁场,金属环向右运动,磁通量减小,根据“来拒去留”可知,所受的安培力将阻碍金属圆环远离通电直导线,即安培力垂直直导线向左,与运动方向并非相反,故金属环做曲线运动,安培力使金属环在垂直导线方向做减速运动,当垂直导线方向的速度减为零,只剩沿导线方向的速度,然后磁通量不变,无感应电流,水平方向不受外力作用,故最终做匀速直线运动,方向与直导线平行,故金属环先做曲线运动后做直线运动,C 项正确.10.[2024·云南省昆明市模拟]如图甲所示,一匝数N =200的闭合圆形线圈放置在匀强磁场中,磁场垂直于线圈平面.线圈的面积为S =0.5 m 2,电阻r =4 Ω.设垂直纸面向里为磁场的正方向,磁感应强度B 随时间的变化图像如图乙所示.求:(1)2 s 时感应电流的方向和线圈内感应电动势的大小; (2)在3~9 s 内通过线圈的电荷量q 、线圈产生的焦耳热Q. 答案:(1)逆时针,E 1=20 V (2)q =15 C ,Q =150 J解析:(1)由楞次定律知,0~3 s 感应电流磁场垂直纸面向外,感应电流方向为逆时针方向;感应电动势为E 1=N ΔΦ1Δt 1 =N ΔB 1·S Δt 1结合图像并代入数据解得E 1=20 V(2)同理可得3 s ~9 s 内有感应电动势E 2=N ΔΦ2Δt 2 =N ΔB 2·SΔt 2感应电流I 2=E 2r电荷量q =I 2Δt 2 代入数据解得q =15 C 线圈产生的焦耳热Q =I 22 r Δt 2 代入数据得Q =150 J。
电磁感应练习及答案

电磁感应练习一、选择题:1、发现电流磁效应的科学家是()A、安培B、法拉第C、奥斯特D、特斯拉2、如图所示,直导线及其右侧的矩形金属框位于同一平面内。
当导线中的电流发生如图所示的变化时,线框中感应电流与矩形线框受力情况,下列叙述正确的是()A、感应电流方向不变,线框所受合力方向不变B、感应电流方向改变,线框所受合力方向不变C、感应电流方向改变,线框所受合力方向改变D、感应电流方向不变,线框所受合力方向改变3、有一带电量为+q,重为G的小球,从两竖直的带电平行板上方h高处自由落下,两极板间匀强磁场的磁感应强度为B,方向如图示,则带电小球通过有电场和磁场的空间时()A、一定做曲线运动B、不可能做曲线运动C、有可能做匀速运动D、有可能做匀加速直线运动4、下面说法正确的是()A、自感电动势总是阻碍电路中原来电流增加B、自感电动势总是阻碍电路中原来电流变化C、电路中的电流越大,自感电动势越大D、电路中的电流变化量越大,自感电动势越大5、如图所示,电路甲、乙中,电阻R和自感线圈L的电阻值都很小,接通S,使电路达到稳定,灯泡D发光。
则()A、在电路甲中,断开S,D将逐渐变暗B、在电路甲中,断开S,D将先变得更亮,然后渐渐变暗C、在电路乙中,断开S,D将渐渐变暗D、在电路乙中,断开S,D将变得更亮,然后渐渐变暗6 如图乙所示,abcd是放置在水平面上且由导体做成的框架,质量为m的导体棒PQ和ab、cd接触良好,回路的总电阻为R,整个装置放在垂直于框架平面的变化的磁场中,磁场的磁感应强度变化情况如图甲所示,PQ始终静止,关于PQ与框架之间摩擦力F m在从零到t1时间内的变化情况,正确的是()A.F摩始终为零B.F摩一直减小C.F摩一直增大D.F摩先减小后增大7.(2009·沈阳模拟)导体框架dabc构成的平面与水平面成θ角,质量为m的导体棒PQ 与导体轨道ad、bc接触良好而且相互垂直.轨道ad、bc平行,间距为L.abQP回路的面积为S,总电阻为R且保持不变.匀强磁场方向垂直框架平面斜向上,其变化规律如图乙所示.从t=0开始,导体棒PQ始终处于静止状态,图乙中θ为已知量,B0足够大,则()A .产生感应电流时,导体棒PQ 中的电流方向为由P 到QB .产生感应电流时,感应电流为恒定电流C .产生感应电流时,导体棒PQ 受到的安培力为恒力D .PQ 恰好不受摩擦力时,磁感应强度的大小为mgR cos θLS8.(6分)一个面积S =4×10-2m 2,匝数n =100匝的线圈,放在匀强磁场中,磁场方向垂直平面,磁感应强度的大小随时间变化规律如图所示,在开始2秒内穿过线圈的磁通量的变化率等于________,在第3秒末感应电动势大小为________.二、计算题:9、有一个1000匝的线圈,在0.4s 内穿过它的磁通量从0.02Wb 均匀增加到0.09Wb 。
高一物理电磁感应现象练习题及答案

高一物理电磁感应现象练习题及答案练习题一:1. 一根导线以速度v穿过磁感应强度为B的均匀磁场,导线长度为L,角度θ为导线与磁场方向的夹角。
求导线在时间Δt内所受到的感应电动势。
答案:感应电动势E = B * v * L * sinθ2. 一根导线以速度v进入磁感应强度为B的均匀磁场,导线的长度为L。
当导线完全进入磁场后,突然停止不动。
求此过程中导线两端之间的电势差。
答案:电势差V = B * v * L3. 一个长度为L的导线以速度v匀速通过磁感应强度为B的均匀磁场,当导线通过时间Δt后,磁场方向突然发生改变。
求导线两端之间产生的感应电动势。
答案:感应电动势E = 2 * B * v * L4. 一根长度为L的导线以速度v与磁感应强度为B的均匀磁场垂直相交,导线所受到的感应电动势大小为E,如果将导线切成长度为L/2的两段导线,两段导线所受感应电动势的大小分别是多少?答案:每段导线所受感应电动势的大小都是E练习题二:1. 一台电动机的转子有60个磁极,额定转速为3000转/分钟。
求转子在额定转速下的转子导线所受的感应电动势大小。
答案:转子导线所受感应电动势的大小为ω * Magnetic Flux,其中ω为角速度,Magnetic Flux为磁通量。
转速为3000转/分钟,转速ω =2π * 3000 / 60。
由于转子有60个磁极,每转所经过的磁通量为60 * Magnetic Flux。
因此,转子导线所受感应电动势的大小为60 * 2π * 3000 / 60 * Magnetic Flux。
2. 一根长度为L的导线以角速度ω绕通过导线轴线的磁感应强度为B的磁场旋转。
求导线两端之间的电势差大小。
答案:电势差V = B * ω * L3. 一根输电线路的电阻为R,长度为L,电流为I。
如果在电力系统中,磁感应强度为B的磁场垂直于导线方向,求输电线路两端之间的感应电动势。
答案:感应电动势E = B * L * I4. 一块矩形线圈有N匝,每匝的边长为a和b,磁通量为Φ,求矩形线圈所受到的感应电动势。
初三电磁感应练习题及答案

初三电磁感应练习题及答案练习题1:1. 一个导线以2.0m/s的速度从一个均匀磁场中通过,磁感应强度为0.4T,导线长度为0.5m。
求导线所受的感应电动势大小。
2. 一个长度为3.0m的导线以10m/s的速度垂直通过一个磁感应强度为1.5T的磁场,求导线两端之间的感应电势差。
3. 一个矩形导线框架的长边长度为2.0m,短边长度为0.5m,框架的整体电阻为6.0Ω。
当磁感应强度为0.8T时,框架被拉动,导线切割磁力线的速度恒定为3.0m/s。
求在导线上出现的电动势大小。
答案:1. 感应电动势的大小与磁感应强度、导线长度和导线在磁场中的速度有关。
根据公式E = B*d*l*v,其中B为磁感应强度,d为导线长度,l为导线在磁场中的速度,v为导线长度。
将已知值代入计算,得到E = 0.4T * 0.5m * 2.0m/s = 0.4V。
故导线所受的感应电动势大小为0.4V。
2. 感应电势差的大小取决于磁感应强度、导线长度和导线在磁场中的速度之积。
根据公式∆V = B*l*v,其中B为磁感应强度,l为导线长度,v为导线在磁场中的速度。
将已知值代入计算,得到∆V = 1.5T * 3.0m * 10m/s = 45V。
导线两端之间的感应电势差为45V。
3. 在导线上出现的电动势大小取决于磁感应强度、导线长度、导线在磁场中的速度和导线的电阻之积。
根据公式E = B*d*l*v/R,其中B为磁感应强度,d为导线长度,l为导线在磁场中的速度,R为导线的电阻。
将已知值代入计算,得到E = 0.8T * 3.0m * 2.0m * 0.5m/s / 6.0Ω = 0.8V。
在导线上出现的电动势大小为0.8V。
练习题2:1. 一个磁感应强度为0.5T的磁场垂直于一个半径为0.2m的圆环,圆环的电阻为2.0Ω。
圆环以5rad/s的角速度绕垂直磁场线旋转,求圆环上出现的感应电动势大小。
2. 一个长度为4.0m的直导线绕过一个半径为2.0m的圆形电感线圈,电感线圈中有100个匝。
人教版初中高中物理选修二第二章《电磁感应》经典练习题(含答案解析)

一、选择题1.如图所示,两根足够长且平行的金属导轨置于磁感应强度为B=3 T的匀强磁场中,磁场的方向垂直于导轨平面,两导轨间距L=0.1m,导轨左端连接一个电阻R=0.5Ω,其余电阻不计,导轨右端连一个电容器C= 2.5 ⨯1010 pF,有一根长度为 0.2m 的导体棒ab,a端与导轨下端接触良好,从图中实线位置开始,绕a点以角速度ω = 4 rad/s 顺时针匀速转动75°,此过程通过电阻R的电荷量为()A.3 ⨯10-2 C B.23⨯10-3 CC.(30 + 23)⨯10-3 C D.(30 - 23)⨯10-3 C2.“凸”字形硬质闭合金属线框各边长如图所示,线框右侧有一宽度为3L的匀强磁场区t=时,线框域。
磁场方向垂直于纸面向里。
线框在纸面内始终以速度v向右匀速运动,0开始进入磁场。
选逆时针方向为正,在线框穿过匀强磁场区域的过程中,线框中的感应电流i随时间t变化的图像正确的是()A.B.C.D.3.如图所示,在同一个水平而内的彼此绝缘的两个光滑圆环A、B,大圆环A中还有顺时针方向的恒定电流I。
小圆环B的一半面积在环A内、一半面积在环A外,下列说法正确的是()A.穿过环B的磁通量为0B.环B中有持续的感应电流C.若增大环A内的电流,则环B会向右移动。
D.若减小环A内的电流,则环B会产生道时针方向的电流4.如图所示灯A L,B L完全相同,带铁芯的线圈L的电阻可忽略。
则()A.S闭合瞬间,A L,B L都不立即亮B.S闭合瞬间,A L不亮,B L立即亮C.S闭合的瞬间,A L,B L同时发光,接着A L变暗,B L更亮,最后A L熄灭D.稳定后再断开S的瞬间,B L熄灭,A L比B L(原先亮度)更亮5.如图所示的电路中,A,B,C是三个完全相同的灯泡,L是自感系数很大的电感,其直流电阻与定值电阻R阻值相等,D是理想二极管.下列判断中正确的是()A.闭合开关S的瞬间,灯泡A和C同时亮B.闭合开关S的瞬间,只有灯泡C亮C.闭合开关S后,灯泡A,B,C一样亮D.断开开关S的瞬间,灯泡B,C均要闪亮一下再熄灭6.如图甲所示,正三角形导线框abc固定在磁场中,磁场方向与线圈平面垂直,磁感应强度B随时间变化的关系如图乙所示。
高考物理:带你攻克电磁感应中的典型例题(附解析)

高考物理:带你攻克电磁感应中的典型例题(附解析)例1、如图所示,有一个弹性的轻质金属圆环,放在光滑的水平桌面上,环中央插着一根条形磁铁.突然将条形磁铁迅速向上拔出,则此时金属圆环将()A. 圆环高度不变,但圆环缩小B. 圆环高度不变,但圆环扩张C. 圆环向上跳起,同时圆环缩小D. 圆环向上跳起,同时圆环扩张解析:在金属环中磁通量有变化,所以金属环中有感应电流产生,按照楞次定律解决问题的步骤一步一步进行分析,分析出感应电流的情况后再根据受力情况考虑其运动与形变的问题.也可以根据感应电流的磁场总阻碍线圈和磁体间的相对运动来解答。
当磁铁远离线圈时,线圈和磁体间的作用力为引力,由于金属圆环很轻,受的重力较小,因此所受合力方向向上,产生向上的加速度.同时由于线圈所在处磁场减弱,穿过线圈的磁通量减少,感应电流的磁场阻碍磁通量减少,故线圈有扩张的趋势。
所以D选项正确。
一、电磁感应中的力学问题导体切割磁感线产生感应电动势的过程中,导体的运动与导体的受力情况紧密相连,所以,电磁感应现象往往跟力学问题联系在一起。
解决这类电磁感应中的力学问题,一方面要考虑电磁学中的有关规律,如安培力的计算公式、左右手定则、法拉第电磁感应定律、楞次定律等;另一方面还要考虑力学中的有关规律,如牛顿运动定律、动量定理、动能定理、动量守恒定律等。
例2、如图1所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻。
一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。
整套装置处于磁感应强度为B的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。
让ab杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦。
(1)由b向a方向看到的装置如图2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab杆的速度大小为v时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab杆可以达到的速度最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应课标导航第1课时电磁感应现象、楞次定律1、高考解读真题品析知识:安培力的大小与方向例1. (09年上海物理)13.如图,金属棒ab置于水平放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B,磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef内有一半径很小的金属圆环L,圆环与导轨在同一平面内当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,圆环L有__________(填收缩、扩张)趋势,圆环内产生的感应电流_______________(填变大、变小、不变)。
解析:由于金属棒ab在恒力F的作用下向右运动,则abcd回路中产生逆时针方向的感应电流,则在圆环处产生垂直于只面向外的磁场,随着金属棒向右加速运动,圆环的磁通量将增大,依据楞次定律可知,圆环将有收缩的趋势以阻碍圆环的磁通量将增大;又由于金属棒向右运动的加速度减小,单位时间内磁通量的变化率减小,所以在圆环中产生的感应电流不断减小。
答案:收缩,变小点评:深刻领会楞次定律的内涵热点关注知识:电磁感应中的感应再感应问题例8、如图所示水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,当PQ在外力作用下运动时,MN在磁场力作用下向右运动.则PQ所做的运动可能是A.向右匀速运动B.向右加速运动C.向左加速运动D.向左减速运动解析:当MN在磁场力作用下向右运动,根据左手定则可在通过MN的电流方向为M → N,故线圈B中感应电流的磁场方向向上;要产生该方向的磁场,则线圈A中的磁场方向向上,磁场感应强度则减弱;磁场方向向下,磁场强度则增加.若是第一种情况,则PQ中感应电流方向Q→P,且减速运动,所以PQ应向右减速运动;同理,则向右加速运动.故BC项正确.答案:BC点评:二次感应问题是两次利用楞次定律进行分析的问题,能够有效考查对楞次定律的理解是准确、清晰。
要注意:B线圈中感应电流的方向决定A线圈中磁场的方向,B线圈中电流的变化情况决定A线圈中磁通量的变化情况,把握好这两点即可结合楞次定律顺利解决此类问题2、知识网络考点1:磁通量考点2.电磁感应现象穿过闭合回路的磁通量发生变化,回路中就有感应电流产生.考点3.楞次定律1.内容:感应电流的磁场总是要阻碍引起感应电流的磁场的变化.2.对“阻碍”意义的理解:增反减同,来斥去吸(1)阻碍原磁场的变化。
“阻碍”不是阻止,而是“延缓”,感应电流的磁场不会阻止原磁场的变化,只能使原磁场的变化被延缓或者说被迟滞了,如果原磁场不变化,即使它再强,也不会产生感应电流.(2)阻碍不一定是减小.当原磁通减小时,感应电流的磁场与原磁场相同,以阻碍其减小;当原磁通增加时,感应电流的磁场与原磁场相反,以阻碍其增加.(3)楞次定律是能量转化和守恒定律在电磁感应中的体现3.应用楞次定律的步骤⑴确定引起感应电流的原磁通量的方向⑵原磁通量是增加还是减小⑶确定感应电流的磁场方向⑷利用安培定则确定感应电流的方向4.右手定则:用来直接判断导体切割磁感线产生的感应电流的方向.3、学习方案基础过关重难点:感应电流方向的判断(原创)例3.导线框abcd与直导线在同一平面内,直导线中通有恒定电流I,当线框自左向右匀速通过直导线的过程中,线框中感应电流如何流动?解析:画出磁场的分布情况如图示:开始运动到A位置,向外的磁通量增加,I的方向为顺时针,当dc边进入直导线右侧,直到线框在正中间位置B时,向外的磁通量减少到0, I的方向为逆时针, 接着运动到C,向里的磁通量增加, I的方向为逆时针, 当ab边离开直导线后,向里的磁通量减少,I方向为顺时针.答案:感应电流的方向先是顺时针,接着为逆时针,然后又为顺时针。
典型例题:(原创)例4.如图所示,a 、b 、c 、d 为四根相同的铜棒, c 、d 固定在同一水平面上,a 、b 对称地放在c 、d 棒上,它们接触良好,O 点为四根棒围成的矩形的几何中心,一条形磁铁沿竖直方向向O 点落下,则ab 可能发生的情况是: ( )(A) 保持静止 ; (B) 分别远离O 点; (C) 分别向O 点靠近; (D) 无法判断。
解析:当磁体向下时,穿过矩形的磁通量增加,矩形有缩小的趋势。
答案:C点评:理解好楞次定律的内涵,是解决电磁感应现象的至关因素。
第2课时 法拉第电磁感应定律 自感1、高考解读真题品析知识:楞次定律、安培力、感应电动势、左手定则、右手定则例1. (09年山东卷)21.如图所示,一导线弯成半径为a 的半圆形闭合回路。
虚线MN 右侧有磁感应强度为B 的匀强磁场。
方向垂直于回路所在的平面。
回路以速度v 向右匀速进入磁场,直径CD 始络与MN 垂直。
从D 点到达边界开始到C 点进入磁场为止,下列结论正确的是A .感应电流方向不变B . CD 段直线始终不受安培力C .感应电动势最大值E =BavD .感应电动势平均值14E Bav =π 解析:A 选项在闭合电路进入磁场的过程中,通过闭合电路的磁通量逐渐增大,根据楞次定律可知感应电流的方向为逆时针方向不变,A 正确。
B 选项根据左手定则可以判断,受安培力向下,B 不正确。
C 选项当半圆闭合回路进入磁场一半时,即这时等效长度最大为a ,这时感应电动势最大E=Bav ,C 正确D 选项感应电动势平均值va a B tE 2212π⋅=∆∆Φ=,D 正确。
答案:ACD点评:感应电动势公式E t∆φ=∆只能来计算平均值,利用感应电动势公式E Blv =计算时,l 应是等效长度,即垂直切割磁感线的长度。
热点关注:知识:导体平动切割磁感线的计算公式例2. 水平放置的金属框架abcd ,宽度为0.5m ,匀强磁场与框架平面成30°角,如图所示,磁感应强度为0.5T ,框架电阻不计,金属杆MN 置于框架上可以无摩擦地滑动,MN 的质量0.05kg ,电阻0.2Ω,试求当MN 的水平速度为多大时,它对框架的压力恰为零,此时水平拉力应为多大? 解析:点评:请注意1. E=BLV 的适用条件 2. 受力图正确 3. 力的处理恰当2、知识网络考点1.感应电动势:1. 在电磁感应现象中产生的电动势.产生感应电动势的部分相当于电源.2. 法拉第电磁感应定律:(1)电路中感应电动势的大小,跟穿过这一回路的磁通量的变化率成正比,即tNE ∆∆Φ=, N 为线圈匝数 (2)区别磁通量、磁通量的变化、磁通量的变化率.考点2.自感3、学习方案基础过关重难点:带电粒子在有界磁场中的运动(改编)例3.彩色电视机的电源输人端装有电源滤波器,其电路图如图所示,元件L1 , L2 是两个电感线圈,它们的自感系数很大,F是保险丝,R是压敏电阻(正常情况下阻值很大,但电压超过设定值时,阻值会迅速变小,可以保护与其并联的元件),C1, C2 是电容器,S为电视机开关,在电视机正常工作时,若小明在没有断开开关S时,就拔去电源插头,则以下说法正确的是()A. F可能被熔断B. F不可能被熔断C. C1可能被损坏D. C2可能被损坏解析:先拔去电源插头,保险丝不形成回路,不会熔断。
开关S未断开,由于自感作用,L中电流不会突变,在R 两端产生高电压,R 阻值迅速变小, C 1两端电压迅速变小,C 1不会被损坏,高电压都加在C 2上, C 2可能被损坏。
答案:BD典型例题:(改编)例4.如图,一圆环与外切正方形线框均由相同的绝缘导线制成,并各自形成闭合回路,匀强磁场布满整个方形线框,当磁场均匀变化时,线框和圆环中的感应电动势之比是多大?感应电流之比等于多少?解析:设正方形边长为2a ,则圆环半径为a , 两者面积之比为 S1/S2=4a2/πa2=4/π, 电阻之比为 R1/R2=8a/2πa=4/π E =ΔΦ/Δt =S ΔB/Δt ∝S E1 / E2= S1/S2=4a2/ π a2=4/π,1122121=⨯=R R E E I I 答案:电动势之比4/π,电流之比1:1例5.矩形形线框abcd 绕OO ' 轴在磁感强度为0.2T 的匀强磁场中以2 r/s 的转速匀速转动,已知ab =20cm ,bd=40cm ,匝数为100匝,当线框从如图示位置开始转过90°,则线圈中磁通量的变化量ΔΦ等于多少?磁通量平均变化率为多少?线圈中产生的平均感应电动势E 为多少? 解析:转过90°时,线圈中磁通量的变化量ΔΦ=BS – 0 = 0.016 Wb 周期为 T=1/2=0.5s Δt =1/4 T=0. 125sΔΦ/Δt =0.016/0.125 =0.128 Wb /s , E=n ΔΦ/Δt =12.8V 答案:0.128 Wb /s ,12.8V 点评:第3课时 电磁感应规律的综合应用1、高考解读真题品析知识:电磁感应中的电路问题例1. (09年广东物理)18.(15分)如图18(a )所示,一个电阻值为R ,匝数为n 的圆形金属线与阻值为2R 的电阻R 1连结成闭合回路。
线圈的半径为r 1 . 在线圈中半径为r 2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图18(b )所示。
图线与横、纵轴的截距分别为t 0和B 0 . 导线的电阻不计。
求0至t 1时间内(1)通过电阻R 1上的电流大小和方向;(2)通过电阻R 1上的电量q 及电阻R 1上产生的热量。
解析:⑴由图象分析可知,0至1t 时间内 0B B t t ∆=∆ 由法拉第电磁感应定律有 BE n n s t tφ∆∆==⋅∆∆ 而22s r π=由闭合电路欧姆定律有11EI R R=+联立以上各式解得通过电阻1R 上的电流大小为202103nB r I Rt π=由楞次定律可判断通过电阻1R 上的电流方向为从b 到a⑵通过电阻1R 上的电量20211103nB r t q I t Rt π==通过电阻1R 上产生的热量222420211112029n B r t Q I R t Rt π==答案:(1)202103nB r I Rt π=,电流方向为从b 到a(2)20211103nB r t q I t Rt π==,22242021*******n B r t Q I R t Rt π==点评: 热点关注知识:电磁感应中的动力学问题答案:⑴2212L B fRV V -= ⑵L R BLV B f 1< ⑶2222212)]([LB R f R V V BL R E P =-==电 ⑷m fR V V L B a --=)(2122 点评:电磁感应中的动力学问题解题步骤: ①受力分析(标上V ,a 方向)、过程分析 ② 交代隐含条件,书写方程2、知识网络考点1.电磁感应中的动力学问题1.电磁感应中产生的感应电流在磁场中将受到安培力的作用,因此,电磁感应问题往往跟力学问题联系在一起,解决这类电磁感应中的力学问题,不仅要应用电磁学中的有关规律,如楞次定律、法拉第电磁感应定律、左右手定则、安培力的计算公式等,还要应用力学中的有关规律,如牛顿运动定律、动量定理、动能定理、动量守恒定律、机械能守恒定律等。