用图解法解动态平衡问题
图解法分析动态平衡问题

图解法分析动态平衡问题【例1】如图2-4-2所示,两根等长的绳子AB和BC吊一重物静止,两根绳子与水平方向夹角均为60°.现保持绳子AB与水平方向的夹角不变,将绳子BC逐渐缓慢地变化到沿水平方向,在这一过程中,绳子BC的拉力变化情况是( )A.增大B.先减小,后增大C.减小D.先增大,后减小解析:方法一:对力的处理(求合力)采用合成法,应用合力为零求解时采用图解法(画动态平行四边形法作出力的平行四边形,如图甲所示.由图可看出,FBC先减小后增大.方法二:对力的处理(求合力)采用正交分解法,应用合力为零求解时采用解析法.如图乙所示,将FAB、FBC分别沿水平方向和竖直方向分解,由两方向合力为零分别列出:FABcos 60°=FB Csin θ,FABsin 60°+FB Ccos θ=FB,联立解得FBCsin(30°+θ)=FB/2,显然,当θ=60°时,FBC最小,故当θ变大时,FBC先变小后变大.答案:B变式1-1如图2-4-3所示,轻杆的一端固定一光滑球体,杆的另一端O为自由转动轴,而球又搁置在光滑斜面上.若杆与墙面的夹角为β,斜面倾角为θ,开始时轻杆与竖直方向的夹角β<θ. 且θ+β<90°,则为使斜面能在光滑水平面上向右做匀速直线运动,在球体离开斜面之前,作用于斜面上的水平外力F的大小及轻杆受力T和地面对斜面的支持力N的大小变化情况是( )A .F逐渐增大,T逐渐减小,FN逐渐减小B.F逐渐减小,T逐渐减小,FN逐渐增大C.F逐渐增大,T先减小后增大,FN逐渐增大D.F逐渐减小,T先减小后增大,FN逐渐减小解析:利用矢量三角形法对球体进行分析如图甲所示,可知T是先减小后增大.斜面对球的支持力FN′逐渐增大,对斜面受力分析如图乙所示,可知F=FN″sinθ,则F 逐渐增大,水平面对斜面的支持力FN =G+FN″·cos θ,故FN逐渐增大.答案:C利用相似三角形相似求解平衡问题【例2】一轻杆BO,其O端用光滑铰链固定在竖直轻杆AO上,B端挂一重物,且系一细绳,细绳跨过杆顶A处的光滑小滑轮,用力F拉住,如图2-4-4所示.现将细绳缓慢往左拉,使杆BO与杆AO间的夹角θ逐渐减小,则在此过程中,拉力F及杆BO所受压力FN的大小变化情况是( )A.FN先减小,后增大B.FN始终不变C.F先减小,后增大D.F始终不变解析:取BO杆的B端为研究对象,受到绳子拉力(大小为F)、BO杆的支持力FN和悬挂重物的绳子的拉力(大小为G)的作用,将FN与G合成,其合力与F等值反向,如图所示,得到一个力的三角形(如图中画斜线部分),此力的三角形与几何三角形OBA相似,可利用相似三角形对应边成比例来解.如图所示,力的三角形与几何三角形OBA相似,设AO高为H,BO长为L,绳长为l,则由对应边成比例可得,FN=G,F=G 式中G、H、L均不变,l逐渐变小,所以可知FN 不变,F逐渐变小.答案:B变式2-1如图2-4-5所示,两球A、B用劲度系数为k1的轻弹簧相连,球B用长为L的细绳悬于O点,球A固定在O点正下方,且点O、A之间的距离恰为L,系统平衡时绳子所受的拉力为F1.现把A、B间的弹簧换成劲度系数为k2的轻弹簧,仍使系统平衡,此时绳子所受的拉力为F2,则F1与F2的大小之间的关系为( )A.F1>F2 B.F1=F2 C.F1<F2 D.无法确定解析:两球间放劲度系数为k1的弹簧静止时,小球B受力如右图所示,弹簧的弹力F与小球的重力G的合力与绳的拉力F1等大反向,根据力的三角形与几何三角形相似得,由于OA、OB 均恒为L,因此F1大小恒定,与弹簧的劲度系数无关,因此换用劲度系数为k2的弹簧后绳的拉力F2=F1,B正确.答案:B平衡物体中的临界与极值问题临界问题某种物理现象变化为另一种物理现象或物体从某种特性变化为另一种特性时,发生质的飞跃的转折状态为临界状态,临界状态也可理解为“恰好出现”或“恰好不出现”某种现象的状态,平衡物体的临界状态是指物体所处平衡状态将要变化的状态,涉及临界状态的问题叫临界问题,解决这类问题一定要注意“恰好出现”或“恰好不出现”的条件.【例4】如图2-4-8所示,一球A夹在竖直墙与三角劈B的斜面之间,三角形劈的重力为G,劈的底部与水平地面间的动摩擦因数为μ,劈的斜面与竖直墙面是光滑的,问欲使三角劈静止不动,球的重力不能超过多大?(设劈的最大静摩擦力等于滑动摩擦力)解析:本题两物体均处于静止状态,故需分析好受力图示,列出平衡方程求解.用正交分解法,对球和三角劈分别进行受力分析,如图甲、乙所示.由于三角劈静止,故其受地面的静摩擦力.F≤Fmax=μFNB.由平衡条件有:1对球有:GA=FNcos 45°①FNA=FNsin 45°②2对三角劈有FNB=G+FN′sin 45°③F=FN′cos 45°④F≤μFNB,⑤∵FN=FN′⑥由①~⑥式解得:GA≤G.答案:球的重力不得超过G变式4-1如图2-4-9所示,两个质量均为m的小环套在一水平放置的粗糙长杆上,两根长度均为l的轻绳一端系在小环上,另一端系在质量为M的木块上,两个小环之间的距离也为l,小环保持静止.试求:(1)小环对杆的压力;(2)小环与杆之间的动摩擦因数μ至少为多大?解析:(1)整体法分析有:2FN=(M+2m)g,即FN=Mg+mg由牛顿第三定律得:小环对杆的压力FN′=Mg+mg.(2)研究M得2FTcos 30°=Mg临界状态,此时小环受到的静摩擦力达到最大值,则有FTsin 30°=μFN′解得:动摩擦因数μ至少为μ=答案:(1) Mg+mg (2)。
李真图解法分析动态平衡问题

相似三角形法分析动态平衡问题(1)相似三角形:正确作出力的三角形后,如能判定力的三角形与图形中已知长度的三角形(几何三角形)相似,则可用相似三角形对应边成比例求出三角形中力的比例关系,从而达到求未知量的目的。
(2)往往涉及三个力,其中一个力为恒力,另两个力的大小和方向均发生变化,则此时用相似三角形分析。
相似三角形法是解平衡问题时常遇到的一种方法,解题的关键是正确的受力分析,寻找力三角形和结构三角形相似。
【例1】、半径为R 的球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,滑轮到球面B 的距离为h ,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮后用力拉住,使小球静止,如图1-1所示,现缓慢地拉绳,在使小球由A 到B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化的情况是( )A. 、N 变大,T 变小B 、N 变小,T 变大C 、N 变小,T 先变小后变大D 、N 不变,T 变小解析:如图1-2所示,对小球:受力平衡,由于缓慢地拉绳,所以小球运动缓慢视为始终处于平衡状态,其中重力mg 不变,支持力N ,绳子的拉力T 一直在改变,但是总形成封闭的动态三角形(图1-2中小阴影三角形)。
由于在这个三角形中有四个变量:支持力N 的大小和方向、绳子的拉力T 的大小和方向,所以还要利用其它条件。
实物(小球、绳、球面的球心)形成的三角形也是一个动态的封闭三角形(图1-2中大阴影三角形),并且始终与三力形成的封闭三角形相似,则有如下比例式: R N R h mg L T =+= 可得:mg Rh L T += 运动过程中L 变小,T 变小。
mg Rh R N += 运动中各量均为定值,支持力N 不变。
正确答案D 。
【跟踪1】如图,竖直杆上端有固定滑轮,斜杆下端有铰链,物体被细软绳在斜杆上端点拴住,绳绕过定滑轮后被向右拉动。
问绳中的拉力和斜杆的支持力如何变化。
【跟踪2】、如图所示,两球A 、B 用劲度系数为k1的轻弹簧相连,球B 用长为L 的细绳悬于O 点,球A 固定在O 点正下方,且点O 、A 之间的距离恰为L ,系统平衡时绳子所受的拉力为F1.现把A 、B 间的弹簧换成劲度系数为k2的轻弹簧,仍使系统平衡,此时绳子所受的拉力为F2,则F1与F2的大小之间的关系为( )A .F1>F2B .F1=F2C .F1<F2D .无法确定【跟踪3】如图甲所示,AC 是上端带定滑轮的固定竖直杆,质量不计的轻杆BC 一端通过铰链固定在C 点,另一端B 悬挂一重为G 的重物,且B 端系有一根轻绳并绕过定滑 轮A.现用力F 拉绳,开始时∠BCA >90°,使∠BCA 缓慢减小,直到杆BC 接近竖直 杆AC.此过程中,杆BC 所受的力( )A .大小不变B .逐渐增大C .逐渐减小D .先增大后减小陷阱题--相似对比题1、如图所示,硬杆BC 一端固定在墙上的B 点,另一端装有滑轮C ,重 物D 用绳拴住通过滑轮固定于墙上的A 点。
专题 图解法处理动态平衡问题

小和方向变化,但方向始终受某种约束,分
别作出力的三角形和结构三角形,利用它 们的相似性分析力的变化。
例2.光滑半球面上的小球被一通过定滑轮的 力F由底端缓拉到顶端的过程中,绳的拉力F 及半球面对小球的支持力FN的变化情况 A、FN变大,F不变;B、FN变小,F变大; C、FN不变,F变小;D、FN变大,F变小
例:圆形支架BAD,两细绳OA和OB结于圆 心0,下悬重为G的物体,使绳OA固定不动, 将OB绳的B端沿半圆支架从水平位置逐渐移 止竖直位置的过程中, 分析OA绳和OB绳所 受力大小的变化。
C A
O
B
一、动态平衡模型
【模型概述】 所谓动态平衡问题是指通过控制 某些物理量,使物体的状态发生缓 慢的变化,而在这个过程中物体又 始终处于一系列的平衡状态.这是
θ F1的方向
②当F1=Fsinθ时,一组解
③当Fsinθ<F1<F时,两组解
θ
F
F1的方向 θ
F2
F1的方向
θ
F1的方向
④当F1>F时,一组解
练习1:物体静止于光滑的水平面上,力 F作用于物体上的O点,要使物体受的合 力沿着OA的方向,则必须在同一平面内 再加一个力,这个力的最小值为?
A:FCoS B:FSin C:Fctg
拓展链接3、如图所示,绳与杆均不计重力,所承受弹力的最大值一定,A 端用铰链固定,滑轮O在A点正上方(滑轮大小及与绳间的摩擦均可忽略), B端吊一重物P。现施拉力FT将B端缓慢上拉(绳、杆均未断),在杆达到 竖直前,下列说法中正确的是( A.绳子越来越容易断 )。
B.绳子越来越不容易断
C.杆越来越容易断 D.杆越来越不容易断
一个力的大小与方向不变,另一个力的方向不变
高中物理必修一《图解法分析动态平衡问题》课件ppt

F2 G
例1 如图所示,一个重力为G的匀质球放在光滑斜面上,斜面倾角为α, 在斜面上有ቤተ መጻሕፍቲ ባይዱ个不计厚度的木板挡住球,使之处于静止状态。令使板与 斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如 何变化?
F1 F合
F2 G
例1 如图所示,一个重力为G的匀质球放在光滑斜面上,斜面倾角为α, 在斜面上有一个不计厚度的木板挡住球,使之处于静止状态。令使板与 斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如 何变化?
(2)物体所受的某一个力与所受的其他 外力的合力的关系是:大__小___相___等___,___方__向___相___反__
例1 如图所示,一个重力为G的匀质球放在光滑斜面上,斜面倾角为α, 在斜面上有一个不计厚度的木板挡住球,使之处于静止状态。令使板与 斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如 何变化?
F1 F合
F2 G
题型特点:
(1)物体受三个力; (2)三个力中一个力是恒力,另一力的方向不 变,第三力的大小和方向都变。
解题关键 化“动”为“静”,“静”中求“动”
认清哪些因素保持不变,哪些因素是改变的
F1
F合
β α
F2 G
例1 如图所示,一个重力为G的匀质球放在光滑斜面上,斜面倾角为α, 在斜面上有一个不计厚度的木板挡住球,使之处于静止状态。令使板与 斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如 何变化?
F1 F合
F2 G
例1 如图所示,一个重力为G的匀质球放在光滑斜面上,斜面倾角为α, 在斜面上有一个不计厚度的木板挡住球,使之处于静止状态。令使板与 斜面的夹角β缓慢增大,问:在此过程中,挡板和斜面对球的压力大小如 何变化?
受力分析中动态平衡问题(含答案)

受力分析中的动态平衡问题方法一:三角形图解法特点:三角形图象法则适用于物体所受的三个力中,有一力的大小、方向均不变(通常为重力,也可能是其它力),另一个力的方向不变,大小变化,第三个力则大小、方向均发生变化的问题。
【例1】如图所示,三段绳子悬挂一物体,开始时OA 、OB 绳与竖直方向夹角=,现使O 点保持不动,把OB 绳子的悬点移到竖直墙与O 点在同一水平面的C 点,在移动过程中,则关于OA 、OB 绳拉力的变化情况,正确的是( )A .OA 绳上的拉力一直在增大B .OA 绳上的拉力先增大后减小C .OB 绳上拉力先减小后增大,最终比开始时拉力大D .OB 绳上拉力先减小后增大,最终和开始时相等【练习】如图所示,一定质量的物体通过轻绳悬挂,结点为O 。
人沿水平方向拉着OB 绳,物体和人均处于静止状态。
若人的拉力方向不变,缓慢向左移动一小段距离,下列说法正确的是( )A .OA 绳中的拉力先减小后增大B .OB 绳中的拉力不变C .人对地面的压力逐渐减小D .地面对人的摩擦力逐渐增大方法二:相似三角形法。
特点:相似三角形法适用于物体所受的三个力中,一个力大小、方向不变,其它二个力的方向均发生变化,且三个力中没有二力保持垂直关系,但可以找到力构成的矢量三角形相似的几何三角形的问题【例】一轻杆BO ,其O 端用光滑铰链固定在竖直轻杆AO 上,B 端挂一重物,且系一细绳,细绳跨过杆顶A 处的光滑小滑轮,用力F 拉住,如图所示。
现将细绳缓慢往左拉,使杆BO 与杆A O 间的夹角θ逐渐减少,则在此过程中,拉力F 及杆BO 所受压力F N 的大小变化情况是( )A .F N 先减小,后增大B .F N 始终不变C .F 先减小,后增大D .F 始终不变【练习】如图所示,光滑的半球形物体固定在水平地面上,球心正上方有一光滑的小滑轮,轻绳的一端系一小球,靠放在半球上的A 点,另一端绕过定滑轮,后用力拉住,使小球静止.现缓慢地拉绳,在使小球沿球面由A 到半球的顶点B 的过程中,半球对小球的支持力N 和绳对小球的拉力T 的大小变化情况是( )A .N 变大,T 变小B .N 变小,T 变大C .N 变小,T 先变小后变大D .N 不变,T 变小方法三:解析法特点:解析法适用的类型为一根绳挂着光滑滑轮,三个力中其中两个力是绳的拉力,由于是同一根绳的拉力,两个拉力相等,另一个力大小、30方向不变的问题。
动态平衡问题的分析方法

动态平衡问题的分析方法动态平衡问题是平衡问题中的难点问题,这里,我们将通过具体实例来分析如何求解动态平衡问题。
一、图解法例1、如图所示,用水平细线将电灯拉到图示位置,若保持灯位置不变,将细线由顺时针转到竖直的过程中,细线受到的拉力?A、变大B、变小C、先变大后变小D、先变小后变大分析和解答:如图所示,选O点为研究对象,可认为O点受到三个力作用:一个灯的重力引起的对O点向下的拉力,一个是电线的拉力,再一个是线的拉力,根据共点力作用下物体平衡条件,可知电线拉力(OB)和细线(OA)拉力的合力必和灯的重力大小相等,方向相反,作用在一条直线上,作力的平行四边形,由于电线拉力和细线拉力的合力大小和方向是不变的,而且电线拉力方向(即OB)方向也不变,可以发现随细线OA拉力方向改变,电线拉力逐渐变小。
(即线段的长度)而细线拉力则先变小后变大,当细线拉力方向和电线拉力方向垂直时,细线拉力取最小值,由此选项D正确。
点评:利用图解法来定性分析一些动态平衡问题,简单直观有效,是经常使用的方法。
分析时要注意那些力的大小不变,注意那些力的方向不变,注意那些力的大小和方向都不变。
(1)若已知一个力不变,另一个力F1方向不变大小变,则用三角形法(或图解法)处理问题,另一个力F2的最小值条件为F1⊥F2.(2)若已知一个力不变,另一个力大小不变方向变,则用图解法处理问题.例2、如图,柔软轻绳ON的一端O固定,其中间某点M拴一重物,用手拉住绳的另一端N.初始时,OM竖直且MN被拉直,OM与MN之间的夹角为α.现将重物向右上方缓慢拉起,并保持夹角α不变.在OM由竖直被拉到水平的过程中( )A .MN上的张力逐渐增大B.MN上的张力先增大后减小C.OM上的张力逐渐增大D.OM上的张力先增大后减小分析和解答:选AD.重物受到重力mg、OM绳的拉力FOM、MN 绳的拉力FMN共三个力的作用.缓慢拉起过程中任一时刻可认为是平衡状态,三力的合力恒为0.如图所示,由三角形定则得一首尾相接的闭合三角形,由于α>且不变,则三角形中FMN与FOM的交点在一个优弧上移动,由图可以看出,在OM被拉到水平的过程中,绳MN中拉力一直增大且恰好达到最大值,绳OM中拉力先增大后减小,故A、D正确,B、C错误.点评:这类问题的特点是:重力大小方向都不变,还有两个力的夹角不变,可以画圆,因为有两个力的夹角α不变,所以表示重力的线段对应的圆周角不变。
图解法求解高考动态平衡题

图解法求解高考动态平衡题作者:王玉梅来源:《中学物理·高中》2013年第04期物体动态平衡问题的求解方法常见的有两种:解析法和图解法.所谓解析法:画出研究对象的受力图,根据动态变化的原因,一般是某一夹角在发生变化,用三角函数表示出各个作用力与变化夹角之间的关系,从而判断各作用力的变化;所谓图解法:画出研究对象的受力图,作出力的平行四边形或矢量三角形,依据某一参量的变化,分析各边的长度变化从而确定力的大小及方向的变化情况.图解法有两种情况:第一种是矢量三角形求解:当物体受到一个大小方向不变、一个方向不变、一个大小方向都变化的三个力作用而处于动态平衡时,且题目只要求定性讨论力的大小而不必进行定量计算时应首先考虑用矢量三角形方法.第二种是相似三角形求解:一个物体受三力作用而处于动态平衡.若三力中,已知一个力的大小和方向不变,第二、第三个力方向都变化,且题中只要求定性讨论力的大小而不必进行定量计算时,可以用相似三角形求解.然而,对某些物体动态平衡问题,利用解析法来求解却很麻烦,有时甚至难以解决,但运用图解法来求解,却能简捷、快速、有效地解决.下面举例说明.例1(2012年全国高考课标卷)如图1,一小球放置在木板与竖直墙面之间.设墙面对球的压力大TP4GW107.TIF,Y#]小为N1,球对木板的压力大小为N2,以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置.不计摩擦,在此过程中A.N1始终减小,N2始终增大B.N1始终减小,N2始终减小C.N1先增大后减小,N2始终减小D.N1先增大后减小,N2先减小后增大解析法首先对小球进行受力分析,画出受力分析图如图2.由几何、三角函数知识有当木板从图示位置开始缓慢地转到水平位置过程中α增大,tanα增大,N1始终减小.答案B图解法当木板从图示位置开始缓慢地转到水平位置过程中,木板与竖直墙面有不同的夹角,使得木板对球的弹力方向发生了改变,球受到的重力是一恒力,球受到墙面的弹力的方向不变.球受到这3个力的作用而处于动态平衡,此题刚好满足图解法第一种方法,即矢量三角形求解,那么小球受到的这3个力一定组成一个封闭的矢量三角形,首先是将恒重力作出,再在重力线段的另一端作出墙面对球在几种情况下弹力的作用线,该线与木板对球弹力作用力的交点就是矢量三角形的另一个顶点,如图3示,从而也能得出正确选项.点评此题用数学解析法和物理图解法都可以求解,相比较而言,图解法比较简单.例2(2009年海南高考题)如图4所示,一定质量的物块用两根轻绳悬在空中,其中绳OA固定不动,绳OB在竖直平面内由水平方向向上转动,则在绳OB由水平转至竖直过程中,绳OB张力的大小将A.一直变大B.一直变小C.先变大后变小D.先变小后变大图解法在绳OB转动的过程中物块始终处于静止状态,所受合力的始终为零,图5为绳OB转动过程中结点的受力示意图,从图中可知,绳OB的张力先变小后变大.解析法绳OB中张力的变化是由于绳OB的方向变化引起的,绳OB的方向可由绳与水平方向的夹角θ来表示,这就意味着可以建立一个关于OB中的张力F随θ的函数关系,从该函数关系分析张力F随θ的变化规律,如图6所示为任一状态下力的图示,由正弦定理得当0°≤θ≤90°时,F随θ的增大而增大;当90°-α答案D点评本题之所以利用图解法中第一种矢量三角形方法求解,是因为物体受三力作用满足动态平衡,而这三力中重力不变,绳OA中的张力方向不变,所以刚好满足矢量三角形求解条件,三个力变化的特征可以在力的矢量三角形中得到直观反映.本题更加凸显图解法比解析法简便.例3如图7示,球O是光滑均质的,置于倾角为θ的斜面上,球受的合力为零,球在挡板MN的作用下处于静止.则档板MN对球O弹力最小的是图;斜面对球弹力最大的是图CD#3].解析利用3力的合力为零,分析知小球受3个力作用,即重力mg、斜面支持力N斜和档板支持力N档.该3个力应组成封闭的矢量三角形.在图示的4种情况下,球O所受的重力不变,所受斜面的弹力F1的方向不变,仅因为挡板的弹力F2发生变化,从而导致F1的大小变化,由于球受3个力而平衡,这3个力可以组成封闭的矢量三角形,作出球的重力G和斜面垂直的弹力F1的方向,且F1与G的夹角为θ,然后过重力的尾端作出几种情况下与挡板垂直的力F2,这几个F2力的作用线与F1力的作用线的交点就是封闭矢量三角形的另一个顶点(其它2个顶点重力的矢量两端表示).如图8所示有故第一空填C;第二空填A.技巧点本题的挡板MN与斜面有不同的夹角,使得挡板对球的弹力方向发生了改变,球受到的重力是一恒力,球受到斜面的弹力的方向不变.球受到这3个力的作用而处于平衡,这3个力一定组成一个封闭的矢量三角形,将这几种情况下的矢量三角形放在同一个图上比较,使问题变得十分直观.问题的关键是这矢量三角形如何画:首先是将恒重力作出,再在重力线段的另一端作出挡板在几种情况下弹力的作用线,该线与斜面弹力作用力的交点就是矢量三角形的另一个顶点.如图9和图8效果完全相同,不同的是作斜面弹力的作用线一个是经过箭头一端,一个是经过箭尾端.两图表面上看不同,实质是相同的.点评此题有四种情形,若用解析法求解,应该对四种不同的情况列四个函数式,若用图解法求解,四种情况一个图形就可以解决,再次说明图解法方便而又快捷.例4如图10所示,光滑半球的半径为R,有一质量为m的小球用一细线挂靠在半球上,细线上端通过一个定滑轮,在用力将小球缓慢往上拉的过程中,细线对小球的拉力大小F和小球紧压球面的力F2变化情况是A.两者都变小B.两者都变大C.F变小,F2不变D.F不变,F2变小解析在小球往上移动的过程中,小球所受的重力不变,拉力F与重力的分力F1大小相等、方向相反,并且随着小球上移,F1与F2的方向均发生变化,此时力的平行四边形的形状变化规律不直观,力随角度变化的关系也难建立.用解析法和图解法中矢量三角形都很难完成此题,基于此,需寻求图解法中第二种方法求解,此处所求的力的变化关系是由于O′A段细线缩短引起的,因此可建立与O′A线段长的变化关系.如图10所示,设O′A段长为L,小球半径为r,O′点到半球顶的距离为d,利用三角形相似得当小球往上移动时,L减小,d、r和R都不变,因此F1减小(即F减小)、F2不变,故选项C正确.点评此题用数学解析法找角和力之间函数关系难以列式求解,而此题中物体受三力处于动态平衡时,这三力中一个力恒定不变(重力),而另外二个力方向都发生了变化,刚好满足相似三角形求解条件,各力变化通过力组成的三角形及边长组成的三角形相似得到了求解.从以上几例,我们可以看到,求解物体动态平衡问题用图解法求解的优越性,图解法求解包含两种情况:一是矢量三角形求解,另一是相似三角形求解,两种情况求解条件掌握后对求解物体动态平衡问题会带来极大方便.。
高一上学期物理培优(一) 巧解动态平衡问题

高中物理培优之(一)·巧解动态平衡问题动态平衡问题是高中物理平衡问题中的一个难点,学生不掌握问题的根本和规律,就不能解决该类问题,一些教学资料中对动态平衡问题归纳还不够全面。
因此,专题对动态平衡问题的常见解法梳理如下。
所谓的动态平衡,就是通过控制某一物理量,使物体的状态发生缓慢变化的平衡问题,物体在任意时刻都处于平衡状态,动态平衡问题中往往是三力平衡。
即三个力能围成一个闭合的矢量三角形。
一、图解法例题1如图所示,一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为F N1,球对木板的压力大小为F N2.以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置.不计摩擦,在此过切程中( )A.F N1始终减小B. F N2始终减小C. F N1先增大后减小D. F N2先减小后增大归纳:二、解析法物体处于动态平衡状态时,对研究对象的任一状态进行受力分析,建立平衡方程,得到自变量与应变量的函数关系,由自变量的关系确定应变量的关系。
例题2倾斜长木板一端固定在水平轴O上,另一端缓慢放低,放在长木板上的物块m 一直保持相对木板静止状态,如图所示.在这一过程中,物块m受到长木板支持力F N和摩擦力F f的大小变化情况是()A. F N变大,F f变大B. F N变小,F f变小C. F N变大,F f变小D. F N变小,F f变大变式:如图所示,轻绳OA、OB系于水平杆上的A点和B点,两绳与水平杆之间的夹角均为30°,重物通过细线系于O点。
将杆在竖直平面内沿顺时针方向缓慢转动30°此过程中( )A. OA绳上拉力变大,OB绳上拉力变大B. OA绳上拉力变大,OB绳上拉力变小C. OA绳上拉力变小,OB绳上拉力变大D. OA绳上拉力变小,OB绳上拉力变小归纳:三、相似三角形方法:找到与力的矢量三角形相似的几何三角形,根据相似三角形的性质,建立比例关系,进行讨论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【突破训练3】如图所示,将球用细绳系住放在倾角为θ的光滑斜
面上,当细绳由水平方向缓慢向上偏移至竖直方向的过程中,
细绳上的拉力将
(D )
A.逐渐增大 C.先增大后减小
B.逐渐减小
D.先减小后增大 T
FN
解析法
TcosFNsin
TsinFNcosmgT
mg sin cos(
带滑轮的动态平衡问题
M
N
G
在共点力作用下物体的平衡
-------动态平衡专题
一、解析法 解动态平衡问题 二、用图解法解动态平衡问题(图解法还可以求极值问题) 三、相似三角形法(正、余弦定理) 解动态平衡问题
四、带滑轮的动态平衡问题
相似三角形发解动态平衡问题
T
G
FN
G
F
FN
带滑轮的动态平衡问题 例5 如图所示,将一根不能伸长的柔 软细绳两端分别系于A、B两点上,一 物体通过一光滑的动滑轮悬挂在绳 子上,达到平衡时,两段绳子间的夹角 为θ,绳子的张力为F.现将绳子A端固 定不动,B端缓慢移动到正下方的C点, 再从C点缓慢移动到与C点水平的D 点.试分析在此过程中两段绳子间的 夹角θ和绳子的张力F的变化情况.
沿球面由A到B的过程中,半球对小球的支持力FN和 绳对小球的拉力T的大小变化情况是
(A) FN变大,T变小 (B) FN变小,T变大
D
(C)FN 变小,T先变小后变大
(D) FN 不变,T变小
G
T FN
①除重力外其余两个力方向均变化
②若给定条件中有长度条件,常用力组成的三角形G ( 矢量三角形)与长度组成的三角形(几何三角形)的相 似比求解.
)
G
FN
tan
mg
sin cos
例1
【突破训练3】如图所示,将球用细绳系住放在倾角为θ的光滑斜
面上,当细绳由水平方向缓慢向上偏移至竖直方向的过程中,
细绳上的拉力将 A.逐渐增大
B.逐渐减小
( D)
C.先增大后减小
D.先减小后增大
解析法
G
ห้องสมุดไป่ตู้
FN
图解法 G不变 FN方向不变
T
动态三角形
当作平衡处理
动态
缓慢
图2
在共点力作用下物体的平衡
-------动态平衡专题
1.动态平衡:是指平衡问题中的一部分力是变力,是动态
力,力的大小和方向均要发生变化,所以叫动态平衡,这 是力平衡问题中的一类难题.
2.基本思路:化“动”为“静”,“静”中求“动”. 3.基本方法:图解法和解析法.
例1 cos(A-B) = cosAcosB+sinAsinB
( D)
A 绳子的拉力增大
B.M对地面的压力变大 C.M所受的静摩擦力变大
D.滑轮轴所受的压力变大
解析法 解动态平衡问题
相似三角形法解动态平衡问题
例3 光滑的半球形物体固定在水平地面上,球心正上
方有一光滑的小滑轮,轻绳的一端系一小球,靠放
在半球上的A点,另一端绕过定滑轮后用力拉住,使
小球静止,如图甲所示,现缓慢地拉绳,在使小球
G
课堂探究
例2 如图所示, 物体在沿粗糙斜面向上的拉力F作用下处于静止
状态. 当F逐渐增大到物体即将相对于斜面向上运动的过程中,
斜面对物体的作用力可能
( AD )
A.逐渐增大
B.逐渐减小
C.先增大后减小
D.先减小后增大
斜面对物体的作用
力是斜面对物体的
支持力与摩擦力的
F
合力
解析法 图解法
G
F斜 对 物
适合图解法解题的题型
1、物体受三个力作用处于动态平衡状态 2、其中一个力大小方向都不变,还 有一个力方向不变
用图解法解动态平衡问题
T
N
图2
解析法解动态平衡问题(多个力)
例4 如图所示,质量分别为m、M的两个物体系在一根通过 定滑轮的轻绳两端,M放在水平地板上,m被悬在空中,若将 M沿水平地板向右缓慢移动少许后M仍静止,则绳中张力不变