河北省唐山市路南区中考数学一模试卷(含解析)
路南区中考一模数学试卷

考试时间:120分钟满分:100分一、选择题(本大题共10小题,每小题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. √-1D. √42. 若方程 2x - 5 = 3 的解为 x,则 x 的值为()A. 4B. 3C. 2D. 13. 已知 a > 0,b < 0,则下列不等式中正确的是()A. a > bB. a < bC. -a > -bD. -a < -b4. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数为()A. 45°B. 60°C. 75°D. 90°5. 下列函数中,是反比例函数的是()A. y = x^2B. y = 2xC. y = 1/xD. y = x + 16. 若二次函数 y = ax^2 + bx + c(a≠0)的图像开口向上,且顶点坐标为(1,-2),则a的值为()A. 1B. -1C. 2D. -27. 已知等差数列{an}的首项为2,公差为3,则第10项an的值为()A. 27B. 30C. 33D. 368. 在平面直角坐标系中,点P(-2,3)关于y轴的对称点为()A.(-2,-3)B.(2,3)C.(2,-3)D.(-2,-3)9. 若复数 z = a + bi(a,b∈R)的模为√5,则|z|的值为()A. 5B. √5C. 1/√5D. 110. 下列命题中,正确的是()A. 平行四边形的对角线互相平分B. 等腰三角形的底角相等C. 所有三角形都是等边三角形D. 直线与平面垂直二、填空题(本大题共10小题,每小题3分,共30分)11. 若 a + b = 5,a - b = 1,则 a = ______,b = ______。
12. 已知sinα = 1/2,则cosα = ______。
13. 二项式 (a + b)^3 的展开式中,a^2b 的系数为 ______。
2021年河北省唐山市路南区中考模拟第一次考试数学试题(含解析)

则由题意得:
所以容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系,
故选B.
【点睛】
本题考查的是列函数关系式,判断两个变量之间的函数关系,掌握以上知识是解题的关键.
13.A
【分析】
正六边形的每个内角为120°,正方形每个内角为90°,即可求∠HBA,根据BH=BA即可求∠HAB的度数.
故选:B
【点睛】
本题考查全面调查的概念,必然事件、随机事件的定义、众数的定义、概率的定义,熟练应用并理解定义是关键.
9.A
【分析】
根据轴对称图形的定义判断即可.
解:根据轴对称图形的的定义可知,将①涂黑即可与图中阴影部分构成轴对称图形.
故选:A
【点睛】
本题主要考查轴对称图形的定义,理解轴对称图形的定义是解题的关键.
【详解】
如图,连接AC
四边形ABCD是菱形
如图所示的木制活动衣帽架是由三个全等的菱形构成,
是等边三角形
故选:C.
【点睛】
本题考查了菱形的性质、等边三角形的判定与性质、平行线的性质等知识点,理解题意,熟练掌握菱形的性质是解题关键.
12.B
【分析】
设水面高度为 注水时间为 分钟,根据题意写出 与 的函数关系式,从而可得答案.
2021年河北省唐山市路南区中考模拟第一次考试数学试题
一、选择题(共16小题).
1. 的相反数可以表示为()
A. B. C. D.
2.下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是()
A. B.
C. D.
3.用三角板作 的边BC上的高,下列三角板的摆放位置正确的是()
2020年河北省唐山市路南区中考数学一模试卷(附答案详解)

2020年河北省唐山市路南区中考数学一模试卷1.已知3×⊕=2,则符号⊕代表的数()A. 32B. −32C. 23D. −232.下列四个立体图形中,从正面看到的图形与其他三个不同的是()A. B. C. D.3.大米包装袋上(10±0.1)kg的标识表示此袋大米重()A. (9.9~10.1)kgB. 10.1kgC. 9.9kgD. 10kg4.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a//b,则∠1与∠2满足的等式为()A. ∠1+∠2=180°B. ∠1+∠2=90°C. ∠1=2∠2D. ∠1+2∠2=180°5.一次函数y=(a+1)x+a+3的图象过一、二、四象限,则a的取值是()A.B.C.D.6.如图,从渔船A处测得灯塔M在北偏东55°方向上,这艘渔船以28km/ℎ的速度向正东方向航行,半小时后到达B处,在B处测得灯塔M在北偏东20°方向上,此时灯塔M与渔船的距离是()A. 28kmB. 14kmC. 7√2kmD. 14√2km7.一部记录片播放了关于地震的资料及一个有关地震预测的讨论,一位专家指出:“在未来20年,A城市发生地震的机会是三分之二”对这位专家的陈述下面有四个推断:①23×20≈13.3,所以今后的13年至14年间,A城市会发生一次地震;②23大于50%,所以未来20年,A城市一定发生地震;③在未来20年,A城市发生地震的可能性大于不发生地震的可能性;④不能确定在未来20年,A城市是否会发生地震;其中合理的是()A. ①③B. ②③C. ②④D. ③④8.若x为正整数,则下列运算结果不是负数的是()A. 1x −1 B. x2−1x⋅xx+1C. xx−1÷11−xD. x2−2x+11−x9.在以下三个图形中,根据尺规作图的痕迹,不能判断射线AD平分∠BAC的是()A. 图2B. 图1与图2C. 图1与图3D. 图2与图310.如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是()A. B.C. D.11.下面投影屏上出示的为张小亮的答卷,他的得分应是()姓名张小亮得分?判断正误(每小题2分,共10分)①x的2倍与1的和是非正数,即2x+1≤0.(√)②3√8=±2.(√)③2,3,4是一组勾股数.(×)④这组数据2,6,1,10,6的中位数是1.(√)⑤位似的两个图形,一定是相似图形.(√)A. 4分B. 6分C. 8分D. 10分12.阅读下列解方程的过程,此过程从上一步到下一步所给步骤有的产生了错误,则其中没有错误的是()解方程:x−30.5−x+40.2=1.6.①10x−305−10x+402=16;②2(10x−30)−5(10x+40)=160;③20x−60−50x+200=160;④−30x=300.A. ①B. ②C. ③D. ④13.如图,在五边形ABCDE中,∠A+∠B+∠E=320°,DP,CP分别平分∠EDC,∠BCD,则∠P的度数是()A. 70°B. 65°C. 60°D. 55°14.已知二次函数y=(a+1)x2+2bx+(a+1)的图象和x轴只有一个公共点,则下列判断正确的是()A. 1一定不是关于x的方程x2+bx+a=0的根B. 0一定不是关于x的方程x2+bx+a=0的根C. 1和−1都是关于x的方程x2+bx+a=0的根D. 1和−1不都是关于x的方程x2+bx+a=0的根15.如图,点O为等边三角形ABC的外心,四边形OCDE为正方形,其中E点在△ABC的外部,下列三角形中,外心不是点O的是()A. △CBEB. △ACEC. △ACDD. △ABE16.如图,是同一种蔬菜的两种栽植方法.甲:A、B、C、D四珠顺次连接成为一个菱形,且AB=BD.乙:A′、B′、C′、D′四株连接成一个正方形.其中两行作物间的距离为行距;一行中相邻两株作物的距离为株距;设这两种蔬菜充分生长后,每株在地面上的影子近似成一个圆面(相邻两圆如图相切),其中阴影部分的面积表示生长后空隙地面积.设株距都为a,其它客观因素都相同.则对于下列说法:①甲的行距比乙的小;②甲的行距为√3a;③甲、乙两种栽植方式,空隙地面积2a2.面积相同;④甲的空隙地面积比乙的空隙地面积少a2−√32其中正确的个数为()A. 1B. 2C. 3D. 417.计算(102)p=108,则p=______ .18.如图,矩形ABCD中,点M是CD的中点,点P是AB上的一动点,若AD=1,AB=2,则PA+PB+PM的最小值是______ ;PA+PB+PM的最大值为______ .19.如图,在平面直角坐标系中,直线y=x+2交x轴于点A,交y轴于点A1,若图中阴影部分的三角形都是等腰直角三角形,则从左往右第3个阴影三角形的面积是______ ,第2020个阴影三角形的面积是______ .20.如图,数轴上a、b、c三个数所对应的点分别为A、B、C,已知:b>0,且b的倒数是它本身,且a、c满足(c−6)2+|a+2|=0.(1)求代数式a2+c2−2ac的值;(2)若将数轴折叠,使得点A与点B重合,则与点C重合的点表示的数是______ .(3)请在数轴上确定一点D,使得AD=2AB,则点D表示的数是______ .21.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,左右两边修两条宽为a米的道路.(a> 0,b>0)(1)①试用含a,b的代数式表示绿化的面积是多少平方米?②假设阴影部分可以拼成一个矩形,请你求出所拼矩形相邻两边的长;如果要使所拼矩形面积最大,求a与b满足的关系式;(2)若a=3,b=2,请求出绿化面积.22.今年疫情期间,为防止疫情扩散,人们见面的机会少了,但是随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷,为此,孙老师设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种)进行调查.将统计结果绘制了下面两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次参与调查的共有______ 人;在扇形统计图中,表示“微信”的扇形圆心角的度数为______ ;其它沟通方式所占的百分比为______ .(2)将条形统计图补充完整;(3)如果我国有13亿人在使用手机.①请估计最喜欢用“微信”进行沟通的人数;②在全国使用手机的人中随机抽取一人,用频率估计概率,求抽取的恰好使用“QQ”的概率是多少?23.如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF//BC交BE的延长线于F,BF交AC于G,连接CF.(1)求证:△AEF≌△DEB;(2)若∠BAC=90°,①试判断四边形ADCF的形状,并证明你的结论;②若AB=8,BD=5,直接写出线段AG的长______.24.工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600℃.如图,煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系.已知该材料初始温度是32℃.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于400℃时,须停止操作.那么锻造的操作时间最多有多长?(3)如果加工每个零件需要锻造12分钟,并且当材料温度低于400℃时,需要重新煅烧.通过计算说明加工第一个零件,一共需要多少分钟.25.如图,抛物线L:y=−(x−t)2+t+2,直线l:x=2t与抛物线、x轴分别相交于Q、P.(1)当t=3时,求Q点的坐标;(2)当P、Q两点重合时,求t的值;(3)当Q点最高时(t≠0),求抛物线解析式;(4)在抛物线L与x轴所围成的封闭图形的边界上,我们把横坐标是整数的点称为“可点”,直接写出2<t<3时,“可点”的个数为______ .26.如图,在△ABC中,AB=BC,∠CAB=30°,AC=8,半径为2的⊙O从点A开始(如图1)沿直线AB向右滚动,滚动时始终与直线AB相切(切点为D),当⊙O与△ABC只有一个公共点时滚动停止,作OG⊥AC于点G.(1)图1中,⊙O在AC边上截得的弦长AE=______ ;(2)当圆心落在AC上时,如图2,判断BC与⊙O的位置关系,并说明理由.(3)在⊙O滚动过程中,线段OG的长度随之变化,设AD=x,OG=y,求出y与x的函数关系式,并直接写出x的取值范围.答案和解析1.【答案】C=2,【解析】解:根据题意得:3×23.则符号⊕代表的数为23故选:C.根据因式=积÷另一个因式,计算即可.此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.2.【答案】D【解析】解:A、图中的主视图是2,1;B、图中的主视图是2,1;C、图中的主视图是2,1;D、图中的主视图是2,2;故选:D.根据图中的主视图解答即可.本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置.3.【答案】A【解析】【分析】本题考查正数和负数,有理数运算的应用,解题的关键是明确题意,明确正数和负数在题目中的实际意义.根据大米包装袋上的质量标识为“10±0.1”千克,可以求得合格的波动范围,从而可以解答本题.【解答】解:∵大米包装袋上的质量标识为“10±0.1”kg,∴大米质量的范围是:(10−0.1)kg~(10+0.1)kg,即9.9~10.1kg,故选A.4.【答案】B【解析】解:作BF//a,∴∠3=∠1,∵四边形ABCD是矩形,∴∠ABC=90°.∵BF//a,a//b,∴BF//b,∴∠2=∠4,∴∠1+∠2=∠3+∠4=90°.故选:B.作BF//a,根据矩形的性质得到∠ABC=90°,根据平行线的性质可得∠1=∠3,∠2=∠4.本题考查的是矩形的性质、平行线的性质,掌握矩形的四个内角都是90°是解题的关键.5.【答案】C【解析】解:∵一次函数y=(a+1)x+a+3的图象过一、二、四象限,∴a+1<0,a+3>0解得−3<a<−1.故选:C.若函数y=kx+b的图象过一、二、四象限,则此函数的k<0,b>0,据此求解.考查了一次函数的图象与系数的关系,一次函数的图象经过第几象限,取决于x的系数是大于0或是小于0.6.【答案】B【解析】解:根据题意可知:∠MAB=90°−55°=35°,∠ABM=90°+20°=110°,∴∠AMB=180°−∠ABM−∠MAB=35°,∴∠MAB=∠AMB,∴BM=AB=28×12=14(km).所以此时灯塔M与渔船的距离是14km.故选:B.根据题意证明△ABM是等腰三角形,即可得此时灯塔M与渔船的距离.本题考查了解直角三角形的应用−方向角问题,解决本题的关键是掌握方向角定义.7.【答案】D【解析】解:∵一位专家指出:在未来的20年,A市发生地震的机会是三分之二,∴未来20年内,A市发生地震的可能性比没有发生地震的可能性大;不能确定在未来20年,A城市是否会发生地震,故选:D.根据概率的意义,可知发生地震的概率是三分之二,说明发生地震的可能性大于不发生地政的可能性,从而可以解答本题.本题考查概率的意义,解题的关键是明确概率的意义,理论联系实际.8.【答案】B【解析】解:A.原式=x−1x,当0<x<1时,此时结果为负数,故A不符合题意.B.原式=(x+1)(x−1)x ⋅xx+1=x−1,当x为正整数时,此时结果为正数,故B符合题意.C.原式=xx−1⋅(1−x)=−x,结果必为负数,故C不符合题意.D.原式=(1−x)21−x=1−x,结果为负数或0,故D不符合题意.故选:B.根据分式的运算法则即可求出答案.本题主要考查分式的混合运算,熟练掌握分式的运算顺序和运算法则是解题的关键.9.【答案】A【解析】解:在图1中,利用基本作图可判断AD平分∠BAC;在图2中,利用基本作图得到D点为BC的中点,则AD为BC边上的中线;在图3中,利用作法得AE=AF,AM=AN,则可判断△ADM≌△ADN,所以∠AMD=∠AND,则可判断△MDE≌△NDF,所以D点到AM和AN的距离相等,则可判断AD 平分∠BAC.故选:A.利用基本作图可对图1和图2进行判断;利用基本作图和全等三角形的判定与性质、角平分线性质定理的逆定理对图3进行判断.本题考查了作图−基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).10.【答案】B【解析】解:根据题意可知火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,当火车完全进入隧道,由于隧道长等于火车长,此时y 最大,当火车开始出来时y逐渐变小.故选:B.先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为二段.主要考查了根据实际问题作出函数图象的能力.解题的关键是要知道本题是分段函数,分情况讨论y与x之间的函数关系.11.【答案】B【解析】解:①x的2倍与1的和是非正数,即2x+1≤0.(√),2分;3=2,②√83=±2,(×),0分;∴√8③2,3,4不是一组勾股数,(×),2分;④这组数据2,6,1,10,6的中位数是6,(×),0分;⑤位似的两个图形,一定是相似图形,(√),2分;则张小亮的得分是6分,故选:B.根据立方根、勾股数、中位数、位似图形的概念判断即可.本题考查的是不等式、勾股数、中位数、位似图形的概念,掌握它们的概念是解题的关键.12.【答案】B【解析】解:A、过程①中1.6变成16,错误,本选项不符合题意;B、过程②去分母正确,本选项符合题意;C、过程③去括号时应该为−200,错误,本选项不符合题意;D、过程④移项及合并同类项时应该化简为−30x=20错误,本选项不符合题意;故选:B.依次分析4个运算过程,根据运算法则即可判断.此题主要考查了解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.13.【答案】A【解析】解:∵五边形的内角和等于540°,∠A+∠B+∠E=320°,∴∠BCD+∠CDE=540°−320°=220°,∵∠BCD、∠CDE的平分线在五边形内相交于点P,(∠BCD+∠CDE)=110°,∴∠PDC+∠PCD=12∴∠CPD=180°−110°=70°.故选:A.根据五边形的内角和等于540°,由∠A+∠B+∠E=320°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC 与∠PCD 的角度和,进一步求得∠CPD 的度数.本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.14.【答案】D【解析】解:∵二次函数y =(a +1)x 2+2bx +(a +1)的图象和x 轴只有一个公共点, ∴{a +1≠0(2b)2−4(a +1)2=0, ∴b =a +1或b =−(a +1).当b =a +1时,有a −b +1=0,此时−1是方程x 2+bx +a =0的根;当b =−(a +1)时,有a +b +1=0,此时1是方程x 2+bx +a =0的根.∵a +1≠0,∴a +1≠−(a +1),∴1和−1不都是关于x 的方程x 2+bx +a =0的根.故选:D .根据抛物线与x 轴只有一个公共点可得出b =a +1或b =−(a +1),当b =a +1时,−1是方程x 2+bx +a =0的根;当b =−(a +1)时,1是方程x 2+bx +a =0的根.再结合a +1≠−(a +1),可得出1和−1不都是关于x 的方程x 2+bx +a =0的根.本题考查了抛物线与x 轴的交点以及二次函数的性质,牢记“抛物线与x 轴有一个交点,则△=0”是解题的关键.15.【答案】C【解析】解:连接OB 、OA 、OD 、如图,∵点O 为等边三角形ABC 的外心,∴OA =OB =OC ,∵四边形OCDE 为正方形,∴OC =OE ,OD =√2OC ,∵OB =OC =OE ,∴点O 为△CBE 的外心;∵OA =OC =OE ,∴点O 为△ACE 的外心;∵OA=OB=OE,∴点O为△ABE的外心;∵OA=OC≠OD,∴点O不是△ACD的外心.故选:C.连接OB、OA、OD、如图,先利用点O为等边三角形ABC的外心得到OA=OB=OC,再根据正方形的性质得到OC=OE,OD=√2OC,然后根据到三角形三个顶点的距离相等的点为三角形的外心对各选项进行判断.本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了等边三角形和正方形的性质.16.【答案】C【解析】解:∵甲的株距为a,行距为√32a,乙的行距为a,∴甲的行距比乙的小,故①②正确,∵甲阴影部分的面积=2×√34a2−π⋅(a2)2=√32a2−πa24,乙的阴影部分的面积=a2−π⋅(a 2)2=a2−πa24,∴甲的空隙地面积比乙的空隙地面积少a2−√32a2,故③错误,④正确.故选:C.根据题意求出甲乙的行距,阴影部分的面积即可判断.本题考查圆与圆的位置关系,等边三角形的性质,正方形的性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题型.17.【答案】4【解析】解:∵(102)p=102p=108,∴2p=8.∴p=4.故答案为:4.根据幂的乘方法则,先计算(102)p,再根据幂相等列出方程,求解即可.本题考查了幂的乘方,掌握幂的乘方法则是解决本题的关键18.【答案】3 2+√2【解析】解:∵AP+PB=AB,∴PM最小时,PA+PB+PM的值是最小值,由垂线段最短可知PM⊥CD时,PA+PB+PM的值最小值,最小值为1+2=3;当P在A点或B点时,PM最大,PA+PB+PM的值是最大值,最大值为PA+PB+PM=AB+AM=2+√2.故答案为:3,2+√2.根据AP+PB=AB,然后判断出PM最小时,PA+PB+PM的值是最小值,再根据垂线段最短求出最小值,判断出PM最大时,PA+PB+PM的值是最大值,再根据勾股定理求出最大值.本题考查了矩形的性质,垂线段最短的性质,勾股定理,熟记各性质并判断出最小值和最大值的情况是解题的关键.19.【答案】32 2×42019【解析】解:当x=0时,y=0+2=2,∴点A1的坐标为(0,2).∵△A1OB1为等腰直角三角形,∴OB1=OA1=2,∴点B1的坐标为(2,0),S△A1OB1=12×2×2=2;当x=2时,y=2+2=4,∴点A2的坐标为(2,4).∵△A2B1B2为等腰直角三角形,∴点B2的坐标为(6,0),S△A2B1B2=12×4×4=8;当x=6时,y=6+2=8,∴点A3的坐标为(6,8),∵△A3B2B3为等腰直角三角形,∴点B3的坐标为(14,0),S△A3B2B3=12×8×8=32.设第n个阴影三角形的面积为S n(n为正整数),则S n=2×4n−1,∴S2020=2×42020−1=2×42019.故答案为:32;2×42019.利用一次函数图象上点的坐标特征可求出点A1的坐标,结合等腰直角三角形的性质及三角形的面积可得出点B1的坐及△A1OB1的面积,同理可求出△A2B1B2和△A3B2B3的面积,设第n个阴影三角形的面积为S n(n为正整数),根据三角形面积的变化,即可找出变化规律“S n=2×4n−1(n为正整数)”,再代入n=2020即可求出结论.本题考查了一次函数图象上点的坐标特征、等腰直角三角形、规律型:点的坐标以及三角形的面积,根据三角形面积的变化,找出“S n=2×4n−1(n为正整数)”是解题的关键.20.【答案】−74或−8【解析】解:(1)∵(c−6)2+|a+2|=0,∴c−6=0,a+2=0,解得:a=−2,c=6,则原式=(a−c)2=(−2−6)2=64;(2)∵b>0,且b的倒数是它本身,∴b=1,∵a=−2,∴−2和1重合,−2和1的中点为−0.5,∵c=6,∴与点C重合的点表示的数是−7;(3)∵AD=2AB=2×[1−(−2)]=2×(1+2)=6,a=−2,∴D表示的数为4或−8.故答案为:(2)−7;(3)4或−8.(1)利用非负数的性质求出a与c的值,代入原式计算即可求出值;(2)根据a,b的值,确定出中点坐标,进而求出C重合的点即可;(3)求出AB的长,进而确定出AD的长,确定出D表示的数即可.此题考查了有理数的混合运算,弄清数轴上点表示的数是解本题的关键.21.【答案】解:(1)①绿化的面积为:(3a+b)(2a+b)−(a+b)2−a(3a+b−a−b)=6a2+5ab+b2−a2−2ab−b2−2a2=(3a2+3ab)平方米;答:绿化的面积是(3a2+3ab)平方米;②如图,∵3a2+3ab=3a(a+b),∴所拼矩形相邻两边的长分别为3a米和(a+b)米;所以要使所拼矩形面积最大,3a=a+b,所以2a=b;(2)当a=3,b=2,绿化面积是3a2+3ab=3×9+3×3×2=45(平方米).【解析】(1)根据图形可得长方形的面积减去中间正方形的面积减去两个小长方形的面积即可得结果;(2)根据题意结合(1)可得2a=a+b,进而可得结论;(3)把a=3,b=2代入(1)所得整式,即可得结果.本题考查了多项式乘多项式,解决本题的关键是掌握多项式乘多项式.22.【答案】2000 144°13%【解析】解:(1)∵喜欢用电话沟通的人数为400,所占百分比为20%,∴此次共抽查了:400÷20%=2000人=144°,表示“微信”的扇形圆心角的度数为:360°×2000−400−440−260−2000×5%2000×100%=13%,其它沟通方式所占的百分比为:2602000故答案为:2000;144°;13%.(2)如图:(3)①由(2)知:参与调查的人中喜欢用“微信”进行沟通的人数有800人,×13=所以在全国使用手机的13亿人中,估计最喜欢用“微信”进行沟通的人数有80020005.2(亿人).②由(1)可知:参与这次调查的共有2000人,其中喜欢用“QQ”进行沟通的人数为440人,=所以,在参与这次调查的人中随机抽取一人,抽取的恰好使用“QQ”的频率是4402000 22%.所以,用频率估计概率,在全国使用手机的人中随机抽取一人,抽取的恰好使用“QQ”的概率是22%.(1)根据喜欢电话沟通的人数与百分比即可求出共抽查人数,求出使用“微信”的百分比即可求出“微信”的扇形圆心角度数.(2)计算出短信与微信的人数即可补全统计图.(3)用样本中喜欢用微信进行沟通的百分比来估计13亿人中喜欢用微信进行沟通的人数即可求出答案.本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.【答案】2【解析】解:(1)∵AF//BC,∴∠AFE=∠DBE,在△AEF和△DEB中,{∠AFE=∠DBE ∠AEF=∠DEB AE=DE,∴△AEF≌△DEB(AAS);(2)①四边形ADCF是菱形,理由如下:∵△AEF≌△DEB,∴AF=BD,∵BD=DC,∴AF=DC=12BC,又AF//BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,AD是BC边上的中线,∴AD=DC,∴四边形ADCF是菱形;②∵AF//BC,∴△AFG∽△CBG,∴AFBC=AGGC∴AG GC=12∴AG=13AC,∵BD=5,AD是BC边上的中线,∴BC=2BD=10,∵∠BAC=90°,AB=8,∴AC=√BC2−AB2=6,∴AG=13AC=2,故答案为2.(1)由平行线证明三角形全等所缺少的条件,再根据三角形全等的判定方法证明三角形全等;(2)①先证明四边形ADCF是平行四边形,再证明邻边相等,便可得出结论;②证明△AFG∽△CBG,得出AG与AC的比例关系,进而由直角三角形的性质求得AC,便可得AG.本题主要考查了全等三角形的性质与判定,相似三角形的性质与判定,平行线的性质,勾股定理,直角三角形的性质,平行四边形的性质与判定,菱形的判定,第(2)题①小题关键是证明四边形是平行四边形,第(2)题②小题,关键证明三角形相似得出AG与AC的比例关系.24.【答案】解:(1)材料锻造时,设y=kx(k≠0),由题意得600=k8,解得k=4800,当y=800时,4800x=800,解得x=6,∴点B的坐标为(6,800)材料煅烧时,设y=ax+32(a≠0),由题意得800=6a+32,解得a=128,∴材料煅烧时,y与x的函数关系式为y=128x+32(0≤x≤6).∴锻造操作时y与x的函数关系式为y=4800x(x>6);(2)把y=400代入y=4800x中,得x=12,12−6=6(分),答:锻造的操作时间6分钟;(3)当y=800时,即4800x=800,∴x=6,从400升到800需要258min,再加上两次6分钟的锻造,加上煅烧的时间,一共是1698min,∴锻造每个零件需要煅烧两次共12分钟,∴加工第一个零件一共需要1698min.【解析】(1)首先根据题意,材料煅烧时,温度y与时间x成一次函数关系;锻造操作时,温度y与时间x成反比例关系;将题中数据代入用待定系数法可得两个函数的关系式;(2)把y=400代入y=4800x中,进一步求解可得答案;(3)根据题意列式计算即可.本题主要考查了反比例函数和一次函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.25.【答案】8或9或10【解析】解:(1)当t =3时,x =2t =6,当x =6时,y =−(6−3)2+3+2=−4,故点Q 的坐标为(6,−4);(2)点P 、Q 的坐标分别为:(2t,0)、(2t,−t 2+t +2),当P 、Q 两点重合时,−t 2+t +2=0,解得:t =−1或2;(3)Q 点纵坐标,即−t 2+t +2取最大值时,Q 点达到最高,∵−t 2+2t +2=−(t −12)2+94,∴t =12时,Q 点达到最高,当t =12时,y =−(x −12)2+12+2=−x 2+x +94,故抛物线的表达式为:y =−x 2+x +94;(4)①当t =2时,如图1,抛物线的表达式为:y =−(x −2)2+4,令y =0,则x =0或4,“可点”的个数如图黑点所示,有8个;②当t =3时,如图2,抛物线表达式为:y=−(x−3)2+5,令y=0,则x=3±√5,“可点”的个数如图黑点所示,有10个;③当2<t<3时,顶点坐标为(t,2+t),即抛物线顶点在y=x+2上运动,数形结合可得,可点个数最少8个,最多10个,故答案为:8或9或10.(1)当t=3时,x=6,当x=6时,y=−(6−3)2+3+2=−4,即可求解;(2)点P、Q的坐标分别为:(2t,0)、(2t,−t2+t+2),当P、Q两点重合时,−t2+t+2=0,即可求解;(3)当Q点达到最高时,点Q(t,t+2),由(2)知函数的对称轴为x=12(2−1)=12,即可求解;(4)分t=2、t=3、2<t<3三种情况,通过画出函数图象,数形结合来求解.本题考查的是二次函数综合运用,涉及到一次函数的性质、新定义、函数图象作图(简易)等,其中(4),要注意分类求解,避免遗漏.26.【答案】2【解析】解:(1)∵⊙O与直线AB相切于点D,∴∠ODB=90°,当点D与点A重合时,连接OA,OE,∴OA=OE,∵∠BAC=30°,∴∠OAC=60°,∴△OAE是等边三角形,∴AE=OA=2,故答案为2;(2)BC与⊙O相切,理由:如图2,过点O作OH⊥BC于H,连接OD,∵⊙O与AB相切于D,∴OD⊥AB,在Rt△AOD中,∠BAC=30°,∴OA=2OD=4,∵AC=8,∴OC=4,在△ABC中,AB=BC,∴∠C=∠BAC=30°,在Rt△OHC中,∠C=30°,OC=2=OD,∴OH=12∴BC与⊙O相切,(3)①当点O在AC的左侧时,连接OD交AC于F,如备用图1,∵⊙O与AB相切于D,∴OD⊥AB,∵OG⊥AC,∴∠FOG=∠BAC=30°,,在Rt△FDA中,tan∠BAC=FDADx,∴FD=AD⋅tan∠BAC=√33x,∴OF=2−√33在Rt△FOG中,y=OG=OF⋅cos∠FOG=(2−√33x)×√32=−12x+√3,x的取值范围为0≤x≤2√3;②当点O在AC的右侧时,连接DO并延长交AC于F,如备用图2,同①的方法得,FD=√33x,∴OF=√33x−2,∵FD⊥AB,∴∠BAC+∠AFD=90°,∴∠FOG=∠BAC=30°,在Rt△FOG中,y=OG=OF⋅cos∠FOG=(√33x−2)×√32=12x−√3,x的取值范围为2√3≤x≤14√33.(1)先求出∠OAC=60°,进而得出△OAE是等边三角形即可;(2)先求出OC=4,再求出∠C=30°,进而求出OH=2=OD即可;(3)分两种情况,点O在AC左侧和右侧,先利用锐角三角函数表示出FD进而得出OF,最后用锐角三角函数即可得出结论.此题是圆的综合题,主要考查了圆的切线的性质,勾股定理,含30度角的直角三角形的性质,锐角三角函数,等边三角形的判定和性质,解(1)的关键是得出∠OAC=60°,解(2)的关键是求出OH=2,解(3)的关键是分两种情况求出OF,解本题的重点是作出辅助线,是一道中等难度的题目.。
(实用文档)某年河北省唐山市路南区中考数学一模试卷及答案

a+b) 2014 的值是(
)Байду номын сангаас
A.1
B.0
C. 2014
D .5 个或 5 个以上 D .﹣ 1
6.若不等式组
的解集是 x>3,则 m 的取值范围是(
)
A . m> 3
B. m=3
C. m≤3
D .m<3
7.已知:如图, l∥m,等边 △ABC 的顶点 B 在直线 m 上,边 BC 与直线 m 所夹锐角为 20°,则∠α的 度数为(
)
A.1
B.2
C. 3
D .4
3.计算
+ 的运算结果是(
)
A.7
B.6
C. 4 +2
D .6
4.(袋中有红球 4 个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到
白球的可能性较大,那么袋中白球的个数可能是(
)
A.3 个
B.不足 3 个
C. 4 个
5.若(
2
a﹣ 2) +|b+3|=0,则(
)
A . 60° 8.函数
B. 45° 的自变量 x 的取值范围是(
C. 40° )
D .30°
A.x>1
B. x≤﹣ 1
C. x≥﹣ 1
D .x>﹣ 1
9.为测量如图所示上山坡道的倾斜度,小明测得图中所示的数据,则该坡道倾斜角 ()
α的正切值是
2014 年河北省唐山市路南区中考数学一模试卷及答案
一、选择题(共 16 小题, 1-6 小题每题 2 分, 7-16 小题每题 3 分,共 42 分)
1.已知 m、 n 互为倒数,则下列式子中正确的是(
中考数学一模试卷含答案试卷分析解析

河北省唐山市路南区中考数学一模试卷一、选择题(本答题共16个小题,1-10小题,每小题3分;11-16小题,每小题3分,共42分.在每小趣给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算:(﹣3)+5的结果是()A.﹣2B.2C.8D.﹣82.(3分)据统计,端午小长假全国各大景点共接待游客约为82600000人次,将82600000用科学记数法表示为()A.0.826×106B.8.26×108C.8.26×107D.82.6×1063.(3分)下列图案属于轴对称图形的是()A.B.C.D.4.(3分)下列运算中,计算正确的是()A.(a2b)3=a5b3B.(3a2)3=27a6C.x6÷x2=x3D.(a+b)2=a2+b25.(3分)如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1B.2C.﹣1D.﹣26.(3分)如图所示的几何体中,它的主视图是()A.B.C.D.7.(3分)下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2+2x+1=x(x+2)+1C.(x+1)2=x2+2x+1D.x2﹣x=x(x﹣1)8.(3分)如图,桌面上的木条b 、c 固定,木条a 在桌面上绕点O 旋转n°(0<n <90)后与b 垂直,则n=( )A .30B .50C .60D .809.(3分)甲队修路120m 与乙队修路100m 所用天数相同,已知甲队比乙队每天多修10m .设甲队每天修路xm ,依题意,下面所列方程正确的是( ) A . = B . = C . = D . =10.(3分)已知a ﹣b=3,那么1﹣a +b=( )A .﹣2B .4C .1D .﹣111.(2分)某校男子足球队的年龄分布情况如下表:则这些队员年龄的众数和中位数分别是( )A .15,15B .15,14C .16,15D .14,1512.(2分)已知反比例函数y=,当1<x <2时,y 的最小整数值是()A .5B .6C .8D .10 13.(2分)如图,从边长为(a +3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠,无缝隙),则拼成的长方形的另一边长是( )A .a +3B .a +6C .2a +3D .2a +614.(2分)如图,已知在平面直角坐标系xOy 中,抛物线m :y=﹣2x 2﹣2x 的顶点为C,与x轴两个交点为P,Q.现将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P的对应点P′落在y轴上,则下列各点的坐标不正确的是()A.C(﹣,)B.C′(1,0)C.P(﹣1,0)D.P′(0,﹣)15.(2分)如图,∠BAC内有一点P,过点P作直线l∥AB,交AC于E点.今欲在∠BAC的两边上各找一点Q、R,使得P为QR的中点,以下是甲、乙两人的作法:甲:①过P作直线l1∥AC,交直线AB于F点,并连接EF;②过P作直线l2∥EF,分别交两直线AB、AC于Q、R两点,则Q、R即为所求.乙:①在直线AC上另取一点R,使得AE=ER;②作直线PR,交直线AB于Q点,则Q、R即为所求.下列判断正确的是()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确16.(2分)连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图(扇形、菱形、直角梯形、红十字图标)中“直径”最小的是()A.B.C.D.二、填空题(本大题共3个小题:17-18每小题3分,19题4分,共10分.把答案写在题中横线上)17.(3分)2的倒数是.18.(3分)如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心.若AB=1.5,则DE=.19.(4分)如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限,△ABO沿x轴正方向作无滑动的翻滚,经一次翻滚后得到△A1B1O,则翻滚2次后点B的对应点B2的坐标是,翻滚100次后AB中点M经过的路径长为.三、解答题(本大题共7个小题,满分共68分.解答应写出文字说明、证明过程或演算步骤)20.(8分)在数轴上点A表示的数为a,点B为原点,点C表示的数为c,且已知a,c满足|a+1|+(c﹣7)2=0.(1)a=;c=;(2)若AC的中点为M,则点M表示的数为;(3)若A,C两点同时以每秒1个单位长度的速度向左运动,求第几秒时,恰好有BA=BC?21.(9分)4月15日至5月15日,某市约8万名初三毕业生参加了中考体育测试,为了了解今年初三毕业生的体育成绩,从某校随机抽取了60名学生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A、B、C、D表示)四个等级进行统计,并绘制成下面的扇形图和统计表:请你根据以上图表提供的信息,解答下列问题:(1)m=,n=,x=,y=;(2)在扇形图中,B等级所对应的圆心角是度;(3)请你估计某市这8万名初三毕业生成绩等级达到优秀和良好的大约有多少人?(4)初三(1)班的甲、乙、丙、丁四人的成绩均为A,现决定从这四名同学中选两名参加学校组织的体育活动,直接写出恰好选中甲、乙两位同学的概率.22.(8分)有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…x2+2nx﹣8n2=0.小静同学解第一个方程x2+2x﹣8=0的步骤为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2.”(1)小静的解法是从步骤开始出现错误的.(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)23.(9分)如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P2恰好在直线l上.(1)点P2的坐标为;(2)求直线l的解析表达式;(3)求直线y=﹣x+b经过点P1,交x轴于点C,则b的值是多少?已知直线l与x轴交于点D,求△P1CD的面积是多少?24.(10分)如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.(1)求证:DB=DE;(2)若AB=12,BD=5,过D点作DF⊥AB于点F,①则cos∠EFF=;②求⊙O的半径.25.(12分)在平面直角坐标系中,O为原点,点A(8,0),点B(0,6),把△ABO绕点B逆时针旋转得△A′B′O′,点A、O旋转后的对应点为A′、O′,记旋转角为α.(1)如图1,若α=90°,则AB=,并求AA′的长;(2)如图2,若α=120°,求点O′的坐标;(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,直接写出点P′的坐标.26.(12分)某种植基地种植一种蔬菜,它的成本是每千克2元,售价是每千克3元,年销量为10 (万千克).基地准备拿出一定的资金作绿色开发,若每年绿色开发投入的资金为x (万元),该种蔬菜的年销量将是原年销量的n倍,x与n的关系如下表:(1)猜想n与x之间的函数类型是函数,求出该函数的表达式并验证;(2)求年利润W1(万元)与绿色开发投入的资金x(万元)之间的函数关系式(注:年利润W1=销售总额﹣成本费﹣绿色开发投入的资金);当绿色开发投入的资金不低于3万元,又不超过5万元时,求此时年利润W1(万元)的最大值;(3)若提高种植人员的奖金,发现又增加一部分年销量,经调查发现:再次增加的年销量(万千克)与每年提高种植人员的奖金z (万元)之间满足y=﹣z2+4z,若基地将投入5万元用于绿色开发和提高种植人员的奖金,应怎样分配这笔资金才能使总年利润达到17万元且绿色开发投入大于奖金投入?()河北省唐山市路南区中考数学一模试卷参考答案与试题解析一、选择题(本答题共16个小题,1-10小题,每小题3分;11-16小题,每小题3分,共42分.在每小趣给出的四个选项中,只有一项是符合题目要求的)1.(3分)计算:(﹣3)+5的结果是()A.﹣2B.2C.8D.﹣8【解答】解::(﹣3)+5=2.故选:B.2.(3分)据统计,端午小长假全国各大景点共接待游客约为82600000人次,将82600000用科学记数法表示为()A.0.826×106B.8.26×108C.8.26×107D.82.6×106【解答】解:将82600000用科学记数法表示为8.26×107,故选:C.3.(3分)下列图案属于轴对称图形的是()A.B.C.D.B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故C不是轴对称图形;D、不能找出对称轴,故D不是轴对称图形.故选:A.4.(3分)下列运算中,计算正确的是()A.(a2b)3=a5b3B.(3a2)3=27a6C.x6÷x2=x3D.(a+b)2=a2+b2【解答】解:A、原式=a6b3,不符合题意;B、原式=27a6,符合题意;C、原式=x4,不符合题意;D、原式=a2+2ab+b2,不符合题意,故选:B.5.(3分)如果2是方程x2﹣3x+k=0的一个根,则常数k的值为()A.1B.2C.﹣1D.﹣2【解答】解:∵2是一元二次方程x2﹣3x+k=0的一个根,∴22﹣3×2+k=0,解得,k=2.故选:B.6.(3分)如图所示的几何体中,它的主视图是()A.B.C.D.【解答】解:从正面看左边一个正方形,右边一个正方形,故D符合题意;故选:D.7.(3分)下列等式从左到右的变形,属于因式分解的是()A.a(x﹣y)=ax﹣ay B.x2+2x+1=x(x+2)+1C.(x+1)2=x2+2x+1D.x2﹣x=x(x﹣1)【解答】解:A、是整式的乘法,故A不符合题意;B、没把一个多项式转化成几个整式积的形式,故B不符合题意;C、是整式的乘法,故C不符合题意;D、把一个多项式转化成几个整式积的形式,故D符合题意;故选:D.8.(3分)如图,桌面上的木条b、c固定,木条a在桌面上绕点O旋转n°(0<n<90)后与b垂直,则n=()A.30B.50C.60D.80【解答】解:如图,∵木条a在桌面上绕点O旋转n°(0<n<90)后与b垂直,∴木条a在桌面上要绕点O顺时针旋转50°.故选:B.9.(3分)甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m.设甲队每天修路xm,依题意,下面所列方程正确的是()A.=B.=C.=D.=【解答】解:设甲队每天修路x m,依题意得:=,故选:A.10.(3分)已知a﹣b=3,那么1﹣a+b=()A.﹣2B.4C.1D.﹣1【解答】解:∵a﹣b=3,∴1﹣a+b=1﹣(a﹣b)=1﹣3=﹣2,故选:A.11.(2分)某校男子足球队的年龄分布情况如下表:则这些队员年龄的众数和中位数分别是()A.15,15B.15,14C.16,15D.14,15【解答】解:根据图表数据,同一年龄人数最多的是15岁,共8人,所以众数是15;22名队员中,按照年龄从小到大排列,第11名队员与第12名队员的年龄都是15岁,所以,中位数是(15+15)÷2=15.故选:A.12.(2分)已知反比例函数y=,当1<x<2时,y的最小整数值是()A.5B.6C.8D.10【解答】解:反比例函数y=,∴当1<x<2时,5<y<10,∴y的最小整数值是6,故选:B.13.(2分)如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠,无缝隙),则拼成的长方形的另一边长是()A.a+3B.a+6C.2a+3D.2a+6【解答】解:长方形的另一边长是:(a+3)+3=a+6,故选:B.14.(2分)如图,已知在平面直角坐标系xOy中,抛物线m:y=﹣2x2﹣2x的顶点为C,与x轴两个交点为P,Q.现将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P的对应点P′落在y轴上,则下列各点的坐标不正确的是()A.C(﹣,)B.C′(1,0)C.P(﹣1,0)D.P′(0,﹣)【解答】解:∵y=﹣2x2﹣2x=﹣2x(x+1)或y=﹣2(x+)2+,∴P(﹣1,0),O(0,0),C(﹣,).又∵将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P 的对应点P′落在y轴上,∴该抛物线向下平移了个单位,向右平移了1个单位,∴C′(,0),P′(0,﹣).综上所述,选项B符合题意.故选:B.15.(2分)如图,∠BAC内有一点P,过点P作直线l∥AB,交AC于E点.今欲在∠BAC的两边上各找一点Q、R,使得P为QR的中点,以下是甲、乙两人的作法:甲:①过P作直线l1∥AC,交直线AB于F点,并连接EF;②过P作直线l2∥EF,分别交两直线AB、AC于Q、R两点,则Q、R即为所求.乙:①在直线AC上另取一点R,使得AE=ER;②作直线PR,交直线AB于Q点,则Q、R即为所求.下列判断正确的是()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【解答】解:甲:利用平行四边形的判定与性质可得到PQ=EF,PR=EF,则PQ=PR;乙:利用平行线分线段成比例得到RP=RQ,所以甲乙的作法都正确.故选:A.16.(2分)连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图(扇形、菱形、直角梯形、红十字图标)中“直径”最小的是()A.B.C.D.【解答】解:连接BC,则BC为这个几何图形的直径,过O作OM⊥BC于M,∵OB=OC,∴∠BOM=∠BOC=60°,∴∠OBM=30°,∵OB=2,OM⊥BC,∴OM=OB=1,由勾股定理得:BM=,∴由垂径定理得:BC=2;连接AC、BD,则BD为这个图形的直径,∵四边形ABCD是菱形,∴AC⊥BD,BD平分∠ABC,∵∠ABC=60°,∴∠ABO=30°,∴AO=AB=1,由勾股定理得:BO=,∴BD=2BO=2;连接BD,则BD为这个图形的直径,由勾股定理得:BD==2;连接BD,则BD为这个图形的直径,由勾股定理得:BD==,∵2>>2,∴选项A、B、D错误,选项C正确;故选:C.二、填空题(本大题共3个小题:17-18每小题3分,19题4分,共10分.把答案写在题中横线上)17.(3分)2的倒数是.【解答】解:2×=1,答:2的倒数是.18.(3分)如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O是位似中心.若AB=1.5,则DE= 4.5.【解答】解:∵△ABC与DEF是位似图形,它们的位似中心恰好为原点,已知A 点坐标为(1,0),D点坐标为(3,0),∴AO=1,DO=3,∴==,∵AB=1.5,∴DE=4.5.故答案为:4.5.19.(4分)如图,正△ABO的边长为2,O为坐标原点,A在x轴上,B在第二象限,△ABO沿x轴正方向作无滑动的翻滚,经一次翻滚后得到△A1B1O,则翻滚2次后点B的对应点B2的坐标是(2,0),翻滚100次后AB中点M经过的路径长为(+44)π.【解答】解:由题意B2(2,0)观察图象可知3三次一个循环,一个循环点M的运动路径为:++=()π,∵100÷3=33…1,∴翻滚2017次后AB中点M经过的路径长为33•()π+π=(+44)π.故答案为(+44)π.三、解答题(本大题共7个小题,满分共68分.解答应写出文字说明、证明过程或演算步骤)20.(8分)在数轴上点A表示的数为a,点B为原点,点C表示的数为c,且已知a,c满足|a+1|+(c﹣7)2=0.(1)a=﹣1;c=7;(2)若AC的中点为M,则点M表示的数为3;(3)若A,C两点同时以每秒1个单位长度的速度向左运动,求第几秒时,恰好有BA=BC?【解答】解:(1)由|a+1|+(c﹣7)2=0,得a+1=0,c﹣7=0,解得a=﹣1,c=7,故答案为:﹣1,7.(2)由中点坐标公式,得=3,M点表示的数为3,故答案为:3.(3)设第x秒时,BA=BC,由题意,得x+1=7﹣x,解得x=3,第3秒时,恰好有BA=BC.21.(9分)2017年4月15日至5月15日,某市约8万名初三毕业生参加了中考体育测试,为了了解今年初三毕业生的体育成绩,从某校随机抽取了60名学生的测试成绩,根据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A、B、C、D表示)四个等级进行统计,并绘制成下面的扇形图和统计表:请你根据以上图表提供的信息,解答下列问题:(1)m=21,n=12,x=0.35,y=0.2;(2)在扇形图中,B等级所对应的圆心角是126度;(3)请你估计某市这8万名初三毕业生成绩等级达到优秀和良好的大约有多少人?(4)初三(1)班的甲、乙、丙、丁四人的成绩均为A,现决定从这四名同学中选两名参加学校组织的体育活动,直接写出恰好选中甲、乙两位同学的概率.【解答】解:(1)m=60×35%=21,n=60﹣21﹣24﹣3=12,x=35%=0.35,y=12÷60=0.2;(2)B等级所对应的圆心角35%×360°=126°;(3)由上表可知达到优秀和良好的共有21+24=45人,8×=6(万人),答:估计这8万名初三毕业生成绩等级达到优秀和良好的大约有6万人;(4)∵从甲、乙、丙、丁四人选两人有如下6种结果:(甲,乙)、(甲,丙)、(甲,丁)、(乙,丙)、(乙,丁)、(丙,丁),恰好选中甲、乙两位同学的结果只有1种,∴恰好选中甲、乙两位同学的概率为;故答案为:(1)21,12,0.35,0.2;(2)126.22.(8分)有n个方程:x2+2x﹣8=0;x2+2×2x﹣8×22=0;…x2+2nx﹣8n2=0.小静同学解第一个方程x2+2x﹣8=0的步骤为:“①x2+2x=8;②x2+2x+1=8+1;③(x+1)2=9;④x+1=±3;⑤x=1±3;⑥x1=4,x2=﹣2.”(1)小静的解法是从步骤⑤开始出现错误的.(2)用配方法解第n个方程x2+2nx﹣8n2=0.(用含有n的式子表示方程的根)【解答】解:(1)小静的解法是从步骤⑤开始出现错误的,故答案为:⑤;(2)x2+2nx﹣8n2=0,x2+2nx=8n2,x2+2nx+n2=8n2+n2,(x+n)2=9n2,x+n=±3n,x1=2n x2=﹣4n.23.(9分)如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P2恰好在直线l上.(1)点P2的坐标为(3,3);(2)求直线l的解析表达式;(3)求直线y=﹣x+b经过点P1,交x轴于点C,则b的值是多少?已知直线l与x轴交于点D,求△P1CD的面积是多少?【解答】解:(1)∵将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P1的坐标为(2,1),∴点P2的坐标为(3,3).故答案为:(3,3).(2)设直线l的解析表达式为y=mx+n(m≠0),将P1(2,1)、P2(3,3)代入y=mx+n,得,解得:,∴直线l的解析表达式为y=2x﹣3.(3)∵求直线y=﹣x+b经过点P1(2,1),∴1=﹣2+b,∴b=3,∴直线CP1的解析表达式为y=﹣x+3,∴点C的坐标为(0,3).设直线CP1的x轴的交点为E,则点E(3,0).当y=0时,有2x﹣3=0,解得:x=,∴点D的坐标为(,0),∴=S△COE ﹣S△COD﹣=×3×3﹣×3×﹣××1=.24.(10分)如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC⊥OA于点C,过点B作⊙O的切线交CE的延长线于点D.(1)求证:DB=DE;①则cos∠EFF=;②求⊙O的半径.【解答】(1)证明:∵BD为切线,∴∠OBD=90°,即∠OBE+∠DBE=90°,∵CD⊥OA,∴∠A+∠AEC=90°,而OA=OB,∴∠A=∠OBE,∴∠AEC=∠DBE,∵∠AEC=∠DEB,∴∠DEB=∠DBE,∴DB=DE;(2)解:①连接OE,如图,∵E是AB的中点,∴AE=BE=6,∵DE=DB=5,DF⊥BE,∴EF=BE=3,在Rt△DEF中,DF==4,cos∠EDF==;故答案为;②连接OE,如图,∵E是AB的中点,∴OE⊥AB,∴∠OEB=90°∴∠EOB+∠EBO=90°,而∠OBE+∠DBE=90°,∴∠EOB=∠DBF,在Rt△OBE中,sin∠EOB==sin∠DBF=,∴OB==,即⊙O的半径为.25.(12分)在平面直角坐标系中,O为原点,点A(8,0),点B(0,6),把△ABO绕点B逆时针旋转得△A′B′O′,点A、O旋转后的对应点为A′、O′,记旋转角为α.(1)如图1,若α=90°,则AB=10,并求AA′的长;(2)如图2,若α=120°,求点O′的坐标;(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,直接写出点P′的坐标.【解答】解:(1)如图①,∵点A(8,0),点B(0,6),∴OA=8,OB=6,∴AB=10,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=10;故答案为:10;(2)作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=6,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=3,O′H=BH=3,∴OH=OB+BH=6+3=9,∴O′点的坐标为(3,9);(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣6),设直线O′C的解析式为y=kx+b,把O′(3,9),C(0,﹣6)代入得,解得,∴直线O′C的解析式为y=x﹣6,∴OP=,∴O′P′=OP=作P′D⊥O′H于D,∵∠BO′A′=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D=O′P′=,P′D=O′D=,∴DH=O′H﹣O′D=3﹣=,∴P′点的坐标为(,).26.(12分)某种植基地种植一种蔬菜,它的成本是每千克2元,售价是每千克3元,年销量为10 (万千克).基地准备拿出一定的资金作绿色开发,若每年绿色开发投入的资金为x (万元),该种蔬菜的年销量将是原年销量的n倍,x与n的关系如下表:(1)猜想n与x之间的函数类型是n=﹣0.1x2+0.6x+1函数,求出该函数的表达式并验证;(2)求年利润W1(万元)与绿色开发投入的资金x(万元)之间的函数关系式(注:年利润W1=销售总额﹣成本费﹣绿色开发投入的资金);当绿色开发投入的资金不低于3万元,又不超过5万元时,求此时年利润W1(万元)的最大值;(3)若提高种植人员的奖金,发现又增加一部分年销量,经调查发现:再次增加的年销量(万千克)与每年提高种植人员的奖金z (万元)之间满足y=﹣z2+4z,若基地将投入5万元用于绿色开发和提高种植人员的奖金,应怎样分配这笔资金才能使总年利润达到17万元且绿色开发投入大于奖金投入?()【解答】解:(1)根据题中数据分析不是一次函数(不是线性的),也不是反比例函数(n*x的值不是常数),所以选择二次函数,设n与x的函数关系式为n=ax2+bx+c,由题意得:,解得:,∴n与x的函数关系式为:n=﹣0.1x2+0.6x+1;故答案为:n=﹣0.1x2+0.6x+1.(2)∵利润=销售总额减去成本费和绿色开发的投入资金,∴W=(3﹣2)×10n ﹣x=﹣x2+5x+10;当x=时,w最大,∵由于投入的资金不低于 3 万元,又不超过 5 万元,所以3≤x≤5,而a=﹣1<0,抛物线开口向下,且取值范围在顶点右侧,W随x的增大而减小,故最大值在x=3处,∴当x=3时,W最大为:16万元;(3)设用于绿色开发的资金为n万元,则用于提高奖金的资金为(5﹣n)万元,将n代入(2)中的W=﹣x2+5x+10,故W=﹣n2+5n+10;将(5﹣n)代入y=﹣z2+4z,故y=﹣(5﹣n)2+4(5﹣n)=﹣n2+6n﹣5,由于单位利润为1,所以由增加奖金而增加的利润就是﹣n2+6n﹣5;所以总利润W'=(﹣n2+5n+10)+(﹣n2+6n﹣5)﹣(5﹣n)=﹣2n2+12n,因为要使年利润达到17万,所以﹣2n2+12n=17,整理得2n2﹣12n+17=0,解得:n=,或n=,而绿色开发投入要大于奖金,所以n=3.7,5﹣n=1.3.所以用于绿色开发的资金为3.7万元,奖金为1.3万元.。
2024年河北省唐山市中考数学一模试卷+答案解析

2024年河北省唐山市中考数学一模试卷一、选择题:本题共16小题,共38分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若,则“?”是()A.1B.2C.3D.42.如图,在同一平面内有直线l及直线外一点P,作,垂足为M,则点P到直线l的距离是()A.线段PM的长度B.射线BPC.线段APD.线段PM3.不一定相等的一组是()A.与B.4a与C.与D.与4.下列算式中,与有理数相等的是()A. B. C. D.5.神舟15号飞船离地飞行速度约为每秒,则飞船离地飞行1分钟的路程约为()A. B. C. D.6.将一把直尺和一块含和角的三角板ABC按如图所示的位置放置,如果,那么的大小为()A.B.C.D.7.下列计算结果正确的是()A. B. C. D.8.小明在课余时间,找了几副度数不同的近视镜,让镜片正对着太阳光,并上下移动镜片,直到地上的光斑最小.此时他测量了镜片到光斑的距离,得到一组数据,并借助计算机绘制了镜片度数度与镜片到光斑的距离米的图象如图,下列结论正确的是()A.y与x的关系式为B.当时,C.镜片度数越大,镜片到光斑的距离越小D.平光镜近视度数为的镜片到光斑距离为0米9.如图,平面上直线a,b分别过线段OK两端点数据如图,若要使,则直线a围绕点O()A.顺时针旋转B.逆时针旋转C.逆时针旋转D.顺时针旋转10.老师在黑板上写出一个计算方差的算式:,根据上式还原得到的数据,下列结论不正确的是()A. B.平均数为8C.添加一个数8后方差不变D.这组数据的众数是611.在数学课堂上,老师带领同学们用尺规“过直线l外一点C作直线l的垂线”,图①是老师画出的第一步,图②,图③分别是甲、乙两位同学补充的作图痕迹,则补充的作图痕迹正确的是()A.甲B.乙C.甲和乙D.都不正确12.观察如图所标记的数据,下列判断正确的是()A.甲、乙两个四边形既是轴对称图形也是中心对称图形B.甲只是中心对称图形,乙只是轴对称图形C.甲只是轴对称图形,乙只是中心对称图形D.甲是轴对称图形也是中心对称图形,乙只是中心对称图形13.如图,一个球体在长方体上沿虚线从左向右滚动,在滚动过程中,球体与长方体的组合图形的视图始终不变的是()A.左视图B.主视图C.俯视图D.左视图和俯视图14.一道条件缺失的问题情境:一项工程,甲队单独做需要12天完成,…还需要几天完成任务.根据标准答案,老师在黑板上画出线段示意图如图,设两队合作还需x天完成任务,并列方程为根据上面信息,下面结论不正确的是()A.乙队单独完成需要8天完成B.D处代表的代数式C.A处代表的实际意义:甲先做2天的工作量D.甲先做2天,然后甲乙两队合作5天完成了整个工程15.如图,AB是半圆O的直径,点C、D将弧AB分成相等的三段弧,点M在AB的延长线上,连接三个人给出以下说法:甲:若MD为半圆O的切线,则能得出;乙:若连接AC、CD,则;丙:若连接AC、BD,则;三位同学给出的结论正确的是()A.甲和乙B.乙和丙C.甲和丙D.只有甲16.如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为()A. B. C. D.二、填空题:本题共3小题,共10分。
2020年唐山市路南区中考数学一模试卷含答案解析

2020年河北省唐山市路南区中考数学一模试卷一、选择题(本题共16个小题,1-10小题,每小题3分,11-16小题,每小题3分,共42分)1.﹣2的绝对值是()A.﹣2 B.2 C.﹣D.2.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是()A.6.75×103吨B.67.5×103吨C.6.75×104吨D.6.75×105吨3.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.4.下列运算正确的是()A.a•a2=a2B.(a2)3=a6 C.a2+a3=a6D.a6÷a2=a35.如图,△ABC中,∠A=40°,点D为延长线上一点,且∠CBD=120°,则∠C=()A.40°B.60°C.80°D.100°6.已知矩形的面积为10,长和宽分别为x和y,则y关于x的函数图象大致是()A.B.C.D.7.如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠BAC=50°,则∠COD的大小为()A.100°B.80°C.50°D.40°8.某化肥厂计划在规定日期内生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨与原计划生产120吨的时间相等.设原计划每天生产x吨化肥,那么适合x 的方程是()A.B.C.D.9.如图,AB∥CD,以点A为圆心,小于AC长为半径画圆弧,分别交AB、AC于E、F两点:再分别以E、F为圆心,大于EF长为半径画圆弧,两弧交于点G,作射线AG交CD于点H.若∠C=150°,则∠AHC大小是()A.15°B.25°C.30°D.35°10.如图,直线y=kx+b交坐标轴于A,B两点,则不等式kx+b≤0的解集在数轴上表示正确的是()A. B. C.D.11.一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机搭配在一起,则其颜色搭配一致的概率是()A.B.C.D.112.如图,在由四个边长为1的小正方形组成的图形中,阴影部分的面积是()A.1 B.2 C.3 D.413.工人师傅要把一根质地均匀的圆柱形木料锯成若干段,按如图的方式锯开,每锯断一次所用的时间相同.若锯成6段需要时间10分钟,则锯成n(n≥2,且n为整数)段所需的时间为()A.n分钟B.2n分钟C.(2n+2)分钟D.(2n﹣2)分钟14.如图,斜面AC的坡度(CD与AD的比)为1:2,AC=3米,坡顶有一旗杆BC,旗杆顶端B点与A点有一条彩带相连,若AB=10米,则旗杆BC的高为()A.(3+)米B.8米C.6米D.5米15.为推进课改,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案()A.4 B.3 C.2 D.116.如图,在边长为1的正方形网格中,图形B是由图形A旋转得到的,则旋转中心的坐标为()A.(0,1)B.(﹣1,0)C.(0,0)D.(﹣2,﹣1)二、填空题(本题共4个小题,每小题3分,共12分)17.()﹣1=______.18.如图,在菱形ABCD中,∠BAD=60°,BD=4,则菱形ABCD的周长是______.19.如图,边长为1的正五边形ABCDE,顶点A、B在半径为1的圆上,其它各点在圆内,将正五边形ABCDE绕点A逆时针旋转,当点E第一次落在圆上时,则点C转过的度数为______.20.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2020秒时,点P的坐标是______.三、解答题(本题共6个小题,满分共66分,解答应写出文字说明、证明过程或演算步骤)21.先化简,再求值:﹣÷,其中x=﹣3是方程x2+2x+a=0的一个根.22.某学校举行“社会主义核心价值观”知识比赛活动,全体学生都参加比赛,学校对参赛学生均给与表彰,并设置一、二、三等奖和纪念奖共四个奖项,赛后将获奖情况绘制成如下所示的两幅不完整的统计图,请根据图中所给的信息,解答下列问题:(1)该校共有______名学生;(2)在图①中,“三等奖”所对应扇形的圆心角度数是______;(3)将图②补充完整;(4)从该校参加本次比赛活动的学生中随机抽查一名.求抽到获得一等奖的学生的概率.23.甲、乙两地相距400千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA(l)表示货车离甲地距离y(千米)与货车出发时间x(小时)之间的函数关系;折线货BCD表示轿车离甲地距离y(千米)与货车出发时间x(小时)之间的函数关系,请根据图象解答下列问题:(1)货车的速度为______千米/时,轿车在CD段的速度为______千米/时;(2)求线段CD(l)对应的函数解析式并直接写出x的取值范围.轿(3)轿车到达乙地后,马上沿原路以CD段速度返回,求货车从甲地出发后多长时间第二次与轿车相遇.24.如图,在矩形ABCD中,AD=8,E是AB边上一点,且AE=AB,⊙O经过点E,若⊙O与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在射线相交于另一点F,且EG:EF=:2.(1)求⊙O的半径r;(2)当边AD或BC所在直线与⊙O相切时,直接写出AE的长;以及⊙O与矩形ABCD 边的公共点个数.25.已知二次函数y=x2﹣x+m的图象C1与x轴有且只有一个公共点.(1)求m的值;(2)将C1向下平移若干个单位后得抛物线,若C2与x轴的一个交点为A(﹣1,0),求C2的函数关系式,并求C2与x轴另一个交点B的坐标;(3)①若P(n,y1),Q(2,y2)是C1上的两点,且y1>y2,求实数n的取值范围;②若C2与y轴的交点为D,请直接写出∠ADB的度数.26.如图1,在▱ABCD中,AB=8,BC=6,∠B=60°,点E是边AB上的一点,点F是边CD上一点,将▱ABCD沿EF折叠,得到四边形EFGH,点A的对应点为点H,点D的对应点为点G.(1)则点E到CD的距离为______;(2)当点H与点C重合时,①证明:CE=CF;②求:BE和CF的长;(3)当点H落在射线BC上,且CH=1时,直线EH与直线CD交于点M时.①请直接写出BE的长;②在①的基础上求ME的长.2020年河北省唐山市路南区中考数学一模试卷参考答案与试题解析一、选择题(本题共16个小题,1-10小题,每小题3分,11-16小题,每小题3分,共42分)1.﹣2的绝对值是()A.﹣2 B.2 C.﹣D.【考点】绝对值.【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2.故选B.2.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是()A.6.75×103吨B.67.5×103吨C.6.75×104吨D.6.75×105吨【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于67500有5位,所以可以确定n=5﹣1=4.【解答】解:67 500=6.75×104.故选C.3.由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】主视图有2列,每列小正方形数目分别为2,1.【解答】解:几何体的主视图有2列,每列小正方形数目分别为2,1,故选A.4.下列运算正确的是()A.a•a2=a2B.(a2)3=a6 C.a2+a3=a6D.a6÷a2=a3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】A、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;B、原式利用幂的乘方运算法则计算得到结果,即可做出判断;C、原式不能合并,错误;D、原式利用同底数幂的除法法则计算得到结果,即可做出判断.【解答】解:A、原式=a3,错误;B、原式=a6,正确;C、原式不能合并,错误;D、原式=a4,错误,故选B.5.如图,△ABC中,∠A=40°,点D为延长线上一点,且∠CBD=120°,则∠C=()A.40°B.60°C.80°D.100°【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:由三角形的外角性质得,∠C=∠CBD﹣∠A=120°﹣40°=80°.故选C.6.已知矩形的面积为10,长和宽分别为x和y,则y关于x的函数图象大致是()A.B.C.D.【考点】反比例函数的应用;反比例函数的图象.【分析】根据题意得出y是x的反比例函数,容易得出函数的图象.【解答】解:根据题意得:xy=10,∴y=,即y是x的反比例函数,图象是双曲线,∵10>0,x>0,∴函数图象是位于第一象限的曲线;故选:C.7.如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠BAC=50°,则∠COD的大小为()A.100°B.80°C.50°D.40°【考点】切线的性质.【分析】由AC是⊙O的切线,可求得∠C=90°,然后由∠BAC=50°,求得∠B的度数,再利用圆周角定理,即可求得答案.【解答】解:∵AC是⊙O的切线,∴BC⊥AC,∴∠C=90°,∵∠BAC=50°,∴∠B=90°﹣∠BAC=40°,∴∠COD=2∠B=80°,故选B.8.某化肥厂计划在规定日期内生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨与原计划生产120吨的时间相等.设原计划每天生产x吨化肥,那么适合x 的方程是()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】关键描述语是:实际生产180吨与原计划生产120吨的时间相等,等量关系为:原计划生产120吨的时间=实际生产180吨的时间.【解答】解:原计划生产120吨的时间为,实际生产180吨的时间为.那么所列方程为=.故选C.9.如图,AB∥CD,以点A为圆心,小于AC长为半径画圆弧,分别交AB、AC于E、F两点:再分别以E、F为圆心,大于EF长为半径画圆弧,两弧交于点G,作射线AG交CD于点H.若∠C=150°,则∠AHC大小是()A.15°B.25°C.30°D.35°【考点】平行线的性质.【分析】根据题意可得AH平分∠CAB,再根据平行线的性质可得∠CAB的度数,再根据角平分线的性质可得答案.【解答】解:由题意可得:AH平分∠CAB,∵AB∥CD,∴∠C+∠CAB=180°,∵∠ACD=150°,∴∠CAB=30°,∵AH平分∠CAB,∴∠HAB=15°,∴∠AHC=15°.故选A.10.如图,直线y=kx+b交坐标轴于A,B两点,则不等式kx+b≤0的解集在数轴上表示正确的是()A. B. C.D.【考点】一次函数与一元一次不等式.【分析】不等式kx+b≤0的解集是在x轴及其下方的函数图象所对应的自变量的取值范围,观察图象得出不等式kx+b≤0的解集,然后根据不等式在数轴上的表示方法即可求解.【解答】解:由图象可以看出,x轴及其下方的函数图象所对应自变量的取值为x≤﹣2,所以不等式kx+b≤0的解集是x≤﹣2.故选B.11.一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机搭配在一起,则其颜色搭配一致的概率是()A.B.C.D.1【考点】列表法与树状图法.【分析】根据概率的计算公式.颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出概率即可.【解答】解:用A和a分别表示粉色有盖茶杯的杯盖和茶杯;用B和b分别表示白色有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb所以颜色搭配正确的概率是;故选B.12.如图,在由四个边长为1的小正方形组成的图形中,阴影部分的面积是( )A .1B .2C .3D .4【考点】三角形的面积.【分析】阴影部分的面积等于正方形的面积.【解答】解:S 阴影=S 正方形=×2×2=2,故选B .13.工人师傅要把一根质地均匀的圆柱形木料锯成若干段,按如图的方式锯开,每锯断一次所用的时间相同.若锯成6段需要时间10分钟,则锯成n (n ≥2,且n 为整数)段所需的时间为( )A . n 分钟B .2n 分钟C .(2n +2)分钟D .(2n ﹣2)分钟【考点】列代数式.【分析】根据题意求出每锯断一次所用的时间,再求出锯成n 段需要的次数,计算即可.【解答】解:∵锯成6段需要锯5次,需要时间10分钟,∴每锯断一次所用的时间是2分钟,∵锯成n 段需要锯n ﹣1次,需要时间2(n ﹣1)=2n ﹣2分钟,故选:D .14.如图,斜面AC 的坡度(CD 与AD 的比)为1:2,AC=3米,坡顶有一旗杆BC ,旗杆顶端B 点与A 点有一条彩带相连,若AB=10米,则旗杆BC 的高为( )A .(3+)米B .8米C .6米D .5米【考点】解直角三角形的应用-坡度坡角问题.【分析】要求旗杆BC的高度,就要知道BC和CD的高度,就要先求出AD的长度.根据BC=BD﹣CD,即可得出结果.【解答】解:在Rt△ADC中,AC=3,由坡度为1:2,∴CD=AC•sin∠ADC=3×=3,AD=AC•cos∠ADC=3×=6.在Rt△ABD中,BD=.∵BD=BC+CD,∴BC=BD﹣CD=8﹣3=5(米).答:旗杆的高度为5米.故选D.15.为推进课改,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案()A.4 B.3 C.2 D.1【考点】二元一次方程的应用.【分析】根据题意设5人一组的有x个,6人一组的有y个,利用把班级里40名学生分成若干小组,进而得出等式求出即可.【解答】解:设5人一组的有x个,6人一组的有y个,根据题意可得:5x+6y=40,当x=1,则y=(不合题意);当x=2,则y=5;当x=3,则y=(不合题意);当x=4,则y=(不合题意);当x=5,则y=(不合题意);当x=6,则y=(不合题意);当x=7,则y=(不合题意);当x=8,则y=0;故有2种分组方案.故选:C.16.如图,在边长为1的正方形网格中,图形B是由图形A旋转得到的,则旋转中心的坐标为()A.(0,1)B.(﹣1,0)C.(0,0)D.(﹣2,﹣1)【考点】坐标与图形变化-旋转.【分析】根据旋转的性质,连接两组对应点,然后作出垂直平分线,交点即为旋转中心.【解答】解:如图所示,点P(0,1)即为旋转中心.故选:A.二、填空题(本题共4个小题,每小题3分,共12分)17.()﹣1=2.【考点】负整数指数幂.【分析】根据负整指数幂的意义,可得答案.【解答】解:原式=2,故答案为:2.18.如图,在菱形ABCD中,∠BAD=60°,BD=4,则菱形ABCD的周长是16.【考点】菱形的性质.【分析】由四边形ABCD是菱形,即可得AB=BC=CD=AD,又由∠BAD=60°,BD=4,即可证得△ABD是等边三角形,即可求得菱形的边长,继而求得菱形ABCD的周长.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵∠BAD=60°,∴△ABD是等边三角形,∴AB=AD=BD=4,∴菱形ABCD的周长是:4×4=16.故答案为:16.19.如图,边长为1的正五边形ABCDE,顶点A、B在半径为1的圆上,其它各点在圆内,将正五边形ABCDE绕点A逆时针旋转,当点E第一次落在圆上时,则点C转过的度数为12°.【考点】正多边形和圆.【分析】因为点E旋转的角度和点C旋转的角度相等,所以求出点E旋转的角度即可.【解答】解:如图设圆心为O,连接OA、OB,点E落在圆上的点E′处.∵AB=OA=OB,∴∠OAB=60°,同理∠OAE′=60°,∵∠EAB=108°,∴∠EAO=∠EAB﹣∠OAB=48°,∴∠EAE′=∠OAE′﹣∠EAO=60°﹣48°=12°,∵点E旋转的角度和点C旋转的角度相等,∴点C旋转的角度为12°,故答案为12°.20.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2020秒时,点P的坐标是.【考点】规律型:点的坐标.【分析】以时间为点P的下标,根据半圆的半径以及部分点P的坐标可找出规律“P4n(n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1)”,依此规律即可得出第2020秒时,点P的坐标.【解答】解:以时间为点P的下标.观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,﹣1),P4(4,0),P5(5,1),…,∴P4n(n,0),P4n+1(4n+1,1),P4n+2(4n+2,0),P4n+3(4n+3,﹣1).∵2020=504×4+1,∴第2020秒时,点P的坐标为.故答案为:.三、解答题(本题共6个小题,满分共66分,解答应写出文字说明、证明过程或演算步骤)21.先化简,再求值:﹣÷,其中x=﹣3是方程x2+2x+a=0的一个根.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,把x=﹣3代入方程x2+2x+a=0求出a 的值,再把a的值代入原式进行计算即可.【解答】解:原式=﹣•=﹣=,∵x=﹣3是方程x2+2x+a=0的一个根,∴(﹣3)2+2×(﹣3)+a=0,解得a=﹣3,当a=﹣3时,原式=﹣1.22.某学校举行“社会主义核心价值观”知识比赛活动,全体学生都参加比赛,学校对参赛学生均给与表彰,并设置一、二、三等奖和纪念奖共四个奖项,赛后将获奖情况绘制成如下所示的两幅不完整的统计图,请根据图中所给的信息,解答下列问题:(1)该校共有1260名学生;(2)在图①中,“三等奖”所对应扇形的圆心角度数是108°;(3)将图②补充完整;(4)从该校参加本次比赛活动的学生中随机抽查一名.求抽到获得一等奖的学生的概率.【考点】条形统计图;扇形统计图;概率公式.【分析】(1)用二等奖的人数除以对应的百分比求出该校共有学生数,(2)先求出一等奖扇形对应的百分比,再求三等奖扇形对应的圆心角为:(1﹣20%﹣5%﹣45%)×360°=108°,(3)求出三等奖的人数再画出条形统计图,(4)用一等奖的学生数除以总人数就是抽到一等奖的概率,【解答】解:(1)该校共有学生数为:252÷20%=1260(名),故答案为:1260.(2)一等奖扇形对应的百分比为:63÷1260=5%,所以三等奖扇形对应的圆心角为:(1﹣20%﹣5%﹣45%)×360°=108°,故答案为:108°.(3)三等奖的人数为:1260×(1﹣20%﹣5%﹣45%)=378人,如图2,(4)抽到获得一等奖的学生的概率为:63÷1260=5%.23.甲、乙两地相距400千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA(l)表示货车离甲地距离y(千米)与货车出发时间x(小时)之间的函数关系;折线货BCD表示轿车离甲地距离y(千米)与货车出发时间x(小时)之间的函数关系,请根据图象解答下列问题:(1)货车的速度为80千米/时,轿车在CD段的速度为120千米/时;)对应的函数解析式并直接写出x的取值范围.(2)求线段CD(l轿(3)轿车到达乙地后,马上沿原路以CD段速度返回,求货车从甲地出发后多长时间第二次与轿车相遇.【考点】一次函数的应用.【分析】(1)根据图形中点的坐标的意义,再结合速度=路程÷时间,即可得出结论;(2)设线段CD对应的函数解析式为y=kx+b,由待定系数法求出其解即可;(3)设x小时后两车第二次相遇,根据:货车行驶路程+轿车从乙地返回后所行驶路程=甲、乙两点距离,列出方程,解方程可得.【解答】解:(1)货车速度为:400÷5=80(km/h),轿车在CD段的速度为:=120(km/h);)对应的函数解析式为y=kx+b,(2.5≤x≤4.5),(2)线段CD(l轿∵C(2.5,160)、D(4.5,400)在其图象上,∴,解得:,)对应的函数解析式为y=120x﹣140,(2.5≤x≤4.5);∴线段CD(l轿(3)设x小时后两车第二次相遇,根据题意,得:120(x﹣4.5)+80x=400,解得:x=4.7(小时),答:出发4.7小时后轿车再次与货车相遇.故答案为:(1)80,120.24.如图,在矩形ABCD中,AD=8,E是AB边上一点,且AE=AB,⊙O经过点E,若⊙O与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在射线相交于另一点F,且EG:EF=:2.(1)求⊙O的半径r;(2)当边AD或BC所在直线与⊙O相切时,直接写出AE的长;以及⊙O与矩形ABCD 边的公共点个数.【考点】切线的性质.【分析】(1)连接GO并延长交AB于点H,由切线的性质易得HG⊥CD,由矩形的性质易证得四边形AHGD为矩形,设EG=m,则EH=m,在Rt△GEH中,由勾股定理易得m,即得EH的长,在Rt△OEH中,由勾股定理可得r的长;(2)当⊙O与AD相切时,由切线的性质和半径可得AE=1,求出AB的边长可得交点个数;当⊙O与BC相切时,同理可得,此时AE=3,求出AB的边长可得交点个数.【解答】解:(1)连接GO并延长交AB于点H,∵CD与⊙O相切于点G,∴HG⊥CD,∵四边形ABCD为矩形,∴AB∥CD,∴GH⊥AB,即GH⊥EF,∴EH=HF=,∵矩形ABCD中,AD=8,∴∠D=∠A=∠AHG=90°,∴四边形AHGD为矩形,GH=AD=8,∴在Rt△GEH中,EG:EF=:2,设EG=m,则EH=m,∴EG2﹣EH2=GH2,则m=±4,EH=4,在Rt△OEH中,由勾股定理得r2=42+(8﹣r)2,解得:r=5;(2)当⊙O与AD相切时,此时AE=AH﹣EH=r﹣EH=5﹣4=1,∵AE=AB,∴AB=4,∴⊙O与矩形ABCD边有3个公共点,如图所示;当⊙O与BC相切时,∵EH=4,BH=r=5,∴BE=4+5=9,∵AE=AB,∴BE=AB,∴AB=12,∴AE=3.∴⊙O与矩形ABCD边有4个公共点,如图所示.25.已知二次函数y=x2﹣x+m的图象C1与x轴有且只有一个公共点.(1)求m的值;(2)将C1向下平移若干个单位后得抛物线,若C2与x轴的一个交点为A(﹣1,0),求C2的函数关系式,并求C2与x轴另一个交点B的坐标;(3)①若P(n,y1),Q(2,y2)是C1上的两点,且y1>y2,求实数n的取值范围;②若C2与y轴的交点为D,请直接写出∠ADB的度数.【考点】二次函数综合题.【分析】(1)根据抛物线与x轴有一个交点,即△=0,即可求出m的值;(2)设C2的函数关系式为y=+k,把A(﹣1,0)代入,即可求出C2的函数关系式,根据对称性,即可求出B的坐标;(3)①根据当x≥时,y随x的增大而增大,和当n<时,y随x的增大而减小,分情况讨论;②画出图象,根据两边成比例且夹角相等,证明△AOD≌△DOB,得∠ODB=∠OAD,即可求得∠ADB的度数.【解答】解:(1)∵图象C1与x轴有且只有一个公共点,∴,解得:m=;(2)由C1:==,∴设C2的函数关系式为y=+k,把A(﹣1,0)代入,得:,解得:k=,∴C2的函数关系式为:,∵抛物线的对称轴为x=与x轴的一个交点为A(﹣1,0),∴由对称性可知,它与x轴的另一个交点为B(4,0);(3)①当x≥时,y随x的增大而增大,当n≥时,∵y1>y2,∴n>2,当n<时,y随x的增大而减小,∵x=1和x=2的函数值相等,∴当y1>y2时,n<1,综上所述,n<1或n>2;②∠ADB=90°,如图,∵C2与y轴的交点为D,∴当x=0时,,∴点D(0,﹣2),在△AOD和△DOB中,,,∴,∵∠AOD=∠DOB,∴△AOD≌△DOB,∴∠ODB=∠OAD,∴∠ODB+∠ODA=∠OAD+∠ODA=90°,即∠ADB=90°.26.如图1,在▱ABCD中,AB=8,BC=6,∠B=60°,点E是边AB上的一点,点F是边CD上一点,将▱ABCD沿EF折叠,得到四边形EFGH,点A的对应点为点H,点D的对应点为点G.(1)则点E到CD的距离为3;(2)当点H与点C重合时,①证明:CE=CF;②求:BE和CF的长;(3)当点H落在射线BC上,且CH=1时,直线EH与直线CD交于点M时.①请直接写出BE的长;②在①的基础上求ME的长.【考点】四边形综合题.【分析】(1)如图1中,作EP⊥CD,CH⊥AB垂足分别为P、H,先证明PE=HC,在RT △BCH中求出CH即可.(2)①只要证明∠CEF=∠CFE即可.②如图2中,过点E作EP⊥BC于P,设PB=m,则BE=2m,在RT△ECP中利用勾股定理即可.(3)①如图3中,当点H在BC边上时,设BE=x,在RT△EPH中利用勾股定理即可解决.如图4中,当点H在BC的延长线上时,设BE=x,在RT△EPH中利用勾股定理即可解决.②如图3中,当点H在BC边上时,设BE=x,由AB∥CD得=,列出方程即可解决,如图4中,当点H在BC的延长线上时,设BE=x,由AB∥CD得=,列出方程即可解决.【解答】(1)解:如图1中,作EP⊥CD,CH⊥AB垂足分别为P、H,∵四边形ABCD是平行四边形,∴AB∥CD,∵∠EPC=∠EHC=90°,∠PEH+∠EPC=180°∴∠PEH=∠EHC=∠EPC=90°,∴四边形EHCP是矩形,∴EP=CH在RT△BCH中,∵∠CHB=90°,BC=6,∠B=60°,∴BH=3,HC=BH=3,∴EP=3,∴点E到CD的距离为3.故答案为3.(2)①证明:如图1中,由折叠可知,∠AEF=∠CEF,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠AEF=∠CFE,∴∠CEF=∠CFE,∴CE=CF.②解:如图2中,过点E作EP⊥BC于P.∵∠EPB=90°,∠B=60°,∴BE=2PB,设PB=m,则BE=2m,∴EP=BE•sin60°=2m•=m,∵AE=CE,AB=8,∴CF=AE=CE=8﹣2m,在RT△ECP中,∵EC2﹣PC2=PE2,∴(8﹣2m)2﹣(6﹣m)2=(m)2,∴m=,∴PB=,BE=,∴CF=CE=8﹣2m=.(3)①如图3中,当点H在BC边上时,设BE=x,则PB=x,PE=x,PH=BC﹣CH ﹣PB=5﹣x,∵AE=EH=8﹣x,在RT△EPH中,∵EH2=EP2+PH2,∴(8﹣x)2=(x)2+(5﹣X)2,∴X=,∴BE=.如图4中,当点H在BC的延长线上时,设BE=x,在RT△EPH中,∵∠EPH=90°,EH=AE=8﹣x,EP=x,PH=7﹣x,∴(8﹣x)2=(x)2+(7﹣x)2,∴x=,∴BE=.∴当点H落在射线BC上,且CH=1时,BE=或.②当点H在BC边上时,∵BE=,EH=AE=8﹣=,CH=1,BH=BC﹣CH=5,∵AB∥CD,∴=,∴=,∴EM=.当点H在BC的延长线时,∵BE=,EH=AE=8﹣=,CH=1,BH=BC+CH=7,∵AB∥CD,∴=,∴=,∴EM=.∴EM的长为或.2020年9月20日。
2022年河北省唐山市路南区中考一模数学试题

2022年初中毕业生文化课模拟考试(一)数学试卷注意事项:1.本试卷共8页,总分120分,考试时间120分钟.2.答题前,考生务必将姓名、准考证号填写在试卷和答题卡相应位置上.3.答选择题时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答非选择题时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在平面内作直线l 的垂线,能作出( )A .0条B .1条C .2条D .无数条2.下面四个图形中,12∠=∠一定成立的是( )A .B .C .D .3.若a 为实数,则下列各式的运算结果比a 小的是( )A .1a ⨯B .1a +C .1a -D .1a ÷4.下列四个正方体的展开图中,能折叠成如右图所示的正方体的是( )A .B .C .D .5.下列计算正确的是( )A .326a a a ⋅=B .633a a a ÷=C .()235a a =D .235a a a +=63 )A 2B .32C .3D .237.下列尺规作图,能确定AD 是ABC 的中线的是( )A .B .C .D .8.如图,A 是某公园的进口,B ,C ,D 是三个不同的出口,小明从A 处进入公园,那么在B ,C ,D 三个出口中恰好从B 出口出来的概率为( )A .14B .13C .12D .239.如图,由一个正六边形和正五边形组成的图形中,1∠的度数应是( )A .72︒B .84︒C .82︒ C .94︒10.小华总结了以下结论,其中一定成立的是( )A .0不是单项式B .多项式221x y x -+是二次三项式C .“a 与b 的和的平方”表示为22a b +D .“x 的一半与y 的2倍的差是非负数”表示为1202x y -≥ 11.如图,E ,F ,G 为圆上的三点,50FEG ∠=︒,P 点可能是圆心的为( ) A . B . C . D .12.一条直线y kx b =+,其中2022,2022k b kb +=-=,那么该直线经过( )A .第二、四象限B .第一、二、三象限C .第一、三象限D .第二、三、四象限13.如图,正方形OEFG 和正方形ABCD 是位似图形,且点D 与点G 是一对对应点,点()2,2D ,点()0.1G ,则它们位似中心的坐标是( )A .(2,0)-B .(1,0)-C .(0,0)D .(3,0)-14.如图,在某监测点B 处望见一艘正在作业的渔船在南偏西15︒方向的A 处,若渔船沿北偏西75︒方向以60海里/小时的速度航行,航行半小时后到达C 处,在C 处观测到B 在C 的北偏东60︒方向上,则B 、C 之间 的距离为( )A .15海里B .30海里C .302海里D .315.以下是甲、乙、丙、丁四位同学做的题, 甲:计算111x x x +++时,去分母,同乘于(1)x +,得1x +. 乙:对于分式22a b ++,利用分式基本性质,可得,22a a b b +=+. 丙:由222311x x x x x -÷=--,解得12x =. 丁:22a b a b ++中a 、b 的值都扩大到原来的2倍,所得分式的值扩大到原来的4倍.则针对以上解法,下列说法正确的是( )A .只有丙正确B .只有丁正确C .甲、乙都正确D .丙、丁都正确16.把图1中周长为16cm 的长方形纸片分割成四张大小不等的正方形纸片A 、B 、C 、D 和一张长方形纸片E ,并将它们按图2的方式放入周长为24cm 的的长方形中.设正方形C 的边长为cm x ,正方形D 的边长为cm y .则下结论中正确的是( )A .正方形C 的边长为1cmB .正方形A 的边长为3cmC .正方形B 的边长为4cmD .阴影部分的周长为20cm二、填空题(本大题有3个小题,每小题有2个空,每空2分,共12分)17.某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.(1)现购进a 本甲种书和b 本乙种书.请用含a ,b 的代数式表示,共付款( )元;(2)若花费4510⨯元购进甲种书、花费3310⨯元购进乙种书,用科学记数法表示共花费_______元.18.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD 沿过点A 的直线折叠,使得点B 落在CD 上的点Q 处.折痕为AP 再将,PCQ ADQ ,分别沿,PQ AQ 折叠,此时点C ,D 落在AP 上的同一点R 处.请完成下列探究:(1)∵180C D ∠+∠=︒,∴AD 与BC 位置关系为_________;(2)线段CD 与QR 的数量关系为__________.19.如图,矩形ABCO 在平面直角坐标系xOy 中,点(5,0)A -,点(0,6)C ,已知双曲线11:(0)k L y x x =<经过点(1,6)-,双曲线22:(0)k L y x x=<. 如果把矩形ABCO 内部(不含边界)横、纵坐标均为整数的点称为“优点”.(1)则1L 和坐标轴之间(不含边界)有__________个“优点”;(2)当2122k -≤≤-,则1L 和2L 之间(不含边界)最多有________个“优点”.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分8分)如图,在一条不完整的数轴上,从左到右的点A ,B ,C 把数轴分成①②③④四部分,点A ,B ,C 对应的数分别是a ,b ,c ,已知0ab <.(1)直接说出原点在第几部分;(2)若5,3,1AC BC b ===,求a 和c 的值;(3)若a 、b 互为相反数,且10c =.求代数式2222a c b ab +++的值.21.(本小题满分9分)水平放置的容器内原有210毫米高的水,如图,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.(1)如果放1个大球、1个小球,水面高度达到_________毫米;只放入________个大球时,水面高度会达到230毫米;(2)仅放入6个大球后,开始放入小球.①求放入多少个小球时,水面高度会超出原高度48毫米;②限定水面高不超过280毫米,最多能放入几个小球?22.(本小题满分9分)某班老师要求每人每学期读4~7本书,并随机抽查了本学期学生读课外书册数的情况,绘制成如下不完整的条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,回答下列问题:(1)老师随机抽查了名学生,阅读6册人数为__________人;(2)已知册数的中位数是5,并且阅读7册的人数多于2人;小明说:条形图中阅读5册的人数为5.小亮说:条形图中阅读5册的人数为6.①你认为小明和小亮谁说的对,请说明原因,并求出阅读7册的人数;②扇形统计图中5册、7册所占的百分比分别为_______、________;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现中位数还是5,则最多又补查了_________人.23.(本小题满分9分)如图,,BE AD 是ABC 的高且相交于点P ,点Q 是BE 延长线上的一点.(1)求证:12∠=∠;(2)若AP BC =,AC BQ =.①嘉嘉说:3∠和4∠一定相等;②淇淇说:线段CP 与CQ 一定相等,4∠和CPQ ∠一定相等.请你对嘉嘉的说法直接给出对错;对淇淇的说法加以说理判断.24.(本小题满分9分)《九章算术》中记载,浮箭漏(图1)出现于汉武帝时期,它由供水壶和箭壶组成,箭壶内装有箭尺,水匀速地从供水壶流到箭壶,箭壶中的水位逐渐上升,箭尺匀速上浮,可通过读取箭尺读数计算时间.某学校课外小组仿制了一套浮箭漏,并从函数角度进行了如下实验探究:(1)【实验观察】实验小组通过观察,每2小时记录一次箭尺读数,得到下表: 供水时间x (小时) 0 2 4 6 8箭尺读数y (厘米) 6 18 30 42 54(2)【探索发现】①建立平面直角坐标系,如图2,横轴表示供水时间x ,纵轴表示箭尺读数y ,描出以表格中数据为坐标的各点;②观察上述各点的分布规律,判断它们是否在同一条直线上,如果在同一条直线上,求出这条直线所对应的函数表达式,如果不在同一条直线上,说明理由.(3)【结论应用】应用上述发现的规律估算:①供水时间达到12小时时,箭尺的读数为多少厘米?②如果本次实验记录的开始时间是上午7:30,那当箭尺读数为90厘米时是几点钟?(箭尺最大读数为100厘米)25.(本小题满分10分)如图,抛物线21:42G y x kx =-++(k 为常数)与x 轴和y 轴的正半轴分别交于点A 和B ,直线:6L y =,L 交y 轴于点C ,交抛物线G 于点M ,N (M 在N 的左侧).(1)当1k =时.①抛物线G 的对称轴为________,顶点坐标为___________,点B 的坐标为________;②在x 正半轴上从左到右有两点D ,E ,且1DE =,从点E 向上作EF x ⊥轴,且2EF =.在DEF 沿x 轴左右平移时,必须保证抛物线G 与边DF (包括端点)有交点,求点F 横坐标的最大值比最小值大多少? (2)当0k >时,是否存在k ,使1CM =?若存在,求出的值;若不存在,说明理由;(3)当0k <且12x k ≥时,抛物线G 的最高点到L 的距离为1,此时k 的值为___________. 26.(本小题满分12分)如图,在四边形ABCD 中,,90,60,4cm AB DC B BAD BC ∠=︒∠=︒=∥,对角线AC 平分BAD ∠.点P 是BA 边上一动点,它从点B 出发,向点A 移动,移动速度为1cm /s ;点Q 是AC 上一动点,它从点A 出发,向点C 3cm /s .设点P ,Q 同时出发,移动时间为s(06)t t ≤≤,一点到达,另一点也停止运动.连接PQ ,以PQ 为直径作O .(1)边AB =________cm 、DC =_________cm ;(2)求当t 为何值时,O 与AC 相切?(3)求当t 为何值时,线段AC 被O 截得的线段长恰好等于O 的半径? (4)当t =______s 时,圆心O 到直线DC 的距离最短,最短距离为________cm .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年河北省唐山市路南区中考数学一模试卷一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16各2分)1.在﹣3,0,﹣2,1四个数中,最小的数是()A.﹣3 B.0 C.﹣2 D.12.下面四个图形分别是节水、绿色食品、低碳和节能标志,在这四个标志中,是轴对称图形的是()A.B.C.D.3.截至2016年底,某市人口总数已达到7250000人,将7250000用科学记数法表示为()A.0.725×107B.7.25×107C.72.5×105D.7.25×1064.下列运算中,正确的是()A. =±2 B. =﹣3 C.(﹣1)0=1 D.﹣|﹣3|=35.化简+的结果是()A.n﹣m B.m﹣n C.m+n D.﹣m﹣n6.当前,“低头族”已成为热门话题之一,小颖为了解路边行人步行边低头看手机的情况,她应采用的收集数据的方式是()A.对学校的同学发放问卷进行调查B.对在路边行走的学生随机发放问卷进行调查C.对在路边行走的行人随机发放问卷进行调查D.对在图书馆里看书的人发放问卷进行调查7.下列计算正确的是()A.(3xy2)3=9x3y6 B.B、(x+y)2=x2+y2C.x6÷x2=x3D.2x2y﹣yx2=x2y8.如图为某几何体的三视图,则组成该几何体的小正方体的个数是()A.5 B.6 C.7 D.89.已知关于x的方程x2+mx﹣1=0的根的判别式的值为5,则m的值为()A.±3 B.3 C.1 D.±110.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a,b(a<b),则b﹣a的值为()A.5 B.6 C.7 D.811.如图,在△ABC中,AB=6,AC=10,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF 的周长为()A.8 B.10 C.12 D.1612.如图,正比例函数y=kx与反比例函数y=的图象不可能是()A.B.C.D.13.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90° B.180°C.210°D.270°14.如图所示的格点纸中每个小正方形的边长均为1,以小正方形的顶点为圆心,2为半径做了一个扇形,用该扇形围成一个圆锥的侧面,针对此做法,小明和小亮通过计算得出以下结论:小明说此圆锥的侧面积为π;小亮说此圆锥的弧长为π,则下列结论正确的是()A.只有小明对B.只有小亮对C.两人都对 D.两人都不对15.如图,直线l:y=﹣x+3与直线x=a(a为常数)的交点在第四象限,则关于a的取值范围在数轴上表示正确的是()A.B.C.D.16.已知△ABC在正方形网格中的位置如图所示,点A、B、C、P均在格点上,则点P叫做△ABC的()A.内心 B.重心 C.外心 D.无法确定二、填空题(本小题共3小题,共10分,17-18小题各3分,19小题有2个空,每空2分)17.计算:()﹣1= .18.阅读下面材料:在数学课上,老师提出如下问题:小敏的作法如下:老师说:“小敏的作法正确.”依其作法,先得出▱ABCD,再得出矩形ABCD,请回答:以上两条结论的依据是.19.在下列函数①y=2x+1;②y=x2+2x;③y=;④y=﹣3x中,与众不同的一个是(填序号),你的理由是.三、解答题(本题共有7个小题,共68分)20.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”(1)若小明同学心里想的是数9,请帮他计算出最后结果:[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0),请你帮小明完成这个验证过程.21.如图①,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.(1)求∠BCD的度数;(2)将图①中的△BCD绕点B顺时针旋转得到△BC′D′.当点D′恰好落在BC边上时,如图②所示,连接C′C并延长交AB于点E.①求∠C′CB的度数;②求证:△C′BD'≌△CAE.22.从甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,对两人进行了五次模拟,并对成绩(单位:分)进行了整理,计算出=83分, =82分,绘制成如下尚不完整的统计图表.甲、乙两人模拟成绩统计表①②③④⑤甲成绩/分79 86 82 a 83乙成绩/分88 79 90 81 72根据以上信息,回答下列问题:(1)a=(2)请完成图中表示甲成绩变化情况的折线.(3)经计算S甲2=6,S乙2=42,综合分析,你认为选拔谁参加比赛更合适,说明理由.(4)如果分别从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于82分的概率.23.某生态示范村种植基地计划用90亩~120亩(含90亩与120亩)的土地种植一批葡萄,原计划总产量要达到36万斤.设原计划种植亩数y(亩)、平均亩产量x(万斤)(1)列出y(亩)与x(万斤)之间的函数关系式,并求自变量x的取值范围;(2)为了满足市场需求,现决定改良葡萄品种.改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万斤,种植亩数减少了20亩,原计划和改良后的平均每亩产量各是多少万斤?24.如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=20°时,求所作圆的半径;(结果精确到0.01cm)(2)保持∠AOB=20°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)(参考数据:sin10°≈0.174,cos10°≈0.985,sin20°≈0.342,cos20°≈0.940)25.抛物线C1:y=a(x+1)(x﹣3a)(a>0)与x轴交于A,B两点(A在B的左侧),与y 轴交于点C(0,﹣3)(1)求抛物线C1的解析式及A,B点坐标;(2)求抛物线C1的顶点坐标;(3)将抛物线C1向上平移3个单位长度,再向左平移n(n>0)个单位长度,得到抛物线C2,若抛物线C2的顶点在△ABC内,求n的取值范围.(在所给坐标系中画出草图C1)26.如图,一个Rt△DEF直角边DE落在AB上,过A点作射线AC与斜边EF平行,已知AB=12,DE=4,DF=3,点P从A点出发,沿射线AC方向以每秒2个单位的速度运动,Q为AP中点,设运动时间为t秒(t>0)(1)若点D与点B重合,当t=5时,连接QE,PF,此时△AQE为三角形、四边形QEFP为形;(2)如图②,若在点P运动时,Rt△DEF同时沿着BA方向以每秒1个单位的速度运动,当D点到A点时,两个运动都停止.①如图①,若M为EF中点,当D、M、Q三点在同一直线上时,求t的值;②在运动过程中,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切时,求运动时间t.2017年河北省唐山市路南区中考数学一模试卷参考答案与试题解析一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16各2分)1.在﹣3,0,﹣2,1四个数中,最小的数是()A.﹣3 B.0 C.﹣2 D.1【考点】18:有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断出在﹣3,0,﹣2,1四个数中,最小的数是多少即可.【解答】解:根据有理数比较大小的方法,可得﹣3<﹣2<0<1,∴最小的数是﹣3.故选:A.2.下面四个图形分别是节水、绿色食品、低碳和节能标志,在这四个标志中,是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.3.截至2016年底,某市人口总数已达到7250000人,将7250000用科学记数法表示为()A.0.725×107B.7.25×107C.72.5×105D.7.25×106【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7250000用科学记数法表示为7.25×106,故选:D.4.下列运算中,正确的是()A. =±2 B. =﹣3 C.(﹣1)0=1 D.﹣|﹣3|=3【考点】24:立方根;22:算术平方根;6E:零指数幂.【分析】依据算术平方根的性质、立方根的性质、零指数幂的性质、绝对值的性质进行化简即可.【解答】解:A. =2,故A错误;B.不能够再化简,故B错误;C.(﹣1)0=1,故C正确;D.﹣|﹣3|=﹣3,故D错误.故选:C.5.化简+的结果是()A.n﹣m B.m﹣n C.m+n D.﹣m﹣n【考点】6B:分式的加减法.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣==m+n,故选C6.当前,“低头族”已成为热门话题之一,小颖为了解路边行人步行边低头看手机的情况,她应采用的收集数据的方式是()A.对学校的同学发放问卷进行调查B.对在路边行走的学生随机发放问卷进行调查C.对在路边行走的行人随机发放问卷进行调查D.对在图书馆里看书的人发放问卷进行调查【考点】V1:调查收集数据的过程与方法.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对学校的同学发放问卷进行调查不具代表性、广泛性,故A错误;B、对在路边行走的学生随机发放问卷进行调查不具代表性、广泛性,故B错误;C、对在路边行走的行人随机发放问卷进行调查具代表性、广泛性,故C正确;D、对在图书馆里看书的人发放问卷进行调查不具代表性、广泛性,故D错误;故选:C.7.下列计算正确的是()A.(3xy2)3=9x3y6 B.B、(x+y)2=x2+y2C.x6÷x2=x3D.2x2y﹣yx2=x2y【考点】4I:整式的混合运算.【分析】各项利用幂的乘方与积的乘方,完全平方公式,同底数幂的除法法则,以及合并同类项法则计算得到结果,即可作出判断.【解答】解:A、原式=27x3y6,不符合题意;B、原式=x2+2xy+y2,不符合题意;C、原式=x4,不符合题意;D、原式=x2y,符合题意,故选D8.如图为某几何体的三视图,则组成该几何体的小正方体的个数是()A.5 B.6 C.7 D.8【考点】U3:由三视图判断几何体.【分析】根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行3列,故可得出该几何体的小正方体的个数.【解答】解:综合三视图,我们可得出,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5个;故选A.9.已知关于x的方程x2+mx﹣1=0的根的判别式的值为5,则m的值为()A.±3 B.3 C.1 D.±1【考点】AA:根的判别式.【分析】先根据关于x的方程x2+mx﹣1=0的根的判别式的值为5即可得出关于m的一元二次方程,求出m的值即可.【解答】解:∵关于x的方程x2+mx﹣1=0的根的判别式的值为5,∴△=m2﹣4×1×(﹣1)=5,解得m=±1.故选D.10.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a,b(a<b),则b﹣a的值为()A.5 B.6 C.7 D.8【考点】44:整式的加减.【分析】直接利用已知图形得出b﹣a=b+空白面积﹣(a+空白面积)=大正六边形﹣小正六边形,进而得出答案.【解答】解:∵两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a,b(a<b),∴b﹣a=b+空白面积﹣(a+空白面积)=大正六边形﹣小正六边形=16﹣9=7.故选:C.11.如图,在△ABC中,AB=6,AC=10,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF 的周长为()A.8 B.10 C.12 D.16【考点】KX:三角形中位线定理.【分析】根据三角形的中位线定理,判断出四边形ADEF平行四边形,根据平行四边形的性质求出ADEF的周长即可.【解答】解:∵点D,E,F分别是AB,BC,AC的中点,∴DE∥AC,EF∥AB,DE=AC=5,EF=AB=3,∴四边形ADEF平行四边形,∴AD=EF,DE=AF,∴四边形ADEF的周长为2(DE+EF)=16,故选:D.12.如图,正比例函数y=kx与反比例函数y=的图象不可能是()A.B.C.D.【考点】G2:反比例函数的图象;F4:正比例函数的图象.【分析】根据反比例函数的性质即可求出答案.【解答】解:若k>0时,此时k﹣1>﹣1,正比例函数图象必定过一、三象限,当﹣1<k﹣1<0时,∴反比例函数y=必定经过二、四象限,故C的图象有可能,当k﹣1>0时,∴反比例函数y=必定经过一、三象限,故B的图象有可能,若k<0时,此时k﹣1<﹣1,正比例函数图象必定过二、四象限,∴反比例函数y=必定经过二、四象限,故A的图象有可能,故选(D)13.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90° B.180°C.210°D.270°【考点】JA:平行线的性质.【分析】根据两直线平行,同旁内角互补求出∠B+∠C=180°,从而得到以点B、点C为顶点的五边形的两个外角的度数之和等于180°,再根据多边形的外角和定理列式计算即可得解.【解答】解:∵AB∥CD,∴∠B+∠C=180°,∴∠4+∠5=180°,根据多边形的外角和定理,∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3=360°﹣180°=180°.故选B.14.如图所示的格点纸中每个小正方形的边长均为1,以小正方形的顶点为圆心,2为半径做了一个扇形,用该扇形围成一个圆锥的侧面,针对此做法,小明和小亮通过计算得出以下结论:小明说此圆锥的侧面积为π;小亮说此圆锥的弧长为π,则下列结论正确的是()A.只有小明对B.只有小亮对C.两人都对 D.两人都不对【考点】MP:圆锥的计算;MN:弧长的计算.【分析】分别计算此扇形的弧长和侧面积后即可确定谁的说法正确,从而确定正确的选项.【解答】解:观察扇形发现:扇形的半径为2,圆心角为150°,∴扇形的弧长为=π;侧面积为: =π;∴两人的说法都正确,故选C.15.如图,直线l:y=﹣x+3与直线x=a(a为常数)的交点在第四象限,则关于a的取值范围在数轴上表示正确的是()A.B.C.D.【考点】FF:两条直线相交或平行问题;C4:在数轴上表示不等式的解集.【分析】首先把x=a和y=﹣x+3组成方程组,求解,根据题意交点坐标在第四象限表明x 大于0,y小于0,即可求得a的取值范围.【解答】解:解方程组,得:,∵y=﹣x+3与直线x=a(a为常数)的交点在第四象限,∴,解得:a>5;故选D.16.已知△ABC在正方形网格中的位置如图所示,点A、B、C、P均在格点上,则点P叫做△ABC的()A.内心 B.重心 C.外心 D.无法确定【考点】K5:三角形的重心.【分析】根据正方形网格图、三角形的重心的概念解答.【解答】解:由正方形网格图可以看出,点E、F、D分别是AC、AB、BC的中点,∴点P叫做△ABC的重心,故选:B.二、填空题(本小题共3小题,共10分,17-18小题各3分,19小题有2个空,每空2分)17.计算:()﹣1= 3 .【考点】6F:负整数指数幂.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:()﹣1==3.故答案为:3.18.阅读下面材料:在数学课上,老师提出如下问题:小敏的作法如下:老师说:“小敏的作法正确.”依其作法,先得出▱ABCD,再得出矩形ABCD,请回答:以上两条结论的依据是对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.【考点】N3:作图—复杂作图;KP:直角三角形斜边上的中线;L6:平行四边形的判定;LC:矩形的判定.【分析】先根据作图得出BD与AC互相平分,进而得到四边形ABCD是平行四边形,再根据∠ABC=90°,即可得到四边形ABCD是矩形.【解答】解:∵O是AC的中点,∴BO=AC=AO=CO,又∵DO=BO,∴BD与AC互相平分,∴四边形ABCD是平行四边形,(对角线互相平分的四边形是平行四边形)又∵∠ABC=90°,∴四边形ABCD是矩形.(有一个角是直角的平行四边形是矩形)故答案为:对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.19.在下列函数①y=2x+1;②y=x2+2x;③y=;④y=﹣3x中,与众不同的一个是③(填序号),你的理由是只有③的自变量取值范围不是全体实数.【考点】E4:函数自变量的取值范围.【分析】根据分式的分母不为0,二次根式的被开方数大于等于0进行计算即可.【解答】解:①y=2x+1中自变量的取值范围是全体实数;②y=x2+2x中自变量的取值范围是全体实数;③y=中自变量的取值范围是x≠0;④y=﹣3x中自变量的取值范围是全体实数;理由是:只有③的自变量取值范围不是全体实数故答案为:③,只有③的自变量取值范围不是全体实数.三、解答题(本题共有7个小题,共68分)20.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”(1)若小明同学心里想的是数9,请帮他计算出最后结果:[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0),请你帮小明完成这个验证过程.【考点】4I:整式的混合运算;1G:有理数的混合运算.【分析】(1)原式先计算乘方运算,再计算乘除运算即可得到结果;(2)根据题意列出关系式,整理验证即可.【解答】解:(1)原式=×25÷9=36×25÷9=100;(2)根据题意得:[(a+1)2﹣(a﹣1)2]×25÷a=(a+1+a﹣1)(a+1﹣a+1)×25÷a=4a ×25÷a=100.21.如图①,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.(1)求∠BCD的度数;(2)将图①中的△BCD绕点B顺时针旋转得到△BC′D′.当点D′恰好落在BC边上时,如图②所示,连接C′C并延长交AB于点E.①求∠C′CB的度数;②求证:△C′BD'≌△CAE.【考点】R2:旋转的性质;KB:全等三角形的判定;KH:等腰三角形的性质;KO:含30度角的直角三角形.【分析】(1)根据三角形外角性质,即可得到∠BCD=∠ADC﹣∠CBA=15°;(2)①由旋转可得CB=C'B=AC,∠C'BD'=∠CBD=∠A=30°,再根据等腰三角形的性质,即可得到∠CC'B=∠C'CB=75°;②先根据AC=C'B,∠C'BD'=∠A,得出∠CEB=∠C'CB﹣∠CBA=45°,进而得到∠ACE=∠CEB ﹣∠A=15°,据此可得∠BC'D'=∠BCD=∠ACE,运用ASA即可判定△C'BD'≌△CAE.【解答】解:(1)∵AC=BC,∠A=30°,∴∠CBA=∠CAB=30°,∵∠ADC=45°,∴∠BCD=∠ADC﹣∠CBA=15°=∠BC'D';(2)①由旋转可得CB=C'B=AC,∠C'BD'=∠CBD=∠A=30°,∴∠CC'B=∠C'CB=75°;②证明:∵AC=C'B,∠C'BD'=∠A,∴∠CEB=∠C'CB﹣∠CBA=45°,∴∠ACE=∠CEB﹣∠A=15°,∴∠BC'D'=∠BCD=∠ACE,在△C'BD'和△CAE中,,∴△C'BD'≌△CAE(ASA).22.从甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,对两人进行了五次模拟,并对成绩(单位:分)进行了整理,计算出=83分, =82分,绘制成如下尚不完整的统计图表.甲、乙两人模拟成绩统计表①②③④⑤甲成绩/分79 86 82 a 83乙成绩/分88 79 90 81 72根据以上信息,回答下列问题:(1)a= 85(2)请完成图中表示甲成绩变化情况的折线.(3)经计算S甲2=6,S乙2=42,综合分析,你认为选拔谁参加比赛更合适,说明理由.(4)如果分别从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于82分的概率.【考点】X6:列表法与树状图法;VA:统计表;W2:加权平均数;W7:方差.【分析】(1)理由平均数的定义列方程得79+86+82+a+83=5×83,然后解方程即可;(2)利用表中数据和a的值画出甲成绩变化情况的折线;(3)通过平均数和方差的意义进行判断;(4)画树状图展示所有25可等可能的结果数,再找出抽到的两个人的成绩都大于82分的结果数,然后根据概率公式求解.【解答】解:(1)根据题意得79+86+82+a+83=5×83,解得a=85;故答案为85;(2)如图,(3)选拔甲参加比赛更合适,理由如下:∵>,且S甲2<S乙2,∴甲的平均成绩比乙的平均成绩高,且甲的成就比较稳定,∴选拔甲参加比赛更合适;(4)画树状图为:共有25可等可能的结果数,其中抽到的两个人的成绩都大于82分的结果数为6,所以抽到的两个人的成绩都大于82分的概率=.23.某生态示范村种植基地计划用90亩~120亩(含90亩与120亩)的土地种植一批葡萄,原计划总产量要达到36万斤.设原计划种植亩数y(亩)、平均亩产量x(万斤)(1)列出y(亩)与x(万斤)之间的函数关系式,并求自变量x的取值范围;(2)为了满足市场需求,现决定改良葡萄品种.改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万斤,种植亩数减少了20亩,原计划和改良后的平均每亩产量各是多少万斤?【考点】GA:反比例函数的应用;B7:分式方程的应用.【分析】(1)直接利用总产量与种植亩数和平均亩产量的关系进而得出y与x之间的关系式;(2)利用种植亩数减少了20亩,得出等式进而求出答案.【解答】解:(1)由题意可得:y=,∵90≤y≤120,∴当y=90时,x==,当y=120时,x==,∵y与x成反比,∴≤x≤;(2)根据题意可得:﹣=20,解得:x=0.3,经检验得:x=0.3是原方程的根,1.5x=0.45,答:改良前亩产0.3万斤,改良后亩产0.45万斤.24.如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=20°时,求所作圆的半径;(结果精确到0.01cm)(2)保持∠AOB=20°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)(参考数据:sin10°≈0.174,cos10°≈0.985,sin20°≈0.342,cos20°≈0.940)【考点】T8:解直角三角形的应用.【分析】(1)根据题意作辅助线OC⊥AB于点C,根据OA=OB=10cm,∠OCB=90°,∠AOB=18°,可以求得∠BOC的度数,从而可以求得AB的长;(2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE=AB,然后作出相应的辅助线,画出图形,从而可以求得BE的长,本题得以解决.【解答】解:(1)作OC⊥AB于点C,如图2所示,由题意可得,OA=OB=10cm,∠OCB=90°,∠AOB=20°,∴∠BOC=10°∴AB=2BC=2OB•sin10°≈2×10×0.174≈3.5cm,即所作圆的半径约为3.5cm;(2)作AD⊥OB于点D,作AE=AB,如图3所示,∵保持∠AOB=20°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE,∵∠AOB=20°,OA=OB,∠ODA=90°,∴∠OAB=80°,∠OAD=70°,∴∠BAD=10°,∴BE=2BD=2AB•sin10°≈2×3.5×0.174≈1.2cm,即铅笔芯折断部分的长度是1.2cm.25.抛物线C1:y=a(x+1)(x﹣3a)(a>0)与x轴交于A,B两点(A在B的左侧),与y 轴交于点C(0,﹣3)(1)求抛物线C1的解析式及A,B点坐标;(2)求抛物线C1的顶点坐标;(3)将抛物线C1向上平移3个单位长度,再向左平移n(n>0)个单位长度,得到抛物线C2,若抛物线C2的顶点在△ABC内,求n的取值范围.(在所给坐标系中画出草图C1)【考点】HA:抛物线与x轴的交点;H6:二次函数图象与几何变换.【分析】(1)根据已知点的坐标代入已知的函数的解析式即可利用待定系数法确定二次函数的解析式;(2)由(1)中的函数解析式即可求出抛物线C1的顶点坐标;(3)首先根据平移确定平移后的函数的解析式,然后确定抛物线C2的顶点坐标;结合图形确定n的取值范围即可.【解答】解:(1)∵抛物线C1:y=a(x+1)(x﹣3a)y轴交于点C(0,﹣3),∴﹣3=a(0+1)(0﹣3a),解得a=1(舍去负值).∴抛物线C1的解析式为:y=(x+1)(x﹣3).∴A(﹣1,0),B(3,0);(2)∵y=(x+1)(x﹣3)=(x﹣1)2﹣4,∴该抛物线的解析式为y=(x﹣1)2﹣4,则该抛物线的顶点坐标为(1,﹣4).(3)将(1)中求得的抛物线向上平移3个单位长度,再向左平移n(n>0)个单位长度得到新抛物线y=(x﹣1+n)2﹣1,∴平移后抛物线的顶点坐标是(1﹣n,﹣1),∴﹣<1﹣n<2,解得﹣1<n<,∵n>0,∴0<n<.26.如图,一个Rt△DEF直角边DE落在AB上,过A点作射线AC与斜边EF平行,已知AB=12,DE=4,DF=3,点P从A点出发,沿射线AC方向以每秒2个单位的速度运动,Q为AP中点,设运动时间为t秒(t>0)(1)若点D与点B重合,当t=5时,连接QE,PF,此时△AQE为等腰三角形、四边形QEFP为菱形;(2)如图②,若在点P运动时,Rt△DEF同时沿着BA方向以每秒1个单位的速度运动,当D点到A点时,两个运动都停止.①如图①,若M为EF中点,当D、M、Q三点在同一直线上时,求t的值;②在运动过程中,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切时,求运动时间t.【考点】MR:圆的综合题.【分析】(1)过点Q作QH⊥AB于H,如图①,易得PQ=EF=5,由AC∥EF可得四边形EFPQ 是平行四边形,易证△AHQ∽△EDF,从而可得AH=ED=4,进而可得AH=HE=4,根据垂直平分线的性质可得AQ=EQ,即可得到PQ=EQ,即可得到平行四边形EFPQ是菱形;(2)①当D、M、Q三点在同一直线上时,如图②,则有AQ=t,EM=EF=,AD=12﹣t,DE=4.由EF∥AC可得△DEM∽△DAQ,然后运用相似三角形的性质就可求出t的值;②若以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,则点Q在∠ADF的角平分线上(如图③)或在∠FDB的角平分线(如图④)上,故需分两种情况讨论,然后运用相似三角形的性质求出AH、DH(用t表示),再结合AB=12,DB=t建立关于t的方程,然后解这个方程就可解决问题.【解答】解:(1)四边形EFPQ是菱形.理由:过点Q作QH⊥AB于H,如图①,∵t=5,∴AP=2×5=10.∵点Q是AP的中点,∴AQ=PQ=5.∵∠EDF=90°,DE=4,DF=3,∴EF==5,∴PQ=EF=5.∵AC∥EF,∴四边形EFPQ是平行四边形,且∠A=∠FEB.又∵∠QHA=∠FDE=90°,∴△AHQ∽△EDF,∴==.∵AQ=EF=5,∴AH=ED=4.∵AE=12﹣4=8,∴HE=8﹣4=4,∴AH=EH,∴AQ=EQ,∴PQ=EQ,∴△AQE是等腰三角形,平行四边形EFPQ是菱形;故答案为:等腰,菱形.(2)①当D、M、Q三点在同一直线上时,如图②,此时AQ=t,EM=EF=,AD=12﹣t,DE=4.∵EF∥AC,∴△DEM∽△DAQ,∴=,∴=,解得t=;②存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,此时点Q在∠ADF的角平分线上或在∠FDB的角平分线上.Ⅰ.当点Q在∠ADF的角平分线上时,过点Q作QH⊥AB于H,如图③,则有∠HQD=∠HDQ=45°,∴QH=DH.∵△AHQ∽△EDF(已证),∴==,∴==,∴QH=,AH=,∴DH=QH=.∵AB=AH+HD+BD=12,DB=t,∴++t=12,∴t=5;Ⅱ.当点Q在∠FDB的角平分线上时,过点Q作QH⊥AB于H,如图④,同理可得DH=QH=,AH=.∵AB=AD+DB=AH﹣DH+DB=12,DB=t,∴﹣+t=12,∴t=10.综上所述:当t为5秒或10秒时,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切.。