陕西省西安市中考数学试卷
2022年陕西省中考数学试卷(a卷)(解析版)

2022年陕西省中考数学试卷(A卷)(真题)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)(2022•陕西)﹣37的相反数是()A.﹣37 B.37 C.D.2.(3分)(2022•陕西)如图,AB∥CD,BC∥EF.若∠1=58°,则∠2的大小为()A.120°B.122°C.132°D.148°3.(3分)(2022•陕西)计算:2x•(﹣3x2y3)=()A.6x3y3B.﹣6x2y3C.﹣6x3y3D.18x3y34.(3分)(2022•陕西)在下列条件中,能够判定▱ABCD为矩形的是()A.AB=AC B.AC⊥BD C.AB=AD D.AC=BD 5.(3分)(2022•陕西)如图,AD是△ABC的高.若BD=2CD=6,tan C=2,则边AB的长为()A.3B.3C.3D.66.(3分)(2022•陕西)在同一平面直角坐标系中,直线y=﹣x+4与y=2x+m 相交于点P(3,n),则关于x,y的方程组的解为()A.B.C.D.7.(3分)(2022•陕西)如图,△ABC内接于⊙O,∠C=46°,连接OA,则∠OAB=()A.44°B.45°C.54°D.67°8.(3分)(2022•陕西)已知二次函数y=x2﹣2x﹣3的自变量x1,x2,x3对应的函数值分别为y1,y2,y3.当﹣1<x1<0,1<x2<2,x3>3时,y1,y2,y3三者之间的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y2<y3<y1二、填空题(共5小题,每小题3分,计15分)9.(3分)(2022•陕西)计算:3﹣=.10.(3分)(2022•陕西)实数a,b在数轴上对应点的位置如图所示,则a﹣b.(填“>”“=”或“<”)11.(3分)(2022•陕西)在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所作EF将矩形窗框ABCD分为上下两部分,其中E为边AB 的黄金分割点,即BE2=AE•AB.已知AB为2米,则线段BE的长为米.12.(3分)(2022•陕西)已知点A(﹣2,m)在一个反比例函数的图象上,点A'与点A关于y轴对称.若点A'在正比例函数y=x的图象上,则这个反比例函数的表达式为.13.(3分)(2022•陕西)如图,在菱形ABCD中,AB=4,BD=7.若M、N分别是边AD、BC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)(2022•陕西)计算:5×(﹣3)+|﹣|﹣()0.15.(5分)(2022•陕西)解不等式组:.16.(5分)(2022•陕西)化简:(+1)÷.17.(5分)(2022•陕西)如图,已知△ABC,CA=CB,∠ACD是△ABC的一个外角.请用尺规作图法,求作射线CP,使CP∥AB.(保留作图痕迹,不写作法)18.(5分)(2022•陕西)如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.19.(5分)(2022•陕西)如图,△ABC的顶点坐标分别为A(﹣2,3),B(﹣3,0),C(﹣1,﹣1).将△ABC平移后得到△A'B'C',且点A的对应点是A'(2,3),点B、C的对应点分别是B'、C'.(1)点A、A'之间的距离是;(2)请在图中画出△A'B'C'.20.(5分)(2022•陕西)有五个封装后外观完全相同的纸箱,且每个纸箱内各装有一个西瓜,其中,所装西瓜的重量分别为6kg,6kg,7kg,7kg,8kg.现将这五个纸箱随机摆放.(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg的概率是;(2)若从这五个纸箱中随机选2个,请利用列表或画树状图的方法,求所选两个纸箱里西瓜的重量之和为15kg的概率.21.(6分)(2022•陕西)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且AO⊥OD,EF⊥FG.已知小明的身高EF为1.8米,求旗杆的高AB.22.(7分)(2022•陕西)如图,是一个“函数求值机”的示意图,其中y是x 的函数.下面表格中,是通过该“函数求值机”得到的几组x与y的对应值.输入x…﹣6 ﹣4 ﹣2 0 2 …输出y…﹣6 ﹣2 2 6 16 …根据以上信息,解答下列问题:(1)当输入的x值为1时,输出的y值为;(2)求k,b的值;(3)当输出的y值为0时,求输入的x值.23.(7分)(2022•陕西)某校为了了解本校学生“上周内做家务劳动所用的时间”(简称“劳动时间”)情况,在本校随机调查了100名学生的“劳动时间”,并进行统计,绘制了如下统计表:组别“劳动时间”t/分钟频数组内学生的平均“劳动时间”/分钟A t<60 8 50B60≤t<90 16 75C90≤t<120 40 105D t≥120 36 150根据上述信息,解答下列问题:(1)这100名学生的“劳动时间”的中位数落在组;(2)求这100名学生的平均“劳动时间”;(3)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数.24.(8分)(2022•陕西)如图,AB是⊙O的直径,AM是⊙O的切线,AC、CD是⊙O的弦,且CD⊥AB,垂足为E,连接BD并延长,交AM于点P.(1)求证:∠CAB=∠APB;(2)若⊙O的半径r=5,AC=8,求线段PD的长.25.(8分)(2022•陕西)现要修建一条隧道,其截面为抛物线型,如图所示,线段OE表示水平的路面,以O为坐标原点,以OE所在直线为x轴,以过点O 垂直于x轴的直线为y轴,建立平面直角坐标系.根据设计要求:OE=10m,该抛物线的顶点P到OE的距离为9m.(1)求满足设计要求的抛物线的函数表达式;(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A、B处分别安装照明灯.已知点A、B到OE的距离均为6m,求点A、B的坐标.26.(10分)(2022•陕西)问题提出(1)如图1,AD是等边△ABC的中线,点P在AD的延长线上,且AP=AC,则∠APC的度数为.问题探究(2)如图2,在△ABC中,CA=CB=6,∠C=120°.过点A作AP∥BC,且AP=BC,过点P作直线l⊥BC,分别交AB、BC于点O、E,求四边形OECA的面积.问题解决(3)如图3,现有一块△ABC型板材,∠ACB为钝角,∠BAC=45°.工人师傅想用这块板材裁出一个△ABP型部件,并要求∠BAP=15°,AP=AC.工人师傅在这块板材上的作法如下:①以点C为圆心,以CA长为半径画弧,交AB于点D,连接CD;②作CD的垂直平分线l,与CD交于点E;③以点A为圆心,以AC长为半径画弧,交直线l于点P,连接AP、BP,得△ABP.请问,若按上述作法,裁得的△ABP型部件是否符合要求?请证明你的结论.2022年陕西省中考数学试卷(A卷)参考答案与试题解析一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)(2022•陕西)﹣37的相反数是()A.﹣37 B.37 C.D.【分析】根据相反数的意义即可得到结论.【解答】解:﹣37的相反数是﹣(﹣37)=37,故选:B.【点评】本题主要考查了相反数,熟记相反数的定义是解决问题的关键.2.(3分)(2022•陕西)如图,AB∥CD,BC∥EF.若∠1=58°,则∠2的大小为()A.120°B.122°C.132°D.148°【分析】根据两直线平行,内错角相等分别求出∠C、∠CGF,再根据平角的概念计算即可.【解答】解:∵AB∥CD,∠1=58°,∴∠C=∠1=58°,∵BC∥EF,∴∠CGF=∠C=58°,∴∠2=180°﹣∠CGF=180°﹣58°=122°,故选:B.【点评】本题考查的是平行线的判定和性质,掌握平行线的性质是解题的关键.3.(3分)(2022•陕西)计算:2x•(﹣3x2y3)=()A.6x3y3B.﹣6x2y3C.﹣6x3y3D.18x3y3【分析】单项式乘以单项式,首先系数乘以系数,然后相同字母相乘,最后只在一个单项式含有的字母照写.【解答】解:原式=2×(﹣3)x1+2y3=﹣6x3y3.故选:C.【点评】本题主要考查了单项式乘单项式,解决本题的关键是掌握单项式乘单项式法则.4.(3分)(2022•陕西)在下列条件中,能够判定▱ABCD为矩形的是()A.AB=AC B.AC⊥BD C.AB=AD D.AC=BD【分析】由矩形的判定和菱形的判定分别对各个选项进行判断即可.【解答】解:A、▱ABCD中,AB=AC,不能判定▱ABCD是矩形,故选项A不符合题意;B、∵▱ABCD中,AC⊥BD,∴▱ABCD是菱形,故选项B不符合题意;C、∵▱ABCD中,AB=AD,∴▱ABCD是菱形,故选项C不符合题意;D、∵▱ABCD中,AC=BD,∴▱ABCD是矩形,故选项D符合题意;故选:D.【点评】本题考查了矩形的判定、菱形的判定、平行四边形的性质等知识;熟练掌握矩形的判定和菱形的判定是解题的关键.5.(3分)(2022•陕西)如图,AD是△ABC的高.若BD=2CD=6,tan C=2,则边AB的长为()A.3B.3C.3D.6【分析】利用三角函数求出AD=6,在Rt△ABD中,利用勾股定理可得AB的长.【解答】解:∵2CD=6,∴CD=3,∵tan C=2,∴=2,∴AD=6,在Rt△ABD中,由勾股定理得,AB=,故选:D.【点评】本题主要考查了解直角三角形,勾股定理等知识,熟练掌握三角函数的定义是解题的关键.6.(3分)(2022•陕西)在同一平面直角坐标系中,直线y=﹣x+4与y=2x+m 相交于点P(3,n),则关于x,y的方程组的解为()A.B.C.D.【分析】先将点P代入y=﹣x+4,求出n,即可确定方程组的解.【解答】解:将点P(3,n)代入y=﹣x+4,得n=﹣3+4=1,∴P(3,1),∴关于x,y的方程组的解为,故选:C.【点评】本题考查了一次函数与二元一次方程组的关系,求出两直线的交点坐标是解题的关键.7.(3分)(2022•陕西)如图,△ABC内接于⊙O,∠C=46°,连接OA,则∠OAB =()A.44°B.45°C.54°D.67°【分析】根据圆周角定理可得∠AOB的度数,再进一步根据等腰三角形和三角形的内角和定理可求解.【解答】解:如图,连接OB,∵∠C=46°,∴∠AOB=2∠C=92°,∵OA=OB,∴∠OAB==44°.故选:A.【点评】此题综合运用了等腰三角形的性质,三角形的内角和定理以及圆周角定理.一条弧所对的圆周角等于它所对的圆心角的一半.8.(3分)(2022•陕西)已知二次函数y=x2﹣2x﹣3的自变量x1,x2,x3对应的函数值分别为y1,y2,y3.当﹣1<x1<0,1<x2<2,x3>3时,y1,y2,y3三者之间的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y2<y3<y1【分析】先求出抛物线的对称轴为直线x=1,由于﹣1<x1<0,1<x2<2,x3>3,于是根据二次函数的性质可判断y1,y2,y3的大小关系.【解答】解:抛物线的对称轴为直线x=﹣=1,∵﹣1<x1<0,1<x2<2,x3>3,而抛物线开口向上,∴y2<y1<y3.故选B.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.确定x1,x2,x3离对称轴的远近是解决本题的关键.二、填空题(共5小题,每小题3分,计15分)9.(3分)(2022•陕西)计算:3﹣=﹣2 .【分析】首先利用算术平方根的定义化简,然后加减即可求解.【解答】解:原式=3﹣5=﹣2.故答案为:﹣2.【点评】本题主要考查了实数的运算,主要利用算术平方根的定义.10.(3分)(2022•陕西)实数a,b在数轴上对应点的位置如图所示,则a<﹣b.(填“>”“=”或“<”)【分析】根据正数大于0,0大于负数即可解答.【解答】解:∵b与﹣b互为相反数∴b与﹣b关于原点对称,即﹣b位于3和4之间∵a位于﹣b左侧,∴a<﹣b,故答案为:<.【点评】本题考查了有理数大小的比较,解决本题的关键是熟记正数大于0,0大于负数,两个负数比较大小,绝对值大的反而小.11.(3分)(2022•陕西)在20世纪70年代,我国著名数学家华罗庚教授将黄金分割法作为一种“优选法”,在全国大规模推广,取得了很大成果.如图,利用黄金分割法,所作EF将矩形窗框ABCD分为上下两部分,其中E为边AB 的黄金分割点,即BE2=AE•AB.已知AB为2米,则线段BE的长为﹣1+米.【分析】根据BE2=AE•AB,建立方程求解即可.【解答】解:∵BE2=AE•AB,设BE=x,则AE=(2﹣x),∵AB=2,∴x2=2(2﹣x),即x2+2x﹣4=0,解得:x1=﹣1,x2=﹣1﹣(舍去),∴线段BE的长为(﹣1+)米.故答案为:﹣1+.【点评】本题主要考查了黄金分割,熟练掌握线段之间的关系列出方程是解决本题的关键.12.(3分)(2022•陕西)已知点A(﹣2,m)在一个反比例函数的图象上,点A'与点A关于y轴对称.若点A'在正比例函数y=x的图象上,则这个反比例函数的表达式为y=﹣.【分析】根据轴对称的性质得出点A'(2,m),代入y=x求得m=1,由点A(﹣2,1)在一个反比例函数的图象上,从而求得反比例函数的解析式.【解答】解:∵点A'与点A关于y轴对称,点A(﹣2,m),∴点A'(2,m),∵点A'在正比例函数y=x的图象上,∴m==1,∴A(﹣2,1),∵点A(﹣2,1)在一个反比例函数的图象上,∴反比例函数的表达式为y=﹣,故答案为:y=﹣.【点评】本题考查了一次函数图象上点的坐标特征,待定系数法求反比例函数的解析式,求得A的坐标是解题的关键.13.(3分)(2022•陕西)如图,在菱形ABCD中,AB=4,BD=7.若M、N分别是边AD、BC上的动点,且AM=BN,作ME⊥BD,NF⊥BD,垂足分别为E、F,则ME+NF的值为.【分析】连接AC交BD于O,根据菱形的性质得到BD⊥AC,OB=OD=,OA =OC,根据勾股定理求出OA,证明△DEM∽△DOA,根据相似三角形的性质列出比例式,用含AM的代数式表示ME、NF,计算即可.【解答】解:连接AC交BD于O,∵四边形ABCD为菱形,∴BD⊥AC,OB=OD=,OA=OC,由勾股定理得:OA===,∵ME⊥BD,AO⊥BD,∴ME∥AO,∴△DEM∽△DOA,∴=,即=,解得:ME=,同理可得:NF=,∴ME+NF=,故答案为:.【点评】本题考查的是相似三角形的判定和性质、菱形的性质、勾股定理,掌握相似三角形的判定定理是解题的关键.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)(2022•陕西)计算:5×(﹣3)+|﹣|﹣()0.【分析】根据有理数混合运算法则计算即可.【解答】解:5×(﹣3)+|﹣|﹣()0=﹣15+﹣1=﹣16+.【点评】此题考查了有理数的混合运算,零指数幂,熟练掌握有理数混合运算的法则是解题的关键.15.(5分)(2022•陕西)解不等式组:.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【解答】解:由x+2>﹣1,得:x>﹣3,由x﹣5≤3(x﹣1),得:x≥﹣1,则不等式组的解集为x≥﹣1.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(5分)(2022•陕西)化简:(+1)÷.【分析】根据分式混合运算的法则计算即可.【解答】解:(+1)÷=•==a+1.【点评】本题考查了分式混合运算,熟练掌握运算法则是解题的关键.17.(5分)(2022•陕西)如图,已知△ABC,CA=CB,∠ACD是△ABC的一个外角.请用尺规作图法,求作射线CP,使CP∥AB.(保留作图痕迹,不写作法)【分析】利用尺规作图作出∠ACD的平分线,得到射线CP.【解答】解:如图,射线CP即为所求.【点评】本题考查的是尺规作图、平行线的判定,能够利用基本尺规作图作出已知角的角平分线是解题的关键.18.(5分)(2022•陕西)如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.【分析】利用平行线的性质得∠EDC=∠B,再利用ASA证明△CDE≌△ABC,可得结论.【解答】证明:∵DE∥AB,∴∠EDC=∠B,在△CDE和△ABC中,,∴△CDE≌△ABC(ASA),∴DE=BC.【点评】本题主要考查了平行线的性质,全等三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.19.(5分)(2022•陕西)如图,△ABC的顶点坐标分别为A(﹣2,3),B(﹣3,0),C(﹣1,﹣1).将△ABC平移后得到△A'B'C',且点A的对应点是A'(2,3),点B、C的对应点分别是B'、C'.(1)点A、A'之间的距离是 4 ;(2)请在图中画出△A'B'C'.【分析】(1)根据两点间的距离公式即可得到结论;(2)根据平移的性质作出图形即可.【解答】解:(1)∵A(﹣2,3),A'(2,3),∴点A、A'之间的距离是2﹣(﹣2)=4,故答案为:4;(2)如图所示,△A'B'C'即为所求.【点评】本题考查作图﹣平移变换,解题的关键是掌握平移变换的性质.20.(5分)(2022•陕西)有五个封装后外观完全相同的纸箱,且每个纸箱内各装有一个西瓜,其中,所装西瓜的重量分别为6kg,6kg,7kg,7kg,8kg.现将这五个纸箱随机摆放.(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg的概率是;(2)若从这五个纸箱中随机选2个,请利用列表或画树状图的方法,求所选两个纸箱里西瓜的重量之和为15kg的概率.【分析】(1)直接由概率公式求解即可;(2)画树状图,共有20种等可能的结果,其中所选两个纸箱里西瓜的重量之和为15kg的结果有4种,再由概率公式求解即可.【解答】解:(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg的概率是,故答案为:;(2)画树状图如下:共有20种等可能的结果,其中所选两个纸箱里西瓜的重量之和为15kg的结果有4种,∴所选两个纸箱里西瓜的重量之和为15kg的概率为=.【点评】此题考查的是用树状图法求概率.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.21.(6分)(2022•陕西)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且AO⊥OD,EF⊥FG.已知小明的身高EF为1.8米,求旗杆的高AB.【分析】先证明△AOD∽△EFG,列比例式可得AO的长,再证明△BOC∽△AOD,可得OB的长,最后由线段的差可得结论.【解答】解:∵AD∥EG,∴∠ADO=∠EGF,∵∠AOD=∠EFG=90°,∴△AOD∽△EFG,∴=,即=,∴AO=15,同理得△BOC∽△AOD,∴=,即=,∴BO=12,∴AB=AO﹣BO=15﹣12=3(米),答:旗杆的高AB是3米.【点评】本题考查相似三角形的判定与性质等知识,解题的关键掌握相似三角形的判定,属于中考常考题型.22.(7分)(2022•陕西)如图,是一个“函数求值机”的示意图,其中y是x 的函数.下面表格中,是通过该“函数求值机”得到的几组x与y的对应值.输入x…﹣6 ﹣4 ﹣2 0 2 …输出y…﹣6 ﹣2 2 6 16 …根据以上信息,解答下列问题:(1)当输入的x值为1时,输出的y值为8 ;(2)求k,b的值;(3)当输出的y值为0时,求输入的x值.【分析】(1)把x=1代入y=8x,即可得到结论;(2)将(﹣2,2)(0,6)代入y=kx+b解方程即可得到结论;(3)解方程即可得到结论.【解答】解:(1)当输入的x值为1时,输出的y值为y=8x=8×1=8,故答案为:8;(2)将(﹣2,2)(0,6)代入y=kx+b得,解得;(3)令y=0,由y=8x得0=8x,∴x=0<1(舍去),由y=2x+6,得0=2x+6,∴x=﹣3<1,∴输出的y值为0时,输入的x值为﹣3.【点评】本题考查了待定系数法求一次函数的解析式,函数值,正确地求得函数的解析式是解题的关键.23.(7分)(2022•陕西)某校为了了解本校学生“上周内做家务劳动所用的时间”(简称“劳动时间”)情况,在本校随机调查了100名学生的“劳动时间”,并进行统计,绘制了如下统计表:组别“劳动时间”t/分钟频数组内学生的平均“劳动时间”/分钟A t<60 8 50B60≤t<90 16 75C90≤t<120 40 105D t≥120 36 150根据上述信息,解答下列问题:(1)这100名学生的“劳动时间”的中位数落在C组;(2)求这100名学生的平均“劳动时间”;(3)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数.【分析】(1)利用中位数的定义解答即可;(2)根据平均数的定义解答即可;(3)用样本估计总体即可.【解答】解:(1)(2)把100名学生的“劳动时间”从小到大排列,排在中间的两个数均在C组,故这100名学生的“劳动时间”的中位数落在C组,故答案为:C;(2)=×(50×8+75×16+105×40+105×36)=112(分钟),答:这100名学生的平均“劳动时间”为112分钟;(3)1200×=912(人),答:估计在该校学生中,“劳动时间”不少于90分钟的人数为912人.【点评】本题考查了频数(率)分布表.从频数(率)分布表中得到必要的信息是解决问题的关键.用到的知识点为:总体数目=部分数目÷相应百分比.24.(8分)(2022•陕西)如图,AB是⊙O的直径,AM是⊙O的切线,AC、CD是⊙O的弦,且CD⊥AB,垂足为E,连接BD并延长,交AM于点P.(1)求证:∠CAB=∠APB;(2)若⊙O的半径r=5,AC=8,求线段PD的长.【分析】(1)根据平行线的判定和切线的性质解答即可;(2)通过添加辅助线,构造出直角三角形,利用勾股定理和相似三角形的判定和性质解答即可.【解答】(1)证明:∵AM是⊙O的切线,∴∠BAM=90°,∵∠CEA=90°,∴AM∥CD,∴∠CDB=∠APB,∵∠CAB=∠CDB,∴∠CAB=∠APB.(2)解:如图,连接AD,∵AB是直径,∴∠CDB+∠ADC=90°,∵∠CAB+∠∠C=90°,∠CDB=∠CAB,∴∠ADC=∠C,∴AD=AC=8,∵AB=10,∴BD=6,∵∠BAD+∠DAP=90°,∠PAD+∠APD=90°,∴∠APB=∠DAB,∵∠BDA=∠BAP∴△ADB∽△PAB,∴=,∴PB===,∴DP=﹣6=.故答案为:.【点评】本题主要考查了切线的性质定理,勾股定理,相似三角形的判定和性质,熟练掌握这些性质定理是解题的关键.25.(8分)(2022•陕西)现要修建一条隧道,其截面为抛物线型,如图所示,线段OE表示水平的路面,以O为坐标原点,以OE所在直线为x轴,以过点O 垂直于x轴的直线为y轴,建立平面直角坐标系.根据设计要求:OE=10m,该抛物线的顶点P到OE的距离为9m.(1)求满足设计要求的抛物线的函数表达式;(2)现需在这一隧道内壁上安装照明灯,如图所示,即在该抛物线上的点A、B处分别安装照明灯.已知点A、B到OE的距离均为6m,求点A、B的坐标.【分析】(1)设抛物线的解析式为y=a(x﹣5)2+9,把(0,0)代入,可得a=﹣,即可解决问题;(2)把y=6,代入抛物线的解析式,解方程可得结论.【解答】解:(1)由题意抛物线的顶点P(5,9),∴可以假设抛物线的解析式为y=a(x﹣5)2+9,把(0,0)代入,可得a=﹣,∴抛物线的解析式为y=﹣(x﹣5)2+9;(2)令y=6,得﹣(x﹣5)2+9=6,解得x1=+5,x2=﹣+5,∴A(5﹣,6),B(5+,6).【点评】本题考查二次函数的应用,待定系数法,一元二次方程等知识,解题的关键是熟练掌握待定系数法,属于中考常考题型.26.(10分)(2022•陕西)问题提出(1)如图1,AD是等边△ABC的中线,点P在AD的延长线上,且AP=AC,则∠APC的度数为75°.问题探究(2)如图2,在△ABC中,CA=CB=6,∠C=120°.过点A作AP∥BC,且AP=BC,过点P作直线l⊥BC,分别交AB、BC于点O、E,求四边形OECA的面积.问题解决(3)如图3,现有一块△ABC型板材,∠ACB为钝角,∠BAC=45°.工人师傅想用这块板材裁出一个△ABP型部件,并要求∠BAP=15°,AP=AC.工人师傅在这块板材上的作法如下:①以点C为圆心,以CA长为半径画弧,交AB于点D,连接CD;②作CD的垂直平分线l,与CD交于点E;③以点A为圆心,以AC长为半径画弧,交直线l于点P,连接AP、BP,得△ABP.请问,若按上述作法,裁得的△ABP型部件是否符合要求?请证明你的结论.【分析】(1)根据等边三角形的性质得到AB=AC,∠BAC=60°,根据等腰三角形的三线合一得到∠PAC=30°,根据三角形内角和定理、等腰三角形的性质计算,得到答案;(2)连接PB,证明四边形PBCA为菱形,求出PB,解直角三角形求出BE、PE、OE,根据三角形的面积公式计算即可;(3)过点A作CD的平行线,过点D作AC的平行线,两条平行线交于点F,根据线段垂直平分线的性质得到PA=PF,根据等边三角形的性质得到∠PAF =60°,进而求出∠BAP=15°,根据要求判断即可.【解答】解:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵AD是等边△ABC的中线,∴∠PAC=∠BAC=30°,∵AP=AC,∴∠APC=×(180°﹣30°)=75°,故答案为:75°;(2)如图2,连接PB,∵AP∥BC,AP=BC,∴四边形PBCA为平行四边形,∵CA=CB,∴平行四边形PBCA为菱形,∴PB=AC=6,∠PBC=180°﹣∠C=60°,∴BE=PB•cos∠PBC=3,BE=PB•sin∠PBC=3,∵CA=CB,∠C=120°,∴∠ABC=30°,∴OE=BE•tan∠ABC=,∴S四边形OECA=S△ABC﹣S△OBE=×6×3﹣×3×=;(3)符合要求,理由如下:如图3,过点A作CD的平行线,过点D作AC的平行线,两条平行线交于点F,∵CA=CD,∠DAC=45°,∴∠ACD=90°,∴四边形FDCA为正方形,∵PE是CD的垂直平分线,∴PE是AF的垂直平分线,∴PF=PA,∵AP=AC,∴PF=PA=AF,∴△PAF为等边三角形,∴∠PAF=60°,∴∠BAP=60°﹣45°=15°,∴裁得的△ABP型部件符合要求.【点评】本题考查的是正方形的性质、菱形的性质、等腰三角形的性质、线段垂直平分线的性质,得出△PAF为等边三角形是解题的关键.。
2021年陕西省中考数学试卷(解析版)

2021年陕西省中考数学试卷(解析版)一、选择题(共8小题,每小题3分,计24分。
每小题只有一个选项是符合题意的)1.(3分)计算:3×(﹣2)=()A.1B.﹣1C.6D.﹣6【分析】根据有理数乘法法则进行运算.【解答】解:3×(﹣2)=﹣6.故选:D.【点评】本题考查有理数的乘法,熟练掌握有理数乘法法则是解题关键.2.(3分)下列图形中,是轴对称图形的是()A.B.C.D.【分析】利用轴对称图形的定义进行解答即可.【解答】解:A.不是轴对称图形,故此选项不合题意;B.是轴对称图形,故此选项符合题意;C.不是轴对称图形,故此选项不合题意;D.不是轴对称图形,故此选项不合题意;故选:B.【点评】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.3.(3分)计算:(a3b)﹣2=()A.B.a6b2C.D.﹣2a3b【分析】直接利用负整数指数幂的性质分别化简得出答案.【解答】解:(a3b)﹣2==.故选:A.【点评】此题主要考查了负整数指数幂的性质以及积的乘方运算,正确掌握相关运算法则是解题关键.4.(3分)如图,点D、E分别在线段BC、AC上,连接AD、BE.若∠A=35°,∠B=25°,∠C=50°,则∠1的大小为()A.60°B.70°C.75°D.85°【分析】由三角形的内角和定义,可得∠1=180﹣(∠B+∠ADB),∠ADB=∠A+∠C,所以∠1=180°﹣(∠B+∠A+∠C),由此解答即可.【解答】解:∠∠1=∠B+∠ADB,∠ADB=∠A+∠C,∠∠1=180°﹣(∠B+∠A+∠C),∠∠1=180°﹣(25°+35°+50°),∠∠1=180°﹣110°,∠∠1=70°,故选:B.【点评】本题考查了三角形内角和定理和三角形外角性质,掌握这些知识点是解题的关键.5.(3分)在菱形ABCD中,∠ABC=60°,连接AC、BD,则的值为()A.B.C.D.【分析】由菱形的性质可得AO=CO,BO=DO,AC∠BD,∠ABD=∠ABC=30°,由锐角三角函数可求解.【解答】解:设AC与BD交于点O,∠四边形ABCD是菱形,∠AO=CO,BO=DO,AC∠BD,∠ABD=∠ABC=30°,∠tan∠ABD=,∠,故选:D.【点评】本题考查了菱形的性质,锐角三角函数,掌握菱形的性质是解题的关键.6.(3分)在平面直角坐标系中,若将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到一个正比例函数的图象,则m的值为()A.﹣5B.5C.﹣6D.6【分析】根据平移的规律得到平移后抛物线的解析式为y=2(x+3)+m﹣1,然后把原点的坐标代入求值即可.【解答】解:将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到y=2(x+3)+m﹣1,把(0,0)代入,得到:0=6+m﹣1,解得m=﹣5.故选:A.【点评】主要考查的是一次函数图象与几何变换,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式是解题的关键.7.(3分)如图,AB、BC、CD、DE是四根长度均为5cm的火柴棒,点A、C、E共线.若AC=6cm,CD∠BC,则线段CE的长度是()A.6cm B.7cm C.6cm D.8cm【分析】过B作BM∠AC于M,过D作DN∠CE于N,由等腰三角形的性质得到AM=CM=3,CN=EN,根据全等三角形判定证得∠BCM∠∠CDN,得到BM=CN,在Rt∠BCM中,根据勾股定理求出BM=4,进而求出.【解答】解:由题意知,AB=BC=CD=DE=5cm,AC=6cm,过B作BM∠AC于M,过D作DN∠CE于N,则∠BMC=∠CND=90°,AM=CM=AC=×6=3,CN=EN,∠CD∠BC,∠∠BCD=90°,∠∠BCM+∠CBM=∠BCM+∠DCN=90°,∠∠CBM=∠DCN,在∠BCM和∠CDN中,,∠∠BCM∠∠CDN(AAS),∠BM=CN,在Rt∠BCM中,∠BM=5,CM=3,∠BM===4,∠CN=4,∠CE=2CN=2×4=8,故选:D.【点评】本题主要考查了等腰三角形的性质和判定,等腰三角形的性质,勾股定理,正确作出辅助线,证得∠BCM∠∠CDN是解决问题的关键.8.(3分)下表中列出的是一个二次函数的自变量x与函数y的几组对应值:x…﹣2013…y…6﹣4﹣6﹣4…下列各选项中,正确的是()A.这个函数的图象开口向下B.这个函数的图象与x轴无交点C.这个函数的最小值小于﹣6D.当x>1时,y的值随x值的增大而增大【分析】设出二次函数的解析式,根据表中数据求出函数解析式即可判断.【解答】解:设二次函数的解析式为y=ax2+bx+c,由题知,解得,∠二次函数的解析式为y=x2﹣3x﹣4=(x﹣4)(x+1)=(x﹣)2﹣,∠(1)函数图象开口向上,(2)与x轴的交点为(4,0)和(﹣1,0),(3)当x=时,函数有最小值为﹣,(4)函数对称轴为直线x=,根据图象可知当当x>时,y的值随x值的增大而增大,故选:C.【点评】本题主要考查二次函数的性质,熟练掌握二次函数的性质是解题的关键.二、填空题(共5小题,每小题3分,计15分)9.(3分)分解因式x3+6x2+9x=x(x+3)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=x(9+6x+x2)=x(x+3)2.故答案为x(x+3)2【点评】本题考查了因式分解,利用了提公因式法、十字相乘法分解因式,注意分解要彻底.10.(3分)正九边形一个内角的度数为140°.【分析】先根据多边形内角和定理:180°•(n﹣2)求出该多边形的内角和,再求出每一个内角的度数.【解答】解:该正九边形内角和=180°×(9﹣2)=1260°,则每个内角的度数==140°.故答案为:140°.【点评】本题主要考查了多边形的内角和定理:180°•(n﹣2),比较简单,解答本题的关键是直接根据内角和公式计算可得内角和.11.(3分)幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为﹣2.【分析】根据各行的三个数字之和相等,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:依题意得:﹣1﹣6+1=0+a﹣4,解得:a=﹣2.故答案为:﹣2.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.12.(3分)若A(1,y1),B(3,y2)是反比例函数y=(m<)图象上的两点,则y1、y2的大小关系是y1<y2.(填“>”、“=”或“<”)【分析】反比例函数的系数为﹣2<0,在每一个象限内,y随x的增大而增大.【解答】解:∠2m﹣1<0(m<),∠图象位于二、四象限,在每一个象限内,y随x的增大而增大,又∠0<1<3,∠y1<y2,故答案为:<.【点评】本题主要考查反比例函数图象上点的坐标特征.注意:反比例函数的增减性只指在同一象限内.13.(3分)如图,正方形ABCD的边长为4,∠O的半径为1.若∠O在正方形ABCD内平移(∠O可以与该正方形的边相切),则点A到∠O上的点的距离的最大值为3+1.【分析】当∠O与CB、CD相切时,点A到∠O上的点Q的距离最大,如图,过O点作OE∠BC于E,OF∠CD 于F,根据切线的性质得到OE=OF=1,利用正方形的性质得到点O在AC上,然后计算出AQ的长即可.【解答】解:当∠O与CB、CD相切时,点A到∠O上的点Q的距离最大,如图,过O点作OE∠BC于E,OF∠CD于F,∠OE=OF=1,∠OC平分∠BCD,∠四边形ABCD为正方形,∠点O在AC上,∠AC=BC=4,OC=OE=,∠AQ=OA+OQ=4﹣+1=3+1,即点A到∠O上的点的距离的最大值为3+1,故答案为3+1.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了正方形的性质.三、解答题(共13小题,计18分。
西安中考数学考试试卷真题

西安中考数学考试试卷真题一、选择题(本题共10小题,每小题3分,共30分)1. 下列哪个数是无理数?A. 3.1415926B. πC. 0.33333...D. √22. 如果一个角是直角的两倍,那么这个角的度数是多少?A. 30°B. 60°C. 90°D. 120°3. 一个圆的半径是5厘米,那么它的周长是多少厘米?A. 10πB. 15πC. 20πD. 25π4. 以下哪个选项是正确的不等式?A. 3 > 5B. 2x < x + 3C. 4y ≥ 4yD. 5z ≤ 5z + 15. 一个数的平方根是4,那么这个数是多少?A. 16B. 8C. 4D. 26. 一个长方体的长、宽、高分别是2米、3米、4米,它的体积是多少立方米?A. 8B. 12C. 24D. 367. 以下哪个选项是完全平方数?A. 15B. 16C. 17D. 198. 一个班级有40名学生,其中30名学生喜欢数学,那么不喜欢数学的学生占总人数的百分比是多少?A. 25%B. 30%C. 75%D. 50%9. 如果一个三角形的三个边长分别为3厘米、4厘米和5厘米,那么这个三角形是直角三角形吗?A. 是B. 不是10. 一个数的倒数是1/2,那么这个数是多少?A. 2B. 1/2C. 1D. 1/4二、填空题(本题共5小题,每小题4分,共20分)11. 一个数的立方根是2,那么这个数是________。
12. 一个直角三角形的两条直角边分别为3厘米和4厘米,那么斜边的长度是________厘米。
13. 一个数的绝对值是5,那么这个数可以是________或________。
14. 如果a和b互为相反数,那么a+b的值是________。
15. 一个正方体的表面积是150平方厘米,那么它的边长是________厘米。
三、解答题(本题共3小题,每小题10分,共30分)16. 解释什么是勾股定理,并给出一个直角三角形的边长,证明勾股定理。
2024年陕西省西安市新城区中考模拟数学试题(解析版)

2024年陕西省西安市新城区中考数学模拟试卷一.选择题1. 下列各数中,最小的数是( )A. B. C. 0 D. 【答案】A【解析】【分析】本题主要考查了实数比较大小,根据正数大于0,0大于负数,两个负数比较大小,绝对值越大,其值越小进行求解即可.【详解】解:∵,∴∴四个数中,最小的数是,故选:A .2. 如图,直线,含有角的三角板的直角顶点O 在直线m 上,点A 在直线n 上,若,则的度数为( )A. B. C. D. 【答案】B【解析】【分析】本题考查平行线的性质,过B 作,推出,由平行线的性质得到,,求出,即可得到.【详解】解:过B 作,∵,∴,∴,,∵,∴,5-3-5533-=>-=530-<-<<5-m n ∥45︒120∠=︒2∠15︒25︒35︒45︒BK m ∥BK n ∥120OBK ∠=∠=︒2ABK ∠=∠25ABK ABO OBK ∠=∠-∠=︒225∠=︒BK m ∥m n ∥BK n ∥120OBK ∠=∠=︒2ABK ∠=∠45ABO ∠=︒452025ABK ABO OBK ∠=∠-∠=︒-︒=︒∴.故选:B .3. 下列计算正确的是( )A. B. C. D. 【答案】B【解析】【分析】本题主要考查积的乘方,合并同类项,同底数幂的乘法.利用积的乘方的法则,合并同类项的法则,同底数幂的乘法的法则对各项进行运算即可.【详解】解:A 、与不属于同类项,不能合并,故A 不符合题意;B 、,故B 符合题意;C 、,故C 不符合题意;D 、,故D 不符合题意;故选:B .4. 在平面直角坐标系中,点所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】根据点A 横纵坐标符号判定即可.【详解】解:∵A (-2,3),-2<0,3>0,∴点A (-2,3)在第二象限,故选:B .【点睛】本题考查点所在象限,熟练掌握平面直角坐标系各象限内事业的坐标符号:第一象限(+,+),第二225ABK ∠=∠=︒235x x x +=2222x x x -=236()x x x⋅-=3251128x x ⎛⎫= ⎪⎝⎭2x 3x 2222x x x -=235()x x x ⋅-=-3261128x x ⎛⎫= ⎪⎝⎭()2,3A -象限(-,+),第三象限(-,-),第四象限(+,-)是解题的关键.5. 下列平面直角坐标系内的曲线中,既是中心对称图形,也是轴对称图形的是( )A. 三叶玫瑰线B. 四叶玫瑰线C. 心形线D. 笛卡尔叶形线【答案】B【解析】【分析】根据轴对称图形和中心对称图形的定义进行逐一判断即可:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.【详解】解:A、是轴对称图形,不是中心对称图形,不符合题意;B、既是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、是轴对称图形,不是中心对称图形,不符合题意;故选B.【点睛】本题主要考查了轴对称图形和中心对称图形的识别,熟知二者的定义是解题的关键.6. 如图,小亮为将一个衣架固定在墙上,他在衣架两端各用一个钉子进行固定,用数学知识解释他这样操作的原因,应该是()A. 过一点有无数条直线B. 两点之间线段的长度,叫做这两点之间的距离C. 经过两点有且只有一条直线D. 两点之间,线段最短【答案】C【解析】【分析】根据公理“两点确定一条直线”来解答即可.【详解】解:因为“两点确定一条直线”,所以他在衣架两端各用一个钉子进行固定.故选:C .【点睛】本题考查是直线的性质,即两点确定一条直线.7. 茅洲河的治理,实现了水清、岸绿、景美.某工程队承担茅洲河某段3000米河道的清淤任务,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加,,结果提前30天完成这一任务.设原计划每天完成x 米的清淤任务,则所列方程正确的是( )A. B. C. D. 【答案】D【解析】【分析】本题考查了分式方程的应用,找出等量关系是解答本题的关键.根据提前30天完成这一任务列方程即可.【详解】解:由题意,得.故选D .8. 如图,内接于,,的长为( )A. B. C. D. 【答案】B【解析】【分析】作的直径,连接,利用圆内接四边形的性质求得,得到,在中,求得半径,再根据弧长公式可得结论.的25%()3000300030125%x x +=+()3000300030125%x x +=-()3000300030125%x x =+-()3000300030125%x x =++()3000300030125%x x =++ABC O 120ABC ∠=︒AC =AC 43π83πO AD DC OC 、60D ∠=︒120AOC ∠=︒Rt ACD △【详解】解:作的直径,连接,如图,∵是的直径,∴.∵四边形内接于,,∴,∴,,∴,则,∵∴,∴,∴,∴劣弧的长为,故选:B .【点睛】此题主要考查了圆弧长公式,圆内接四边形、圆周角定理等知识,求出圆的半径是解答此题的关键.9. 已知点,在函数的图象上,当且时,都有,则的取值范围为( )A. B. C. D. 【答案】A【解析】【分析】先画出图像,根据图像可知当、时, ,则要想、则必有,求解即可.O AD DC OC 、AD O =90ACD ∠︒DABC O 120ABC ∠=︒18060D ABC ∠=︒-∠=︒30A ∠=︒120AOC ∠=︒2AD CD =222AD CD AC =+AC =(22212AD AD ⎛⎫=+ ⎪⎝⎭4=AD 122OA OC AD ===AC 120241803ππ⨯=()11M x y ,()22N x y ,|2|y x b =+123x x +>12x x <12y y <b 3b >-30b -<≤3b <03b ≤<1222x x b +=-12x x <12y y =12x x <12y y <1222x x b +>-【详解】当时,当时,当在左侧时,画出图象如上图由题意可知当、时, 要想、则必有∵∴∴当在右侧时,函数为增函数满足即可∵且∴即∴故选A .【点睛】本题考查了一次函数的图象及绝对值等知识点,熟练掌握上述知识点是解答本题的关键.10. 如图,菱形中,点E 是边的中点,垂直交的延长线于点F ,若,则菱形的边长是( )20x b +>2y x b=+20x b +<2y x b=--()11M x y ,2b x =-1222x x b +=-12x x <12y y =12x x <12y y <1222x x b +>-123x x +>322b-<3b >-()11M x y ,2b x =-12b x -<123x x +>12x x <132x ≥322b-<3b >-ABCD CD EF AB AB :1:2,BF CE EF ==ABCDA. 3B. 4C. 5D. 【答案】B【解析】【分析】过C 作CM ⊥AB 延长线于M ,根据设,由菱形的性质表示出BC =4x ,BM =3x ,根据勾股定理列方程计算即可.【详解】过C 作CM ⊥AB 延长线于M ,∵∴设∵点E 是边的中点∴∵菱形∴,CE ∥AB∵⊥,CM ⊥AB∴四边形EFMC 是矩形∴,∴BM =3x在Rt △BCM 中,∴,解得或(舍去)∴故选:B.:1:2BF CE =,2BF x CE x ==:1:2BF CE =,2BF x CE x==CD 24CD CE x==ABCD4CD BC x ==EFAB CM EF ==2MF CE x==222BM CM BC +=222(3)(4)x x +=1x ==1x -44CD x ==【点睛】本题考查了菱形的性质、矩形的判定与性质、勾股定理,关键在于熟悉各个知识点在本题的灵活运用.属于拔高题.11. 如图,扇形的圆心角是直角,半径为,C 为边上一点,将沿边折叠,圆心O 恰好落在弧上,则阴影部分面积为( )A. B. C. D. 【答案】A【解析】【分析】根据题意和折叠的性质,可以得到OA =AD ,∠OAC =∠DAC ,然后根据OA =OD ,即可得到∠OAC 和∠DAC 的度数,再根据扇形AOB 的圆心角是直角,半径为OC 的长,结合图形,可知阴影部分的面积就是扇形AOB 的面积减△AOC 和△ADC 的面积.【详解】解:连接OD ,∵△AOC 沿AC 边折叠得到△ADC ,∴OA =AD ,∠OAC =∠DAC ,又∵OA =OD ,∴OA =AD =OD ,∴△OAD 是等边三角形,∴∠OAC =∠DAC =30°,∵扇形AOB 圆心角是直角,半径为,∴OC =2,的AOB OB AOC AC AB 3π-3π-34π-2π∴阴影部分的面积.故选:A .【点睛】本题考查扇形面积的计算,解答本题的关键是明确扇形面积的计算公式,推出△OAD 是等边三角形,利用数形结合的思想解答.12. 如图,在中,,,是的中点,连接,过点作,分别交于点,与过点且垂直于的直线相交于点,连接.以下四个结论:;点是的中点;;,其中正确的结论序号是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,证明即可判断;设,则,由勾股定理得到,由得到,证明,得到,进而得到,即可判断;由得到,结合即可判断;过点作于,由得到,进而可得,即可判断;掌握相似三角形的判定和性质是解题的关键.【详解】解:∵,,∴,,23π⎫-=-⎪⎪⎭Rt ABC △90ABC ∠=︒BA BC =D AB CD B BG CD ⊥CD CA 、E F 、A AB G DF ①AG FG AB FB =②F GE ③AF AB =④5ABC BDF S S =△△①④①③①②③②③④AFG CFB ∽①2AB BC x ==AD BD AG x ===BG DC ==AFG CFB ∽FG =CDB BDE ∽BE x =FE x =②AFG CFB ∽13AF AC =AC =③F MF AB ⊥M FM CB ∥13AF FM AC BC ==16BDF ABC S S = ④90ABC ∠=︒BG CD ⊥90ABG CBG ∠+∠=︒90BCD CBG ∠+∠=︒∴,在和中,,∴,∴,∵点是的中点,∴,∴在中,,∴,∵,∴,∴, ∴,∵,∴,故正确;设,∵点是的中点,∴,在中, ,∴,∵,∴,∴ ∵,,ABG BCD ∠=∠ABC BCD △90ABGBCD AB BCBAG CBD ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩()ASA ABG BCD ≌AG BD =D AB 12BD AB =12AG BC =Rt ABC △90ABC ∠=︒AB BC ⊥AG AB ⊥AG BC ∥AFG CFB ∽AG FG CB FB=BA BC =AG FG AB FB =①2AB BC x ==D AB AD BD AG x ===Rt DBC △DC ==BG DC ==AFG CFB ∽12GF AG BF BC ==1123FG FB BG x ===90DBE DCB BDC ∠=∠=︒-∠BED CBD ∠=∠∴,∴,∴,∴,∴,故错误;∵,∴,∴,∵,∴,故正确;过点作于,如图,∵,∴,∴,∵,∴,即,故错误;CDB BDE ∽CD CB BD BE=·BD CB BE x CD ==FE BG GF BE x =--=FG FE ≠②AFG CFB ∽12AF AG CF AC ==13AF AC =AC =AF AB =③F MF AB ⊥M BC AB ⊥FM CB ∥13AF FM AC BC ==12BD BA =1·11121236·2BDF ABC BD FM S BD FM S AB BC AB BC ==⨯=⨯= 6ABC BDF S S = ④∴正确的结论是,故选:.二、填空题13.的平方根是______.【答案】【解析】【分析】根据求一个数的平方根的计算方法即可求解.【详解】解:的平方根表示为,故答案:.【点睛】本题主要考查平方根的计算方法,掌握求一个数的平方根的运算是解题的关键.14. 若点P 在线段的延长线上,,,则的长为______.【答案】5【解析】【分析】本题主要考查了线段的和差计算,根据线段的和差关系进行求解即可.【详解】解:∵点P 在线段的延长线上,,,∴,故答案为:5.15. 如图,在中,,是的内切圆,M ,N ,K 是切点,连接,.交于E ,D 两点.点F 是上的一点,连接,,则的度数是______.【答案】##62.5度【解析】【分析】本题主要考查了圆周角定理,三角形内心性质,三角形内角和定理,先根据三角形内心的性质为的①③B 9432±9432=±32±AB 8AP =3BP =AB AB 8AP =3BP =5AB AP BP =-=ABC 70B ∠=︒O ABC OA OC O MNDF EF EFD ∠62.5︒得,,进而求出,即可求出,然后根据圆周角定理得出答案.【详解】∵是的内切圆,∴,是的角平分线,∴,.∵,∴,∴,∴,∴.故答案:.16. 我们定义:如果一个函数图象上存在纵坐标是横坐标6倍的点,则把该函数称为“行知函数”,该点称为“行知点”,例如:“行知函数”,其“行知点”为.(1)直接写出函数图象上的“行知点”是__________;(2)若二次函数的图象上只有一个“行知点”,则的值为__________.【答案】①. 或 ②. 【解析】【分析】本题考查二次函数的综合应用,理解新定义,将新定义与所学二次函数,一元二次方程的知识相结合,熟练掌握跟与系数关系是解题关键.(1)根据题目所给“行知点”的定义,列出方程求解即可;(2)根据题目所给“行知点”的定义,列出方程,根据只有一个“行知点”得出该方程只有一个实数根,再根据一元二次方程根的判别式,即可解答.【详解】解:(1)根据题意可得:,整理得:,为12OAC BAC ∠=∠12OCA BCA ∠=∠∠+∠OAC OCA AOC ∠O ABC OA OC ABC 12OAC BAC ∠=∠12OCA BCA ∠=∠70B ∠=︒110BAC BCA ∠+∠=︒1()552OAC OCA BAC BCA ∠+∠=∠+∠=︒18055125AOC ∠=︒-︒=︒162.52EFD EOD ∠=∠=︒62.5︒20y x =+()424,24y x=()()21332y a x a x a =-+++a ()212,()212--,3-246x x=24x =解得:,经检验,是原分式方程的解;∴函数图象上的“行知点”是或;故答案为:或.(2)∵二次函数的图象上只有一个“行知点”,∴方程有两个相等的实数根,且,整理得:,∴,解得:,综上:a 的值为.故答案为:.17. 如图,折叠边长为4cm 的正方形纸片,折痕是,点落在点处,分别延长、交于点、,若点是边的中点,则______cm .【答案】##【解析】【分析】根据折叠的性质可得DE =DC =4,EM =CM =2,连接DF ,设FE =x ,由勾股定理得BF ,DF ,从而求出x 的值,得出FB ,再证明,利用相似三角形对应边成比例可求出FG .【详解】解:连接如图,122,2x x ==-122,2x x ==-24y x=()212,()212--,()212,()212--,()()21332y a x a x a=-+++()()216332x a x a x a=-+++30a -≠()()213302a x a x a -+-+=()()2134302a a a --⨯⨯-=123,3x x ==-3-3-ABCD DM C E ME DE AB F G M BC FG =53213FEG FBM ∆∆ ,DF∵四边形ABCD 是正方形,∴∵点M 为BC 的中点,∴由折叠得,∠∴∠,设则有∴又在中,,∵∴∴在中,∴解得,(舍去)∴∴∴4,90.AB BC CD DA A B C CDA ︒====∠=∠=∠=∠=114222BM CM BC ===⨯=2,4,ME CM DE DC ====90,DEM C ︒=∠=90DEF ︒=90,FEG ∠=︒,FE x =222DF DE EF =+2224DF x =+Rt FMB ∆2,2FM x BM =+=222FM FB BM =+FB ==4AF AB FB =-=-Rt DAF ∆222,DA AF DF +=2222444,x ⎛+=+ ⎝124,83x x ==-4,3FE =410233FM FE ME =+=+=83FB ==∵∠∴∠∴∠又∠∴△∴即∴故答案为:【点睛】本题主要考查了正方形的性质,折叠的性质,勾股定理,相似三角形的判定与性质,正确作出辅助线是解答本题的关键.三、解答题18. 解不等式:【答案】【解析】【分析】本题主要考查解一元一次不等式,根据去分母,移项,合并同类项,求出不等式的解集即可【详解】解:,去分母得,,移项得,,合并得,19. 如图,在由边长为1个单位的小正方形组成的网格中,点、、均为格点(网格线的交点),、、.90DEM ︒=90FEG ︒=,FEG B =∠.GFE MFB =∠FEG FBM∆ ,FG FE FM FB=4310833FG =5,3FG =53322x +>1x >322x +>34x +>43x >-1x >A B C ()23A ,()32B ,()10C ,(1)将向下平移3个单位,再向左平移4个单位,得到,请画出;(2)将绕点逆时针旋转,得到,请画出.(3)在(2)的旋转过程中,点经过的路径长为【答案】(1)答案见解析(2)答案见解析(3【解析】【分析】本题主要考查三角形的平移以及旋转作图,弧长公式,掌握作图方法是解题的关键.(1)先画出三角形各顶点平移后的位置,再用线段依次连接各顶点,得到平移后的三角形;(2)先画出三角形各顶点绕着点逆时针旋转后的位置,再用线段依次连接各顶点,得到旋转后的三角形;(3)根据弧长计算公式进行计算,求得旋转过程中点所经过的路径长.【小问1详解】解:如图所示, 【小问2详解】解:如图所示ABC 111A B C △111A B C △111A B C △O 90︒222A B C △222A B C △1C O 90︒1C【小问3详解】解:旋转过程中,点所经过的路径长为以为半径,为圆心角的弧长,,.20. 将字母“”,“”按照如图所示的规律摆放,其中第个图形中有个字母,有个字母;第个图形中有个字母,有个字母;第个图形中有个字母,有个字母;……根据此规律解答下面的问题:(1)第个图形中有______个字母,有______个字母;(2)第个图形中有______个字母,有______个字母(用含的式子表示);(3)第个图形中有______个字母,有______个字母.【答案】(1);(2);(3);【解析】【分析】根据图中信息找规律即可:(1)根据规律作答即可;(2)根据规律找到个数与的关系即可;(3)代入(2)中的关系式计算即可.【小问1详解】1C 1OC 90︒ 1290180C C π∴=⨯=C H 11C 4H 22C 6H 33C 8H 4C H n C H n 2024C H 410n 22n +20244050n第个图形中有个字母,有个字母;第个图形中有个字母,有个字母;第个图形中有个字母,有个字母,依此类推,第个图形中有个字母,有个字母【小问2详解】观察规律:第个图形中有个字母,第个图形中有个字母,第个图形中有个字母……因为字母的数量等于所以第个图形中有个字母同理观察规律:第个图形中有个字母,第个图形中有个字母;第个图形中有个字母……因为字母的个数是字母的个数的2倍多2,字母的数量等于则字母的个数是即第个图形中有个字母【小问3详解】根据第(2)问,将数字代入即可因为字母的数量等于所以第个图形中有个字母因为字母的个数是所以第个图形中有个字母【点睛】本题考查了图形类的规律,解题的关键在于找到规律.21. 如图,四边形是一个零件的截面图,,,,,,求这个零件截面的面积.(精确到,,,,)【答案】这个零件的截面面积约为【解析】【分析】本题考查了矩形的判定与性质,解直角三角形,正确作出辅助线是解答本题的关键.作于E ,于F ,则四边形为矩形,在中,求出、的值,在11C 4H 22C 6H 33C 8H 44C 10H11C 22C 33C C nn n C14H 26H 38H H C C nH 22n +n 22n +HC n20242024CH 22n +20244050HABCD (2AB =+4cm CD =AB BC ⊥74BAD ∠=︒60BCD ∠=︒21cm 1.41≈1.73≈sin 740.96︒≈cos 740.28︒≈tan 74 3.49︒≈235cm DE AB ⊥DF BC ⊥DEBF Rt CDF △DF FC Rt ADE △中,求出的值,进而可求出这个零件截面的面积.【详解】解:作于E ,于F ,连接,则四边形为矩形,∴,,在中, ,,∴,,.在中,,,∴,四边形的面积的面积的面积答:这个零件的截面面积约为.22. 如图,在中,,D 为边上的点,以为直径作,连接并延长交于点E ,连接,.(1)求证:是的切线.(2)若,求的长.【答案】(1)证明见解析(2).【解析】【分析】本题考查的是切线的判定、等腰三角形的性质、勾股定理.DE DE AB ⊥DF BC ⊥BD DEBF DE FB =DF EB =Rt CDF △4cm CD =60BCD ∠=︒sin 60BE DF DC ==⨯︒=cos 602(cm)FC DC ⨯︒==22(cm)AE AB BE ∴=-=+-=Rt ADE △2AE =74DAE ∠=︒tan 742 3.49 6.98(cm)DE AE =⨯︒=⨯=∴ABCD ABD =△BCD +△1122AB DE BC DF =⨯+⨯11(2 6.98(6.982)22=⨯+⨯+⨯+⨯215.96 1.73 6.9835(cm )≈⨯+≈235cm Rt ABC △90ACB ∠=︒AC AD O BD O CE CE BC =CE O 24CD BC ==,AC 8AC =(1)连接,根据等腰三角形的性质得到,由得到,得,于是得到结论;(2)设的半径为r ,则,由得到关于r 的方程,即可求出半径,进而求出的长.【小问1详解】证明:如图所示,连接,∵,∴.∵,∴.∵,∴.又∵,∴,∴,即,∴.∵是的半径,∴是的切线.【小问2详解】解:在中,,由题意得,,设的半径为r ,则,在中,,∴,OE 1234∠=∠∠=∠,1590∠+∠=︒2390∠+∠=︒90OEC ∠=︒O 2OD OE r OC r ===+,222OE CE OC +=AC OE 90ACB ∠=︒1590∠+∠=︒CE BC =12∠=∠OE OD =34∠∠=45∠=∠35∠=∠2390∠+∠=︒90OEC ∠=︒OE CE ⊥OE O CE O Rt BCD 9024DCB CD BC ∠=︒==,,4BC CE ==O 2OD OE r OC r ===+,Rt OEC △90OEC ∠=︒222OE CE OC +=∴,解得,∴,∴.23. A 、B 、C 三个电冰箱厂家在广告中都声称,他们的电冰箱在正常情况下的使用寿命都是8年,经质量检测部门对这三家销售的产品的使用寿命进行跟踪调查,统计结果如下:(单位:年)甲厂:4,5,5,5,5,7,9,,,;乙厂:6,6,8,8,8,9,,,,15;丙厂:4,4,4,6,7,9,,,,;根据以上数据,绘制了下面不完整的表格:平均数众数中位数甲厂856乙厂a 丙厂4b根据以上信息解答下列问题:(1)表格中______,______;(2)这三个厂家的销售广告分别利用了哪一种表示集中趋势的特征数?(3)如果这三个家电厂家的电子产品的售价相同,则顾客购买哪一家的电子产品更合适,并说明理由.【答案】(1)8,8;(2)见详解;(3)选乙厂的电子产品更合适;【解析】【分析】本题考查了求众数,中位数,平均数及根据众数,中位数,平均数做决策:(1)根据出现次数最多的是众数,最中间的数是中位数直接求解即可得到答案;(2)根据表格及(1)直接判断即可得到答案;(3)根据三个数据大小比较直接判断即可得到答案;【小问1详解】解:由题意可得,∵乙中8出现次数最多,∴,丙中第5,6个数是7,9,()22242r r +=+3r =26AD r ==8AC AD CD =+=121315101214131516169.68.59.4=a b =8a =∴,故答案为:8,8;【小问2详解】解:由(1)及表格得,甲平均数是8,乙众数是8,丙中位数是8,∴甲厂的销售广告利用了平均数8表示集中趋势的特征数;乙厂的销售广告利用了众数8表示集中趋势的特征数;丙厂的销售广告利用了中位数8表示集中趋势的特征数;【小问3详解】解:由题意可得,平均数:乙大于丙大于甲,众数:乙大于甲大于丙,中位数:乙大于丙大于甲,∴应选乙厂的电子产品更合适.24. 如图,在四边形是正方形,点E 为边的中点,对角线与交于点F ,连接,,且与交于点G ,连接.(1)求证:;(2)求的值;(3)求证:.【答案】(1)证明见详解;(2); (3)证明见详解;【解析】7982b +==ABCD CD BD AE BE CF BE CF DG BE CF ⊥FG EG2DG CG BG =⋅43【分析】本题考查正方形的性质,全等三角形判定与性质,相似三角形的判定与性质:(1)根据正方形的性质得到,,,根据中点得到,即可得到与即可得到证明;(2)设正方形边长为a ,根据表示出、,设,表示出,在根据勾股定理求解得到即可得到答案;(3)过G 作,根据等积法求出,在根据勾股定理求出即可得到答案;【小问1详解】证明:∵四边形是正方形,∴,,,∵点E 为边的中点,∴,在与中,∵,∴,∴,在与中,∵,∴,∴,∴,∵,∴,∴;【小问2详解】解:设正方形边长为a ,由(1)得,,,,45C D B A D B ∠=∠=︒90ADE BCD ∠=∠=︒AD DC BC ==DE CE =ADE BCD △≌△ADF CDF △≌△CEG CBG BEC ∽∽CG EG EF x =FE Rt FEG △FG GH BC ⊥GH BG ABCD 45C D B A D B ∠=∠=︒90ADE BCD ∠=∠=︒AD DC BC ==CD DE CE =ADE V BCE AD BC ADE BCE DE CE =⎧⎪∠=∠⎨⎪=⎩()SAS ADE BCE ≌DAE CBE ∠=∠ADF △CDF AD CD ADB CDB DF DF =⎧⎪∠=∠⎨⎪=⎩(SAS)ADF CDF ≌DAE FCD ∠=∠FCD CBE ∠=∠90FCD FCB ∠+∠=︒90CBE FCB BGF ∠+∠=∠=︒BE CF ⊥FCD CBE ∠=∠90BGC BCE EGC ∠=∠=∠=︒AE BE ===∴,∴,,∴,,设,∴,∴,在中,,解得:,∴,∴;【小问3详解】证明:过G 作,,CEG CBG BEC ∽∽EC EG CG BE EC BC==2EG CG a a ==CG =EG =EF x =CF AF a x ==-GF x x =-=-Rt FEG △222x x ⎫⎫-+=⎪⎪⎪⎪⎭⎭x a =GF a ==43FG EG ==GH BC ⊥∵,∴,∴,∴,∴,∴,,∴.25. 如图,二次函数,与时的函数值相等,其图象与x 轴交于A 、B 两点,与y轴正半轴交于C 点.(1)求二次函数的解析式.(2)在第一象限的抛物线上求点P ,使得最大.(3)点Q 是抛物线上x 轴上方一点,若,求Q 点坐标.【答案】(1) (2) (3)【解析】【分析】(1)把与代入,求出t 的值,即可;1122CE GH GE GC ⨯⨯=⨯⨯15GE GC GH a CE ⨯===25CHa ==2355DHa a a =-=DG a ==2222)5DG a ==22)5C a BG G ⨯==⋅2DG CG BG =⋅()()()21121y t x t x t -++=+≠0x =3x =PBC S 45CAQ ∠=︒213222y x x =-++()2,31013,39⎛⎫ ⎪⎝⎭0x =3x =()()()21121y t x t x t -++=+≠(2)过点P 作轴,交于点D .先求出直线的解析式为,设点,则点D 的坐标为,可得,再由,得到S 关于a 的函数关系式,即可求解;(3)将绕点A 顺时针旋转得到,则,取的中点H ,作直线交抛物线于Q ,则,,求出直线的解析式,即可求解.【小问1详解】解:∵与时的函数值相等,∴,解方程,得,把代入二次函数,∴二次函数的解析式为:.【小问2详解】解:如图,过点P 作轴,交于点D .把代入,得:,解得,∴点A ,∴,当时,,PD y ∥BC BC 122y x =-+213,222P a a a ⎛⎫-++ ⎪⎝⎭1,22a a ⎛⎫-+ ⎪⎝⎭2221a PD a -=+12PBC S PD OB =⋅△AC 90︒AC '()1,1C '-CC 'AH 11,22H ⎛⎫ ⎪⎝⎭45CAQ ∠=︒AH 0x =3x =()()()()221010213132t t t t =++-⨯+⨯+-⨯+⨯+12t =12t =()()()21121y t x t x t -++=+≠213222y x x =-++PD y ∥BC 0y =213222y x x =-++2132022x x -++=121,4x x =-=()()1,0,4,0B -4OB =0x =2y =∴,设直线的解析式为,把点,代入得:,解得:,∴直线的解析式为,设点,则点D 的坐标为,∴,∴,当时,有最大值,最大值为4,所以点P 的坐标;【小问3详解】解:如图,将绕点A 顺时针旋转得到,则,取的中点H ,作直线交抛物线于Q ,则,,设直线的解析式为,把代入得:()0,2C BC y kx b =+()4,0B ()0,2C 240b k b =⎧⎨+=⎩122k b ⎧=-⎪⎨⎪=⎩BC 122y x =-+213,222P a a a ⎛⎫-++ ⎪⎝⎭1,22a a ⎛⎫-+ ⎪⎝⎭2211312222222a a PD a a a ⎛⎫-+=+ ⎭=-++-⎝-⎪()22211244241222PBC PD OB a S a a a a ⎛⎫⋅=+⨯=-+=--- ⎪⎝=+⎭ 2a =PBC S ()2,3AC 90︒AC '()1,1C '-CC 'AH 11,22H ⎛⎫ ⎪⎝⎭45CAQ ∠=︒AH ()1110y k x b k =+≠()21,02,11,A H -⎛⎫ ⎪⎝⎭,解得:,∴直线的解析式为,联立得,解得或,∴.【点睛】本题主要考查了二次函数的综合题,涉及了二次函数的图象和性质,求一次函数解析式,利用数形结合思想解答是解题的关键.26. 在中,.将绕点A 顺时针旋转得到,旋转角小于,点B 的对应点为点D ,点C 的对应点为点E ,交于点O ,延长交于点P .(1)如图1,求证:;(2)当时,①如图2,若,求线段的长;②如图3,连接,延长交于点F ,判断F 是否为线段的中点,并说明理由.【答案】(1)见解析(2)①;②F 是线段的中点.理由见解析【解析】【分析】(1)由旋转的性质得到,,,根据证明,即可证明;(2)①连接,由勾股定理求得,利用全等三角形的性质和平行线的性质求得,推出,据此求解即可;②连接,延长和交于点G ,证明,求得,得到,再证明,据此即可证明F 是线段的中点.111101122k b k b -+=⎧⎪⎨+=⎪⎩111313k b ⎧=⎪⎪⎨⎪=⎪⎩AH 1133y x =+2113313222y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩10x y =-⎧⎨=⎩103139x y ⎧=⎪⎪⎨⎪=⎪⎩1013,39Q ⎛⎫ ⎪⎝⎭Rt ABC △90C ∠=︒ABC ADE V CAB ∠DE AB DE BC PC PE =AD BC ∥68CA CB ==,BP BD CE ,CE BD BD 6BP =BD AC AE =90C AEP ∠=∠=︒HL Rt Rt APE APC ≌△△PC PE =AP 10AB =DAP APD ∠=∠10DP AD ==AP AD CE Rt Rt ACP GAC ∽△△18AG =8GD BC ==GDF CBF ≌△△BD【小问1详解】证明:连接,由旋转的性质知,,,∵,∴,∴;【小问2详解】解:①连接,∵,,∴,由旋转的性质知,,, 由(1)知,∴,,∵,∴,∴,∴,∴,∴;②F 是线段的中点.理由如下,连接,延长和交于点G,如图,AP AC AE =90AED C AEP ∠=∠=∠=︒AP AP =()Rt Rt HL APE APC ≌PC PE =AP 90C ∠=︒68CA CB ==,10AB ==10AD AB ==8DE BC ==Rt Rt APE APC ≌△△PC PE =APE APC ∠=∠AD BC ∥DAP APC ∠=∠DAP APD ∠=∠10DP AD ==1082PC PE ==-=826BP BC PC =-=-=BD AP AD CE由(1)知,,∴是的垂直平分线,∴,∵,∴,∴, ∵,,∴,∴,∵,∴,,∴,∴,即F 是线段的中点.【点睛】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,旋转的性质,勾股定理,正确引出辅助线解决问题是解题的关键.AE AC =PE PC =PA CE PA CG ⊥90PAC ACG G ∠=︒-∠=∠Rt Rt ACP GAC ∽△△AC AG PC AC=2PC =6CA =18AG =18108GD BC =-==AD BC ∥G BCF ∠=∠GDF CBF ∠=∠GDF CBF ≌△△DF BF =BD。
2021年陕西西安中考数学真题及答案

2021年陕西西安中考数学真题及答案一、选择题(共8小题,每小题3分,计24分。
每小题只有一个选项是符合题意的)1.计算:3×(﹣2)=()A.1 B.﹣1 C.6 D.﹣62.下列图形中,是轴对称图形的是()A.B.C.D.3.计算:(a3b)﹣2=()A.B.a6b2C.D.﹣2a3b4.如图,点D、E分别在线段BC、AC上,连接AD、BE.若∠A=35°,∠C=50°,则∠1的大小为()A.60°B.70°C.75°D.85°5.在菱形ABCD中,∠ABC=60°,连接AC、BD,则()A.B.C.D.6.在平面直角坐标系中,若将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到一个正比例函数的图象()A.﹣5 B.5 C.﹣6 D.67.如图,AB、BC、CD、DE是四根长度均为5cm的火柴棒,点A、C、E共线.若AC=6cm,则线段CE的长度是()A.6cm B.7cm C.6cm D.8cm8.下表中列出的是一个二次函数的自变量x与函数y的几组对应值:x…﹣2 0 1 3 …y… 6 ﹣4 ﹣6 ﹣4 …下列各选项中,正确的是()A.这个函数的图象开口向下B.这个函数的图象与x轴无交点C.这个函数的最小值小于﹣6D.当x>1时,y的值随x值的增大而增大二、填空题(共5小题,每小题3分,计15分)9.分解因式x3+6x2+9x=.10.正九边形一个内角的度数为.11.幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,则图中a的值为.12.若A(1,y1),B(3,y2)是反比例函数y=(m<)图象上的两点,则y1、y2的大小关系是y1y2.(填“>”、“=”或“<”)13.如图,正方形ABCD的边长为4,⊙O的半径为1.若⊙O在正方形ABCD内平移(⊙O可以与该正方形的边相切).三、解答题(共13小题,计18分。
2019-2020西安市数学中考试卷带答案

2019-2020西安市数学中考试卷带答案一、选择题1.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70° 2.如图A ,B ,C 是上的三个点,若,则等于( )A .50°B .80°C .100°D .130°3.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B .3C .3米D .10031)米4.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=-B .5{1+52x y x y =+=C .5{2-5x y x y =+=D .-5{2+5x y x y ==5.已知11(1)11A x x ÷+=-+,则A =( ) A .21x x x -+ B .21x x - C .211x - D .x 2﹣16.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形 7.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是( )A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3)8.下面的几何体中,主视图为圆的是( )A .B .C .D .9.下列二次根式中,与3是同类二次根式的是( ) A .18B .13C 24D 0.310.下列计算正确的是( ) A .()3473=a ba b B .()232482--=--b a bab bC .32242⋅+⋅=a a a a aD .22(5)25-=-a a11.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x 个零件,下列方程正确的是( ) A .1201508x x =- B .1201508x x=+ C .1201508x x=- D .1201508x x =+ 12.某商店销售富硒农产品,今年1月开始盈利,2月份盈利240000元,4月份盈利290400元,且从2月份到4月份,每月盈利的平均增长率相同,则每月盈利的平均增长率是( ) A .8%B .9%C .10%D .11%二、填空题13.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表: 抽取的体检表数n 501002004005008001000120015002000色盲患者的频数m3 7 13 29 37 55 69 85 105 138色盲患者的频率m/n0.0600.0700.0650.0730.0740.0690.0690.0710.0700.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).14.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.15.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,AC与OB交于点D (8,4),反比例函数y=的图象经过点D.若将菱形OABC向左平移n个单位,使点C落在该反比例函数图象上,则n的值为___.16.已知扇形AOB的半径为4cm,圆心角∠AOB的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm17.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2,a a次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________元.(按每吨运费20元计算)18.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.19.已知M、N两点关于y轴对称,且点M在双曲线12yx上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a+b)x的顶点坐标为.20.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC=________.三、解答题21.光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:()1填写下表:中位数众数 随机抽取的50人的社会实践活动成绩(单位:分)()2估计光明中学全体学生社会实践活动成绩的总分.22.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长; (2)求△ADB 的面积.23.已知:如图,在ABC 中,AB AC =,AD BC ⊥,AN 为ABC 外角CAM ∠的平分线,CE AN ⊥.(1)求证:四边形ADCE 为矩形;(2)当AD 与BC 满足什么数量关系时,四边形ADCE 是正方形?并给予证明24.小慧和小聪沿图①中的景区公路游览.小慧乘坐车速为30 km/h的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20 km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图②中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB,GH的交点B的坐标,并说明它的实际意义;(3)如果小聪到达宾馆后,立即以30 km/h的速度按原路返回,那么返回途中他几点钟遇见小慧?25.某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元,调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元(1)若生产第五档次的蛋糕,该档次蛋糕每件利润为多少元?(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1024元,该烘焙店生产的是第几档次的产品?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.D解析:D【解析】试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.故选D考点:圆周角定理3.D解析:D【解析】【分析】在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.【详解】∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD223200100∴AB=AD+BD=3100(3故选D.【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.4.A解析:A【解析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.B解析:B【解析】【分析】由题意可知A=111)11x x++-(,再将括号中两项通分并利用同分母分式的减法法则计算,再用分式的乘法法则计算即可得到结果.【详解】解:A=11111x x++-=111xx x+-=21xx-故选B.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.6.B解析:B【解析】【分析】根据菱形的性质逐项进行判断即可得答案.【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等,故选B.【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.7.D解析:D【解析】如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一条直线上,那么这两个图形叫做位似图形。
2023陕西中考数学试卷

2023年陕西省西安市中考数学一模试卷一、选择题(每题3分,共24分)1.(3分)若盈余1万元记作+1万元,则﹣1万元表示()A.盈余1万元B.亏损1万元C.亏损﹣1万元D.不盈余也不亏损2.(3分)如图,是由完全相同的6个小正方体搭成的几何体,若在小正方体①的正上方再摆放一个相同的小正方体()A.主视图和左视图B.主视图和俯视图C.俯视图和左视图D.均没有发生变化3.(3分)下列计算正确的是()A.(﹣2x3y)3=﹣6x6y3B.2a2+3a3=5a5C.6x3y2÷3x=2x2y2D.(x﹣y)(﹣x﹣y)=x2﹣y24.(3分)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2B.﹣2C.4D.﹣45.(3分)将直尺和一个含45°角的直角三角板按如图所示的位置放置.若∠1=60°,则∠2的度数为()A.150°B.145°C.135°D.120°6.(3分)某风筝厂准备购进甲、乙两种规格相同但颜色不同的布料生产一批形状如图所示的风筝,点E,F,G,H分别是四边形ABCD各边的中点.其中阴影部分用甲布料(裁剪两种布料时,均不计余料).若生产这批风筝需要甲布料30匹,那么需要乙布料()A.15匹B.20匹C.60匹D.30匹7.(3分)如图,四边形ABCD为⊙O的内接四边形.弦AB与DC的延长线相交于点G,AO⊥CD,连接BD,∠GBC=48°()A.84°B.72°C.66°D.48°8.(3分)在平面直角坐标系中,将抛物线y=x2+(k+1)x+k绕点(1,0)旋转180°,当x>4时,y随x的增大而减小()A.k<3B.k>3C.k≤3D.k≥3二、填空题(每题3分,共15分)9.(3分)请写出一个绝对值大于3的负无理数:.10.(3分)一个正多边形的中心角是45°,则过它的一个顶点有条对角线.11.(3分)如图,在△ABC中,∠C=90°,AC=6,若点P为直线BC上一点,则符合条件的点P有个.12.(3分)如图,A是双曲线上的一点,过点C作y轴的垂线,垂足为D,则△ABD的面积是.13.(3分)如图,正方形ABCD的边长为2,E为平面内一点,P为AD的中点,若∠APE =45°.三、解答题(共81分)14.(5分)计算:|2﹣1|+(1﹣π)0﹣.15.(5分)解不等式组:.16.(5分)先化简,再求值,其中a=3tan30°+1.17.(5分)如图,已知正方形ABCD,点E是AB边上的一点,使得∠BEF+∠BCF=180°(不写作法,保留作图痕迹).18.(5分)如图,在矩形ABCD中,E是BC的中点,垂足为F.(1)求证:△ABE∽△DFA;(2)若AB=6,BC=4,求DF的长.19.(5分)我国古代数学著作《九章算术》中记载:“今有醇酒一斗,直钱五十;行酒一斗,得酒二斗.问醇、行酒各得几何?”其大意为:今有醇酒1斗,价值50钱,价值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少?请解答上述问题.20.(5分)如图,在直角坐标系中,△ABC的各顶点坐标分别为A(a,1),B(3,3),C (4,﹣1),其各顶点坐标分别为A′(﹣5,﹣3),B′(﹣3,b)(﹣2,﹣5).(1)观察各对应点坐标的变化并填空:a的值为,b的值为;(2)画出△ABC及将△ABC绕点B顺时针旋转90°得到△DBE,点C的对应点为点E,写出点E的坐标.21.(5分)某医院计划选派护士支援某地的防疫工作,甲、乙、丙、丁4名护士积极报名参加,其中甲是共青团员(1)“随机抽取1人,甲恰好被抽中”是事件;A.不可能B.必然C.随机(2)若需从这4名护士中随机抽取2人,请用画树状图法或列表法求出被抽到的两名护士都是共产党员的概率.22.(5分)在解放军的某次台海演练中,红军无人机执行侦察任务时,在A点正上方的B 点处发现俯角为28°的下方山坡上有蓝军指挥部所在的山洞P,同时,位于点C的蓝军防空雷达也发现了潜入的无人机B位于点C仰角53°方向,P点距离地面300m,AC=2600m(A,B,C,若蓝军关闭防爆大门需要11s,则指挥部会被推毁吗?(结果保留一位小数.参考数据:sin53°≈0.80,tan53°≈1.33,cos53°≈0.60,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53,音速为340m/s)23.(5分)某校九年级有1500名学生,在体育考试前随机抽取部分学生进行跳绳测试,根据测试成绩制作了下面两个不完整的统计图.请根据相关信息(1)本次参加跳绳测试的学生人数为,图1中m的值为;(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,估计该校九年级跳绳测试中得3分的学生约有多少人?24.(6分)如图,这是一个“函数求值机”的示意图,其中y是x的函数.下面表格中输入x…﹣6﹣4﹣202…输出y…﹣6﹣22616…根据以上信息,解答下列问题:(1)当输入的x值为3时,输出的y值为.(2)当x<1时,求该函数的表达式.(3)当输出的y值为﹣4时,求输入的x值.25.(7分)如图为某游乐场摩天轮简化示意图,摩天轮最低端与地面的距离忽略不计,即可看作摩天轮与地面相切,小明坐在透明座舱旋转到点B时用激光笔照射在摩天轮的点C和最低点A处,激光线BC交地面于点F,交圆于点D,交水平地面AF于点E且BD ⊥AC于点G.(1)求证:∠FAC=2∠ABE;(2)若AC=72米,求BE的长.26.(8分)2022年,在全球疫情蔓延的情况下,北京成功举办冬奥会,滑雪运动备受人们青睐.下面是某滑雪训练场滑雪运动中的一张截图,某滑雪人员在空中留下了一道完美的曲线(与水平地面平行)2m高的P处腾空滑出,在距P点水平距离为4m的地方到达最高处为x轴,过点P作x轴的垂线为y轴建立平面直角坐标系.完成以下问题:(1)求该抛物线的解析式;(2)当滑雪人员距滑雪台高度为2m,则他继续滑行的水平距离为多少米时,可以使他距滑雪台的高度为0m.27.(10分)综合与实践:在综合与实践课上,老师让同学们以“矩形纸片的折叠”为主题开展数学活动.在矩形ABCD中,E为AB边上一点,F为AD边上一点,分别将△BCE和△CDF沿CE、CF翻折,点D、B的对应点分别为点G、H(1)如图1,若F为AD边的中点,AB=BC=6,则∠ECF=°,BE=;(2)如图2,若F为AD的中点,CG平分∠ECF,,求∠ECF的度数及BE 的长.(3)AB=5,AD=3,若F为AD的三等分点参考答案一、选择题(每题3分,共24分)1.(3分)若盈余1万元记作+1万元,则﹣1万元表示()A.盈余1万元B.亏损1万元C.亏损﹣1万元D.不盈余也不亏损【解答】解:因为盈余1万元记作+1万元,所以亏损3万元记作﹣1万元,故选:B.2.(3分)如图,是由完全相同的6个小正方体搭成的几何体,若在小正方体①的正上方再摆放一个相同的小正方体()A.主视图和左视图B.主视图和俯视图C.俯视图和左视图D.均没有发生变化【解答】解:若在正方体①的正上方放上一个同样的正方体,则主视图发生变化,上层由原来的一个小正方形变为两个小正方形;左视图与原来相同,都是两层,上层是1个正方形;俯视图与原来相同,都是三列、2、8;所以所得的新几何体的三视图与原几何体对比没有发生变化的是俯视图和左视图.故选:C.3.(3分)下列计算正确的是()A.(﹣2x3y)3=﹣6x6y3B.2a2+3a3=5a5C.6x3y2÷3x=2x2y2D.(x﹣y)(﹣x﹣y)=x2﹣y2【解答】解:∵(﹣2x3y)4=﹣8x9y7,∴选项A不符合题意;∵2a2+3a3≠5a6,∴选项B不符合题意;∵6x3y7÷3x=2x8y2,∴选项C符合题意;∵(x﹣y)(﹣x﹣y)=y2﹣x3,∴选项D不符合题意.故选:C.4.(3分)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2B.﹣2C.4D.﹣4【解答】解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=﹣4,故选:B.5.(3分)将直尺和一个含45°角的直角三角板按如图所示的位置放置.若∠1=60°,则∠2的度数为()A.150°B.145°C.135°D.120°【解答】解:如图所示,过C作CD∥AB,∵AB∥EF,∴CD∥EF,∴AB∥CD∥EF,∴∠3=∠1=60°,∠8=∠5,∵∠3+∠2=90°,∴∠4=30°,∴∠5=30°,∴∠4=180°﹣∠5=150°,故选:A.6.(3分)某风筝厂准备购进甲、乙两种规格相同但颜色不同的布料生产一批形状如图所示的风筝,点E,F,G,H分别是四边形ABCD各边的中点.其中阴影部分用甲布料(裁剪两种布料时,均不计余料).若生产这批风筝需要甲布料30匹,那么需要乙布料()A.15匹B.20匹C.60匹D.30匹【解答】解:连接AC、BD,∵点E、F分别是AB,∴EF∥AC,EF=,∴△BEF∽△BAC,=S△BAC,∴S△BEF=S△DAC,同理,S△DHG+S△DHG=S△BAC+S△DAC=S四边形ABCD,则S△BEF+S△CFG=S四边形ABCD,同理S△AEH∴阴影部分面积等于如图所示的风筝面积的一半,即阴影部分面积与其余部分面积相等,生产这批风筝需要甲布料30匹,那么需要乙布料也是30匹,故选:D.7.(3分)如图,四边形ABCD为⊙O的内接四边形.弦AB与DC的延长线相交于点G,AO⊥CD,连接BD,∠GBC=48°()A.84°B.72°C.66°D.48°【解答】解:连接AC,∵四边形ABCD为⊙O的内接四边形,∴∠ADC=∠GBC=48°,∵AO⊥CD,∴DE=CE,∠DAE=42°,∴AC=AD,∴∠CAD=2∠DAE=84°,由圆周角定理得,∠DBC=∠CAD=84°,故选:A.8.(3分)在平面直角坐标系中,将抛物线y=x2+(k+1)x+k绕点(1,0)旋转180°,当x>4时,y随x的增大而减小()A.k<3B.k>3C.k≤3D.k≥3【解答】解:∵1>0,∴原抛物线开口向上,对称轴为直线,∵将抛物线绕点(1,2)旋转180°,∴旋转后的对称轴为直线,开口向下,∵当x>4时,y随x的增大而减小,∴≤4,∴k≤3.故选:C.二、填空题(每题3分,共15分)9.(3分)请写出一个绝对值大于3的负无理数:﹣.【解答】解:绝对值大于3的负无理数可以为:﹣(答案不唯一).故答案为:﹣(答案不唯一).10.(3分)一个正多边形的中心角是45°,则过它的一个顶点有5条对角线.【解答】解:∵设正多边形的边数为n,且正多边形的中心角是45°,∴45°n=360°,∴n=8,∴过n边形的一个顶点有(n﹣3)条对角线,即4﹣3=5(条),故答案为:4.11.(3分)如图,在△ABC中,∠C=90°,AC=6,若点P为直线BC上一点,则符合条件的点P有4个.【解答】解:如图所示,分别以A,AB的长为半径画弧1,P2,P4即为所求;作AB的垂直平分线4即为所求.∴符合条件的点P有4个.故答案为:8.12.(3分)如图,A是双曲线上的一点,过点C作y轴的垂线,垂足为D,则△ABD的面积是2.【解答】解:∵点C是OA的中点,=S△OCD,S△ACB=S△OCB,∴S△ACD+S△ACB=S△OCD+S△OCB,∴S△ACD=S△OBD,∴S△ABD∵点B在双曲线y=(x>0)上,=×4=4,∴S△OBD=2,∴S△ABD故答案为:2.13.(3分)如图,正方形ABCD的边长为2,E为平面内一点,P为AD的中点,若∠APE =45°或.【解答】解:以AB为直径作⊙O,过点P1则OE=OA=OB=1,∵∠APE=45°∴,∴,,故答案为:或.三、解答题(共81分)14.(5分)计算:|2﹣1|+(1﹣π)0﹣.【解答】解:原式=+8﹣3=﹣.15.(5分)解不等式组:.【解答】解:,解不等式①,得x≥0,解不等式②,得x<10,所以不等式组的解集是8≤x<10.16.(5分)先化简,再求值,其中a=3tan30°+1.【解答】解:=•+3﹣a=+==,∵a=4tan30°+1=3×+1=+1,∴原式====5﹣.17.(5分)如图,已知正方形ABCD,点E是AB边上的一点,使得∠BEF+∠BCF=180°(不写作法,保留作图痕迹).【解答】解:如下图:点D即为所求.18.(5分)如图,在矩形ABCD中,E是BC的中点,垂足为F.(1)求证:△ABE∽△DFA;(2)若AB=6,BC=4,求DF的长.【解答】解:(1)∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠DAF=∠AEB,∵DF⊥AE,∴∠AFD=∠B=90°,∴△ABE∽△DFA;(2)∵E是BC的中点,BC=4,∴BE=2,∵AB=2,∴AE=,∵四边形ABCD是矩形,∴AD=BC=4,∵△ABE∽△DFA,∴,∴.19.(5分)我国古代数学著作《九章算术》中记载:“今有醇酒一斗,直钱五十;行酒一斗,得酒二斗.问醇、行酒各得几何?”其大意为:今有醇酒1斗,价值50钱,价值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少?请解答上述问题.【解答】解:设醇酒能买x斗,行酒能买y斗,依题意,得:.解得.答:醇酒能买斗,行酒能买斗.20.(5分)如图,在直角坐标系中,△ABC的各顶点坐标分别为A(a,1),B(3,3),C (4,﹣1),其各顶点坐标分别为A′(﹣5,﹣3),B′(﹣3,b)(﹣2,﹣5).(1)观察各对应点坐标的变化并填空:a的值为1,b的值为﹣1;(2)画出△ABC及将△ABC绕点B顺时针旋转90°得到△DBE,点C的对应点为点E,写出点E的坐标.【解答】解:(1)由题意,a﹣6=﹣5,∴a=5,b=﹣1,故答案为:1,﹣6;(2)如图,△DBE即为所求.21.(5分)某医院计划选派护士支援某地的防疫工作,甲、乙、丙、丁4名护士积极报名参加,其中甲是共青团员(1)“随机抽取1人,甲恰好被抽中”是C事件;A.不可能B.必然C.随机(2)若需从这4名护士中随机抽取2人,请用画树状图法或列表法求出被抽到的两名护士都是共产党员的概率.【解答】解:(1)随机抽取1人,甲恰好被抽中”是随机事件;故答案为:C;(2)设甲是共青团员用T表示,其余3人均是共产党员用G表示,所有可能出现的结果共有12种它们出现的可能性相同,所有的结果中,则P(A)==,22.(5分)在解放军的某次台海演练中,红军无人机执行侦察任务时,在A点正上方的B 点处发现俯角为28°的下方山坡上有蓝军指挥部所在的山洞P,同时,位于点C的蓝军防空雷达也发现了潜入的无人机B位于点C仰角53°方向,P点距离地面300m,AC=2600m(A,B,C,若蓝军关闭防爆大门需要11s,则指挥部会被推毁吗?(结果保留一位小数.参考数据:sin53°≈0.80,tan53°≈1.33,cos53°≈0.60,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53,音速为340m/s)【解答】解:指挥部会被推毁,理由:过点P作PD⊥AB,垂足为D,垂足为E,由题意得:PE=AD=300m,在Rt△ABC中,∠BCA=53°,∴AB=AC•tan53°≈2600×1.33=3458(m),∴BD=AB﹣AD=3158(m),在Rt△BPD中,∠BPD=28°,∴BP=≈≈6719.15(m),∴空对地导弹到达点P处需要的时间=≈9.9(s),∵4.9<11,∴指挥部会被推毁.23.(5分)某校九年级有1500名学生,在体育考试前随机抽取部分学生进行跳绳测试,根据测试成绩制作了下面两个不完整的统计图.请根据相关信息(1)本次参加跳绳测试的学生人数为500,图1中m的值为10;(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,估计该校九年级跳绳测试中得3分的学生约有多少人?【解答】解:(1)本次参加跳绳测试的学生人数为100÷20%=500(人),m%=×100%=10%;故答案为:500,10;(2)3分的人数有500﹣100﹣250﹣100=50人,∵4分出现的次数最多,出现了250次,∴众数是:4;把这些数从小到大排列,则中位数是:4;(3)该校九年级跳绳测试中得3分的学生约有:1500×10%=150(人).24.(6分)如图,这是一个“函数求值机”的示意图,其中y是x的函数.下面表格中输入x…﹣6﹣4﹣202…输出y…﹣6﹣22616…根据以上信息,解答下列问题:(1)当输入的x值为3时,输出的y值为24.(2)当x<1时,求该函数的表达式.(3)当输出的y值为﹣4时,求输入的x值.【解答】解:(1)当输入的x值为3时,输出的y值为y=8x=7×3=24,故答案为:24;(2)将(﹣2,8)(0,得,解得,∴当x<1时,该函数的表达式为y=2x+4;(3)把y=﹣4代入y=2x+6,得2x+6=﹣4,解得x=﹣5,把y=﹣4代入y=4x,得8x=﹣4,解得x=﹣8.5<1(不合题意舍去),∴输出的y值为﹣8时,输入的x值为﹣5.25.(7分)如图为某游乐场摩天轮简化示意图,摩天轮最低端与地面的距离忽略不计,即可看作摩天轮与地面相切,小明坐在透明座舱旋转到点B时用激光笔照射在摩天轮的点C和最低点A处,激光线BC交地面于点F,交圆于点D,交水平地面AF于点E且BD ⊥AC于点G.(1)求证:∠FAC=2∠ABE;(2)若AC=72米,求BE的长.【解答】(1)证明:∵AF是⊙O的切线,∴∠OAE=90°,∴∠OAG+∠CAF=90°,∵BD⊥AC于点G,BD过圆心O,∴∠AOD+∠OAG=90°,∵∠FAC=∠AOE,∴∠FAC=2∠ABE;(2)解:∵AC=72米,圆的直径约为120米,∴AG=36米,OA=60米,∴OG===48(米),∴tan∠AOE=,∴,∴AE=45,∵AE2=ED•EB,∴452=ED(ED+120),∴ED=15(米)(负数舍去),∴BE=BD+ED=120+15=135(米).故BE的长为135米.26.(8分)2022年,在全球疫情蔓延的情况下,北京成功举办冬奥会,滑雪运动备受人们青睐.下面是某滑雪训练场滑雪运动中的一张截图,某滑雪人员在空中留下了一道完美的曲线(与水平地面平行)2m高的P处腾空滑出,在距P点水平距离为4m的地方到达最高处为x轴,过点P作x轴的垂线为y轴建立平面直角坐标系.完成以下问题:(1)求该抛物线的解析式;(2)当滑雪人员距滑雪台高度为2m,则他继续滑行的水平距离为多少米时,可以使他距滑雪台的高度为0m.【解答】解:(1)抛物线的解析式为y=a(x﹣4)2+2,把P(0,2)代入解析式得:2=a(0﹣4)6+6,解得a=﹣,∴抛物线的解析式为y=﹣(x﹣5)2+6;(2)由(1)知,抛物线的对称轴为直线x=8,∴当y=2时,x=8;令y=3,则﹣5+6=0,解得x=4+2或x=4﹣2,∵4+2﹣7=2,∴他继续滑行的水平距离为(8﹣4)米时.27.(10分)综合与实践:在综合与实践课上,老师让同学们以“矩形纸片的折叠”为主题开展数学活动.在矩形ABCD中,E为AB边上一点,F为AD边上一点,分别将△BCE和△CDF沿CE、CF翻折,点D、B的对应点分别为点G、H(1)如图1,若F为AD边的中点,AB=BC=6,则∠ECF=45°,BE=2;(2)如图2,若F为AD的中点,CG平分∠ECF,,求∠ECF的度数及BE 的长.(3)AB=5,AD=3,若F为AD的三等分点【解答】.解:(1)∵AB=BC,四边形ABCD是矩形,∴四边形ABCD是正方形,∴AD=AB=6,∠BCD=90°,∵F为AD的中点,∴DF=AF=3,∵将△BCE和△CDF沿CE、CF翻折、B的对应点分别为点G、H,∴BE=EG,DF=FG=6,设BE=x,则AE=6﹣x,∴EF=3+x,∵EF4=AE2+AF2,∴(5+x)2=(6﹣x)8+32,∴x=2,∴BE=2.∵将△BCE和△CDF沿CE、CF翻折、B的对应点分别为点G、H,∴∠BCE=∠GCE,∠DCF=∠GCF,∵∠BCD=90°,∴∠ECF=∠BCD=.故答案为:45;8;(2)如图2,延长CG,∵CG平分∠ECF,∴∠2=∠6.由折叠的性质可知,∠1=∠2.∴∠7=∠2=∠3=∠4=∠BCD=22.3°,∴∠ECF=45°.∵CD∥AB,∠EMH=∠DCM=45°,∴△CBM和△EHM均为等腰直角三角形,∴BM=BC=2,EM=,∴BE+EM=6,即BE+BE=2,解得BE=7﹣2.(3)8或.分两种情况:①当AF=6DF时,如图3,过点E作EP∥GH,连接EF,GH=EP,由折叠的性质可知,CD=CG=5,∴HG=CG﹣CH=2,∵AF=2DF,∴AF=2,∴AF=EP,在Rt△EFP和Rt△FEA中,,∴Rt△EFP≌Rt△FEA(HL),∴AE=FP,设BE=EH=a,FP=a+7,∴a+1=5﹣a,解得a=3,∴BE=2.②当DF=2AF时,如图5,过点E作EP∥GH,连接EF,GH=EP,由折叠的性质可知,CD=CG=5,∴EP=HG=CG﹣CH=2,∵DF=5AF,∴AF=1.设BE=EH=a,FP=a+2,∵EF8=AF2+AE2=EP8+FP2,∴15+(5﹣a)2=72+(a+2)6,解得a=,∴BE=.综上可知,BE的长为2或.。
2023年陕西省中考数学试卷(A卷)及其答案

2023年陕西省中考数学试卷(A卷)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)计算:3﹣5=()A.2B.﹣2C.8D.﹣82.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.(3分)如图,l∥AB,∠A=2∠B.若∠1=108°,则∠2的度数为()A.36°B.46°C.72°D.82°4.(3分)计算:=()A.3x4y5B.﹣3x4y5C.3x3y6D.﹣3x3y65.(3分)在同一平面直角坐标系中,函数y=ax和y=x+a(a为常数,a<0)的图象可能是()A.B.C.D.6.(3分)如图,DE是△ABC的中位线,点F在DB上,DF=2BF.连接EF并延长,与CB的延长线相交于点M.若BC=6,则线段CM的长为()A.B.7C.D.87.(3分)陕西饮食文化源远流长,“老碗面”是陕西地方特色美食之一.图②是从正面看到的一个“老碗”(图①)的形状示意图.是⊙O的一部分,D是的中点,连接OD,与弦AB交于点C,连接OA,OB.已知AB=24cm,碗深CD=8cm,则⊙O的半径OA为()A.13cm B.16cm C.17cm D.26cm8.(3分)在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,6),其对称轴在y轴左侧,则该二次函数有()A.最大值5B.最大值C.最小值5D.最小值二、填空题(共5小题,每小题3分,计15分)9.(3分)如图,在数轴上,点A表示,点B与点A位于原点的两侧,且与原点的距离相等.则点B表示的数是.10.(3分)如图,正八边形的边长为2,对角线AB、CD相交于点E.则线段BE的长为.11.(3分)点E是菱形ABCD的对称中心,∠B=56°,连接AE,则∠BAE的度数为.12.(3分)如图,在矩形OABC和正方形CDEF中,点A在y轴正半轴上,点C,F均在x轴正半轴上,点D在边BC上,BC=2CD,AB=3.若点B,E在同一个反比例函数的图象上,则这个反比例函数的表达式是.13.(3分)如图,在矩形ABCD中,AB=3,BC=4.点E在边AD上,且ED=3,M、N分别是边AB、BC上的动点,且BM=BN,P是线段CE上的动点,连接PM,PN.若PM+PN=4.则线段PC的长为.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)解不等式:x.15.(5分)计算:.16.(5分)化简:().17.(5分)如图.已知角△ABC,∠B=48°,请用尺规作图法,在△ABC内部求作一点P.使PB=PC.且∠PBC=24°.(保留作图痕迹,不写作法)18.(5分)如图,在△ABC中,∠B=50°,∠C=20°.过点A作AE⊥BC,垂足为E,延长EA至点D.使AD=AC.在边AC上截取AF=AB,连接DF.求证:DF=CB.19.(5分)一个不透明的袋子中装有四个小球,这四个小球上各标有一个数字,分别是1,1,2,3.这些小球除标有的数字外都相同.(1)从袋中机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为;(2)先从袋中随机摸出一个小球,记下小球上标有的数字后,放回,摇匀,再从袋中随机摸出一个小球,记下小球上标有的数字,请利用画树状图或列表的方法、求摸出的这两个小球上标有的数字之积是偶数的概率.20.(5分)小红在一家文具店买了一种大笔记本4个和一种小笔记本6个,共用了62元.已知她买的这种大笔记本的单价比这种小笔记本的单价多3元,求该文具店中这种大笔记本的单价.21.(6分)一天晚上,小明和爸爸带着测角仪和皮尺去公园测量一景观灯(灯杆底部不可到达)的高AB.如图所示,当小明爸爸站在点D处时,他在该景观灯照射下的影子长为DF,测得DF=2.4m;当小明站在爸爸影子的顶端F处时,测得点A的仰角α为26.6°.已知爸爸的身高CD=1.8m,小明眼睛到地面的距离EF=1.6m,点F、D、B在同一条直线上,EF⊥FB,CD⊥FB,AB⊥FB.求该景观灯的高AB.(参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50)22.(7分)经验表明,树在一定的成长阶段,其胸径(树的主干在地面以上1.3m处的直径)越大,树就越高.通过对某种树进行测量研究,发现这种树的树高y(m)是其胸径x(m)的一次函数.已知这种树的胸径为0.2m时,树高为20m;这种铜的胸径为0.28m时,树高为22m.(1)求y与x之间的函数表达式;(2)当这种树的胸径为0.3m时,其树高是多少?23.(7分)某校数学兴趣小组的同学们从“校园农场“中随机抽取了20棵西红柿植株,并统计了每棵植株上小西红柿的个数.其数据如下:28,36,37,39,42,45,46,47,48,50,54,54,54,54,55,60,62,62,63,64.通过对以上数据的分析整理,绘制了统计图表:分组频数组内小西红柿的总个数25≤x<3512835≤x<45n15445≤x<55945255≤x<656366根据以上信息,解答下列问题:(1)补全频数分布直方图:这20个数据的众数是;(2)求这20个数据的平均数;(3)“校园农场“中共有300棵这种西红柿植株,请估计这300樱西红枝植株上小西缸柿的总个数.24.(8分)如图,△ABC内接于⊙O,∠BAC=45°,过点B作BC的垂线,交⊙O于点D,并与CA的延长线交于点E,作BF⊥AC,垂足为M,交⊙O于点F.(1)求证:BD=BC;(2)若⊙O的半径r=3,BE=6,求线段BF的长.25.(8分)某校想将新建图书楼的正门设计为一个抛物线型门,并要求所设计的拱门的跨度与拱高之积为48m3,还要兼顾美观、大方,和谐、通畅等因素,设计部门按要求价出了两个设计方案.现把这两个方案中的拱门图形放入平面直角坐标系中,如图所示:方案一,抛物线型拱门的跨度ON=12m,拱高PE=4m.其中,点N在x轴上,PE⊥ON,OE=EN.方案二,抛物线型拱门的跨度ON′=8m,拱高P'E'=6m.其中,点N′在x轴上,P′E′⊥O′N′,O′E′=E′N′.要在拱门中设置高为3m的矩形框架,其面积越大越好(框架的粗细忽略不计).方案一中,矩形框架ABCD的面积记为S1,点A、D在抛物线上,边BC在ON上;方案二中,矩形框架A'B'C′D'的面积记为S2,点A',D'在抛物线上,边B'C'在ON'上.现知,小华已正确求出方案二中,当A'B'=3m时,,请你根据以上提供的相关信息,解答下列问题:(1)求方案一中抛物线的函数表达式;(2)在方案一中,当AB=3m时,求矩形框架ABCD的面积S1并比较S1,S2的大小.26.(10分)(1)如图①,在△OAB中,OA=OB,∠AOB=120°,AB=24.若⊙O的半径为4,点P 在⊙O上,点M在AB上,连接PM,求线段PM的最小值;(2)如图②所示,五边形ABCDE是某市工业新区的外环路,新区管委会在点B处,点E处是该市的一个交通枢纽.已知:∠A=∠ABC=∠AED=90°,AB=AE=10000m,BC=DE=6000m.根据新区的自然环境及实际需求,现要在矩形AFDE区域内(含边界)修一个半径为30m的圆型环道⊙O;过圆心O,作OM⊥AB,垂足为M,与⊙O交于点N.连接BN,点P在⊙O上,连接EP.其中,线段BN、EP及MN是要修的三条道路,要在所修迅路BN、EP之和最短的情况下,使所修道路MN最短,试求此时环道⊙O的圆心O到AB的距离OM的长.2023年陕西省中考数学试卷(A卷)参考答案与试题解析一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)计算:3﹣5=()A.2B.﹣2C.8D.﹣8【解答】解:3﹣5=﹣2.故选:B.2.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、是轴对称图形,也是中心对称图形,符合题意;D、不是轴对称图形,也不是中心对称图形,不符合题意.故选:C.3.(3分)如图,l∥AB,∠A=2∠B.若∠1=108°,则∠2的度数为()A.36°B.46°C.72°D.82°【解答】解:如图,∵∠1=108°,∴∠3=∠1=108°,∵l∥AB,∴∠3+∠A=180°,∠2=∠B,∴∠A=180°﹣∠3=72°,∵∠A=2∠B,∴∠B=36°,∴∠2=36°.故选:A.4.(3分)计算:=()A.3x4y5B.﹣3x4y5C.3x3y6D.﹣3x3y6【解答】解:=6×(﹣)x1+3y2+3=﹣3x4y5.故选:B.5.(3分)在同一平面直角坐标系中,函数y=ax和y=x+a(a为常数,a<0)的图象可能是()A.B.C.D.【解答】解:∵a<0,∴函数y=ax是经过原点的直线,经过第二、四象限,函数y=x+a是经过第一、三、四象限的直线,故选:D.6.(3分)如图,DE是△ABC的中位线,点F在DB上,DF=2BF.连接EF并延长,与CB的延长线相交于点M.若BC=6,则线段CM的长为()A.B.7C.D.8【解答】解:∵DE是△ABC的中位线,∴DE∥BC,DE=BC=×6=3,∴△DEF∽BMF,∴===2,∴BM=,CM=BC+BM=.故选:C.7.(3分)陕西饮食文化源远流长,“老碗面”是陕西地方特色美食之一.图②是从正面看到的一个“老碗”(图①)的形状示意图.是⊙O的一部分,D是的中点,连接OD,与弦AB交于点C,连接OA,OB.已知AB=24cm,碗深CD=8cm,则⊙O的半径OA为()A.13cm B.16cm C.17cm D.26cm【解答】解:∵是⊙O的一部分,D是的中点,AB=24cm,∴OD⊥AB,AC=BC=AB=12cm.设⊙O的半径OA为Rcm,则OC=OD﹣CD=(R﹣8)cm.在Rt△OAC中,∵∠OCA=90°,∴OA2=AC2+OC2,∴R2=122+(R﹣8)2,∴R=13,即⊙O的半径OA为13cm.故选:A.8.(3分)在平面直角坐标系中,二次函数y=x2+mx+m2﹣m(m为常数)的图象经过点(0,6),其对称轴在y轴左侧,则该二次函数有()A.最大值5B.最大值C.最小值5D.最小值【解答】解:由题意可得:6=m2﹣m,解得:m1=3,m2=﹣2,∵二次函数y=x2+mx+m2﹣m,对称轴在y轴左侧,∴m>0,∴m=3,∴y=x2+3x+6,∴二次函数有最小值为:==.故选:D.二、填空题(共5小题,每小题3分,计15分)9.(3分)如图,在数轴上,点A表示,点B与点A位于原点的两侧,且与原点的距离相等.则点B表示的数是﹣.【解答】解:由题意得:点B表示的数是﹣.故答案为:.10.(3分)如图,正八边形的边长为2,对角线AB、CD相交于点E.则线段BE的长为2+2.【解答】解:如图,过点F作FG⊥AB于G,由题意可知,四边形CEGF是矩形,△ACE、△BFG是等腰直角三角形,AC=CF=FB=EG=2,在Rt△ACE中,AC=2,AE=CE,∴AE=CE=AC=,同理BG=,∴AB=AE+EG+BG=2+2,故答案为:2+2.11.(3分)点E是菱形ABCD的对称中心,∠B=56°,连接AE,则∠BAE的度数为62°.【解答】解:如图,连接BE,∵点E是菱形ABCD的对称中心,∠ABC=56°,∴点E是菱形ABCD的两对角线的交点,∴AE⊥BE,∠ABE=∠ABC=28°,∴∠BAE=90°﹣∠ABE=62°.故答案为:62°.12.(3分)如图,在矩形OABC和正方形CDEF中,点A在y轴正半轴上,点C,F均在x轴正半轴上,点D在边BC上,BC=2CD,AB=3.若点B,E在同一个反比例函数的图象上,则这个反比例函数的表达式是y=.【解答】解:∵四边形OABC是矩形,∴OC=AB=3,∵四边形CDEF是正方形,∴CD=CF=EF,∵BC=2CD,∴设CD=m,BC=2m,∴B(3,2m),E(3+m,m),设反比例函数的表达式为y=,∴3×2m=(3+m)•m,解得m=3或m=0(不合题意舍去),∴B(3,6),∴k=3×6=18,∴这个反比例函数的表达式是y=,故答案为:y=.13.(3分)如图,在矩形ABCD中,AB=3,BC=4.点E在边AD上,且ED=3,M、N分别是边AB、BC上的动点,且BM=BN,P是线段CE上的动点,连接PM,PN.若PM+PN=4.则线段PC的长为2.【解答】解:∵DE=AB=CD=3,∴△CDE是等腰直角三角形,作点N关于EC的对称点N',则N'在直线CD上,连接PN',如图:∵PM+PN=4.∴PM+PN'=4=BC,即MN'=4,此时M、P、N'三点共线且MN'∥AD,点P在MN'的中点处,∴PM=PN'=2,∴PC=2.故答案为:2.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)解不等式:x.【解答】解:x,去分母,得3x﹣5>4x,移项,得3x﹣4x>5,合并同类项,得﹣x>5,不等式的两边都除以﹣1,得x<﹣5.15.(5分)计算:.【解答】解:原式=﹣5﹣7+|﹣8|==﹣5+1.16.(5分)化简:().【解答】解:()====.17.(5分)如图.已知角△ABC,∠B=48°,请用尺规作图法,在△ABC内部求作一点P.使PB=PC.且∠PBC=24°.(保留作图痕迹,不写作法)【解答】解:如图,点P即为所求.18.(5分)如图,在△ABC中,∠B=50°,∠C=20°.过点A作AE⊥BC,垂足为E,延长EA至点D.使AD=AC.在边AC上截取AF=AB,连接DF.求证:DF=CB.【解答】证明:在△ABC中,∠B=50°,∠C=20°,∴∠CAB=180°﹣∠B﹣∠C=110°.∵AE⊥BC.∴∠AEC=90°.∴∠DAF=∠AEC+∠C=110°,∴∠DAF=∠CAB.在△DAF和△CAB中,,∴△DAF≌△CAB(SAS).∴DF=CB.19.(5分)一个不透明的袋子中装有四个小球,这四个小球上各标有一个数字,分别是1,1,2,3.这些小球除标有的数字外都相同.(1)从袋中机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为;(2)先从袋中随机摸出一个小球,记下小球上标有的数字后,放回,摇匀,再从袋中随机摸出一个小球,记下小球上标有的数字,请利用画树状图或列表的方法、求摸出的这两个小球上标有的数字之积是偶数的概率.【解答】解:(1)由题意可得,从袋中机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为=,故答案为:;(2)树状图如下:由上可得,一共有16种等可能性,其中两数之积是偶数的可能性有7种,∴摸出的这两个小球上标有的数字之积是偶数的概率.20.(5分)小红在一家文具店买了一种大笔记本4个和一种小笔记本6个,共用了62元.已知她买的这种大笔记本的单价比这种小笔记本的单价多3元,求该文具店中这种大笔记本的单价.【解答】解:设该文具店中这种大笔记本的单价是x元,则小笔记本的单价是(x﹣3)元,∵买了一种大笔记本4个和一种小笔记本6个,共用了62元,∴4x+6(x﹣3)=62,解得:x=8;答:该文具店中这种大笔记本的单价为8元.21.(6分)一天晚上,小明和爸爸带着测角仪和皮尺去公园测量一景观灯(灯杆底部不可到达)的高AB.如图所示,当小明爸爸站在点D处时,他在该景观灯照射下的影子长为DF,测得DF=2.4m;当小明站在爸爸影子的顶端F处时,测得点A的仰角α为26.6°.已知爸爸的身高CD=1.8m,小明眼睛到地面的距离EF=1.6m,点F、D、B在同一条直线上,EF⊥FB,CD⊥FB,AB⊥FB.求该景观灯的高AB.(参考数据:sin26.6°≈0.45,cos26.6°≈0.89,tan26.6°≈0.50)【解答】解:过点E作EH⊥AB,垂足为H,由题意得:EH=FB,EF=BH=1.6m,设EH=FB=xm,在Rt△AEH中,∠AEH=26.6°,∴AH=EH•tan26.6°≈0.5x(m),∴AB=AH+BH=(0.5x+1.6)m,∵CD⊥FB,AB⊥FB,∴∠CDF=∠ABF=90°,∵∠CFD=∠AFB,∴△CDF∽△ABF,∴=,∴=,∴AB=x,∴x=0.5x+1.6,解得:x=6.4,∴AB=x=4.8(m),∴该景观灯的高AB约为4.8m.22.(7分)经验表明,树在一定的成长阶段,其胸径(树的主干在地面以上1.3m处的直径)越大,树就越高.通过对某种树进行测量研究,发现这种树的树高y(m)是其胸径x(m)的一次函数.已知这种树的胸径为0.2m时,树高为20m;这种铜的胸径为0.28m时,树高为22m.(1)求y与x之间的函数表达式;(2)当这种树的胸径为0.3m时,其树高是多少?【解答】解:(1)设y=kx+b(k≠0),根据题意,得,解之,得,∴y=25x+15;(2)当x=0.3m时,y=25×0.3+15=22.5(m).∴当这种树的胸径为0.3m时,其树高为22.5m.23.(7分)某校数学兴趣小组的同学们从“校园农场“中随机抽取了20棵西红柿植株,并统计了每棵植株上小西红柿的个数.其数据如下:28,36,37,39,42,45,46,47,48,50,54,54,54,54,55,60,62,62,63,64.通过对以上数据的分析整理,绘制了统计图表:分组频数组内小西红柿的总个数25≤x<3512835≤x<45n15445≤x<55945255≤x<656366根据以上信息,解答下列问题:(1)补全频数分布直方图:这20个数据的众数是54;(2)求这20个数据的平均数;(3)“校园农场“中共有300棵这种西红柿植株,请估计这300樱西红枝植株上小西缸柿的总个数.【解答】解:(1)由题意得,n=20﹣1﹣9﹣6=4,补全频数分布直方图如下这20个数据中,54出现的次数最多,故众数为54.故答案为:54;(2).∴这20个数据的平均数是50;(3)所求总个数:50×300=15000(个).∴估计这300棵西红柿植株上小西红柿的总个数是15000个.24.(8分)如图,△ABC内接于⊙O,∠BAC=45°,过点B作BC的垂线,交⊙O于点D,并与CA的延长线交于点E,作BF⊥AC,垂足为M,交⊙O于点F.(1)求证:BD=BC;(2)若⊙O的半径r=3,BE=6,求线段BF的长.【解答】(1)证明:如图,连接DC,则∠BDC=∠BAC=45°,∵BD⊥BC,∴∠BCD=90°﹣∠BDC=45°,∴∠BCD=∠BDC.∴BD=BC;(2)解:如图,∵∠DBC=90°,∴CD为⊙O的直径,∴CD=2r=6.∴BC=CD•sin=3,∴EC===3,∵BF⊥AC,∴∠BMC=∠EBC=90°,∠BCM=∠BCM,∴△BCM∽△ECB.∴,∴BM===2,CM=,连接CF,则∠F=∠BDC=45°,∠MCF=45°,∴MF=MC=,∴BF=BM+MF=2+.25.(8分)某校想将新建图书楼的正门设计为一个抛物线型门,并要求所设计的拱门的跨度与拱高之积为48m3,还要兼顾美观、大方,和谐、通畅等因素,设计部门按要求价出了两个设计方案.现把这两个方案中的拱门图形放入平面直角坐标系中,如图所示:方案一,抛物线型拱门的跨度ON=12m,拱高PE=4m.其中,点N在x轴上,PE⊥ON,OE=EN.方案二,抛物线型拱门的跨度ON′=8m,拱高P'E'=6m.其中,点N′在x轴上,P′E′⊥O′N′,O′E′=E′N′.要在拱门中设置高为3m的矩形框架,其面积越大越好(框架的粗细忽略不计).方案一中,矩形框架ABCD的面积记为S1,点A、D在抛物线上,边BC在ON上;方案二中,矩形框架A'B'C′D'的面积记为S2,点A',D'在抛物线上,边B'C'在ON'上.现知,小华已正确求出方案二中,当A'B'=3m时,,请你根据以上提供的相关信息,解答下列问题:(1)求方案一中抛物线的函数表达式;(2)在方案一中,当AB=3m时,求矩形框架ABCD的面积S1并比较S1,S2的大小.【解答】解:(1)由题意知,方案一中抛物线的顶点P(6,4),设抛物线的函数表达式为y=a(x﹣6)2+4,把O(0,0)代入得:0=a(0﹣6)2+4,解得:a=﹣,∴y=﹣(x﹣6)2+4=﹣x2+x;∴方案一中抛物线的函数表达式为y=﹣x2+x;(2)在y=﹣x2+x中,令y=3得:3=﹣x2+x;解得x=3或x=9,∴BC=9﹣3=6(m),∴S1=AB•BC=3×6=18(m2);∵18>12,∴S1>S2.26.(10分)(1)如图①,在△OAB中,OA=OB,∠AOB=120°,AB=24.若⊙O的半径为4,点P 在⊙O上,点M在AB上,连接PM,求线段PM的最小值;(2)如图②所示,五边形ABCDE是某市工业新区的外环路,新区管委会在点B处,点E处是该市的一个交通枢纽.已知:∠A=∠ABC=∠AED=90°,AB=AE=10000m,BC=DE=6000m.根据新区的自然环境及实际需求,现要在矩形AFDE区域内(含边界)修一个半径为30m的圆型环道⊙O;过圆心O,作OM⊥AB,垂足为M,与⊙O交于点N.连接BN,点P在⊙O上,连接EP.其中,线段BN、EP及MN是要修的三条道路,要在所修迅路BN、EP之和最短的情况下,使所修道路MN最短,试求此时环道⊙O的圆心O到AB的距离OM的长.【解答】解:(1)如图①,连接OP,OM,过点O作OM'⊥AB,垂足为M',则OP+PM≥OM.∵⊙O半径为4,∴PM≥OM﹣4≥OM'﹣4,∵OA=OB.∠AOB=120°,∴∠A=30°,∴OM'=AM'•tan30°=12tan30°=4,∴PM≥OM'﹣4=4﹣4,∴线段PM的最小值为4﹣4;(2)如图②,分别在BC,AE上作BB'=AA'=r=30(m),连接A'B',B'O、OP、OE、B′E.∵OM⊥AB,BB'⊥AB,ON=BB',∴四边形BB'ON是平行四边形.∴BN=B′O.∵B'O+OP+PE≥B'O+OE≥B'E,∴BN+PE≥B'E﹣r,∴当点O在B'E上时,BN+PE取得最小值.作⊙O',使圆心O'在B'E上,半径r=30(m),作O'M'⊥AB,垂足为M',并与A'B'交于点H.∴O'H∥A'E,∴△B'O'H∽△B'EA',∴,∵⊙O'在矩形AFDE区域内(含边界),∴当⊙O'与FD相切时,B′H最短,即B′H=10000﹣6000+30=4030(m).此时,O′H也最短.∵M'N'=O'H,∴M'N'也最短.∴O'H==4017.91(m),∴O'M'=O'H+30=4047.91(m),∴此时环道⊙O的圆心O到AB的距离OM的长为4047.91m.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
陕西省西安市中考数学试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共24分)
1. (2分) (2019七下·路北期末) 下列各数中是无理数的是()
A .
B .
C .
D . 3.14
2. (2分) (2020九上·秀屿期末) 下面是一位美术爱好者利用网格图设计的几个英文字母的图形,你认为其中是中心对称图形,但不是轴对称图形的是
A .
B .
C .
D .
3. (2分)(2020·浙江模拟) 截止北京时间5月28日,全球新冠肺炎确诊病例逾565万例,将数565万用科学记数法表示为()
A . 565×104
B . 56.5×105
C . 0.565×107
D . 5.65×106
4. (2分)(2017·衡阳模拟) 由5个相同的正方体搭成的几何体如图所示,则它的左视图是()
A .
B .
C .
D .
5. (2分)(2016·重庆A) 如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于()
A . 120°
B . 110°
C . 100°
D . 80°
6. (2分)用计算器求2014的算术平方根时,下列四个键中,必须按的键是()
A .
B .
C .
D .
7. (2分)(2016·盐田模拟) 如图,经过点A1(1,0)作x轴的垂线与直线l:y= x相交于点B1 ,以O为圆心,OB1为半径画弧与x轴相交于点A2;经过点A2作x轴的垂线与直线l相交于点B2 ,以O为圆心、OB2
为半径画弧与x轴相交于点A3;…依此类推,点A5的坐标是()
A . (8,0)
B . (12,0)
C . (16,0)
D . (32,0)
8. (2分)某同学对甲、乙、丙、丁四个蔬菜市场去年12月份每天的白菜价格进行调查,计算后发现这个月份四个市场的价格平均值相同,方差分别为S甲2=8.5,
S乙2=2.5,S丙2=10.1,S丁2=7.4,则去年12月份白菜价格最稳定的市场是()
A . 甲
B . 乙
C . 丙
D . 丁
9. (2分)如图,圆锥形烟囱帽的底面直径为80,母线长为50,则烟囱帽的侧面积是
A . 4 000π
B . 3 600π
C . 2 000π
D . 1 000π
10. (2分)设x1、x2是一元二次方程3x2﹣8x+5=0的两个根,则x1+x2的值是()
A .
B . -
C . -
D .
11. (2分)(2017·景泰模拟) 已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b+2a=0;②abc>0;③a﹣2b+4c<0;④8a+c>0.其中正确的有()个.
A . 1个
B . 2个
C . 3个
D . 4个
12. (2分)(2018·惠山模拟) 如图,在△ABC中,D为AB边上一点,E为CD中点,AC= ,∠ABC=30°,∠A=∠BED=45°,则BD的长为()
A .
B . +1﹣
C . ﹣
D . ﹣1
二、填空题 (共6题;共6分)
13. (1分) (2019八下·朝阳期中) 计算: ________.
14. (1分)sin21°+sin22°…+sin288°+sin289°=________.
15. (1分) (2020七下·仪征期末) 用不等式表示“x 与 5 的差不大于1”:________.
16. (1分)如图,△ABO与△A′B′O′是位似图形,且顶点都在格点上,则位似中心的坐标是 ________ .
17. (1分) (2015八下·泰兴期中) 已知与y=x﹣6相交于点P(a,b),则的值为________.
18. (1分)如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴
影部分的面积为________.
三、解答题 (共7题;共76分)
19. (5分) (2020九上·香坊月考) 先化简再求代数式的值:,其中x= +1。
20. (6分)(2018·青羊模拟) 某校举办“汉字听写”大赛,现要从A、B两位男生和C、D两位女生中,选派学生代表本班参加大赛.
(1)如果随机选派一位学生参赛,那么四人中选派到男生B的概率是________;
(2)如果随机选派两位学生参赛,求四人中恰好选派一男一女两位同学参赛的概率.
21. (10分) (2016九上·淅川期中) 某商店销售甲、乙两种商品,现有如下信息:
请结合以上信息,解答下列问题:
(1)求甲、乙两种商品的进货单价;
(2)已知甲、乙两种商品的零售单价分别为2元、3元,该商店平均每天卖出甲商品500件和乙商品1300件,经市场调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件,商店决定把甲种商品的零售单价下降m(m>0)元,在不考虑其他因素的条件下,求当m为何值时,商店每天销售甲、乙两种商品获取的总利润为1800元(注:单件利润=零售单价﹣进货单价)
22. (20分)(2017·新疆) 一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:
(1)甲乙两地相距多远?
(2)求快车和慢车的速度分别是多少?
(3)求出两车相遇后y与x之间的函数关系式;
(4)何时两车相距300千米.
23. (10分)(2020·哈尔滨模拟) 如图1,正方形中,点是边延长线上一点,连接,过点作,垂足为点与相交于点.
(1)求证:;
(2)如图2,连接,若求的长.
24. (10分) (2019九上·瑞安期末) 如图,中,,以OA为半径的交BO 于点C,交BO延长线于点在上取一点E,且,延长DE与BA交于点F.
(1)求证:是直角三角形;
(2)连接AC,,,求AF的长.
25. (15分)(2019·花都模拟) 在平面直角坐标系xOy中抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).
(1)求抛物线的表达式;
(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BCD的面积最大时,求点P 的坐标;
(3)如图2,抛物线顶点为E,EF⊥x轴于F点,N是线段EF上一动点,M(m,0)是x轴上一动点,若∠MNC =90°,直接写出实数m的取值范围.
参考答案一、选择题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共6题;共6分)
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
三、解答题 (共7题;共76分)
19-1、20-1、
20-2、21-1、
21-2、22-1、
22-2、22-3、22-4、
23-1、23-2、
24-1、
24-2、25-1、
25-2、
25-3、。