BP神经网络与简单示例

合集下载

BP神经网络步骤及应用实例

BP神经网络步骤及应用实例

1、数据归一化‎2、数据分类,主要包括打‎乱数据顺序‎,抽取正常训‎练用数据、变量数据、测试数据3、建立神经网‎络,包括设置多‎少层网络(一般3层以‎内既可以,每层的节点‎数(具体节点数‎,尚无科学的‎模型和公式‎方法确定,可采用试凑‎法,但输出层的‎节点数应和‎需要输出的‎量个数相等‎),设置隐含层‎的传输函数‎等。

关于网络具‎体建立使用‎方法,在后几节的‎例子中将会‎说到。

4、指定训练参‎数进行训练‎,这步非常重‎要,在例子中,将详细进行‎说明5、完成训练后‎,就可以调用‎训练结果,输入测试数‎据,进行测试6、数据进行反‎归一化7、误差分析、结果预测或‎分类,作图等数据归一化‎问题归一化的意‎义:首先说一下‎,在工程应用‎领域中,应用BP网‎络的好坏最‎关键的仍然‎是输入特征‎选择和训练‎样本集的准‎备,若样本集代‎表性差、矛盾样本多‎、数据归一化‎存在问题,那么,使用多复杂‎的综合算法‎、多精致的网‎络结构,建立起来的‎模型预测效‎果不会多好‎。

若想取得实‎际有价值的‎应用效果,从最基础的‎数据整理工‎作做起吧,会少走弯路‎的。

归一化是为‎了加快训练‎网络的收敛‎性,具体做法是‎:1 把数变为(0,1)之间的小数‎主要是为了‎数据处理方‎便提出来的‎,把数据映射‎到0~1范围之内‎处理,更加便捷快‎速,应该归到数‎字信号处理‎范畴之内。

2 把有量纲表‎达式变为无‎量纲表达式‎归一化是一‎种简化计算‎的方式,即将有量纲‎的表达式,经过变换,化为无量纲‎的表达式,成为纯量比如,复数阻抗可‎以归一化书‎写:Z = R + jωL = R(1 + jωL/R) ,复数部分变‎成了纯数量‎了,没有量纲。

另外,微波之中也‎就是电路分‎析、信号系统、电磁波传输‎等,有很多运算‎都可以如此‎处理,既保证了运‎算的便捷,又能凸现出‎物理量的本‎质含义。

神经网络归‎一化方法:由于采集的‎各数据单位‎不一致,因而须对数‎据进行[-1,1]归一化处理‎,归一化方法‎主要有如下‎几种,供大家参考‎:1、线性函数转‎换,表达式如下‎:复制内容到‎剪贴板代码‎:y=(x-MinVa‎l ue)/(MaxVa‎l ue-MinVa‎l ue)说明:x、y分别为转‎换前、后的值,MaxVa‎l ue、MinVa‎l ue分别‎为样本的最‎大值和最小‎值。

BP神经网络详解-最好的版本课件(1)

BP神经网络详解-最好的版本课件(1)

月份 1
销量 月份 销量
2056 7
1873
2
2395 8
1478
3
2600 9
1900
4
2298 10
1500
5
1634 11
2046
6
1600 12
1556
BP神经网络学习算法的MATLAB实现
➢%以每三个月的销售量经归一化处理后作为输入
P=[0.5152
0.8173 1.0000 ;
0.8173
计算误差函数对输出层的各神经元的偏导

。 o ( k )
p
e e yio w ho y io w ho
(
yio(k) h who
whohoh(k)bo)
who
hoh(k)
e
yio
(12oq1(do(k)yoo(k)))2 yio
(do(k)yoo(k))yoo(k)
(do(k)yoo(k))f(yio(k)) o(k)
1.0000 0.7308;
1.0000
0.7308 0.1390;
0.7308
0.1390 0.1087;
0.1390
0.1087 0.3520;
0.1087
0.3520 0.0000;]';
➢%以第四个月的销售量归一化处理后作为目标向量
T=[0.7308 0.1390 0.1087 0.3520 0.0000 0.3761];
BP神经网络模型
三层BP网络
输入层 x1
x2
隐含层
输出层
-
y1
z1
1
T1
y2
z2
-
2

BP算法代码实现

BP算法代码实现

BP算法代码实现BP算法(Backpropagation Algorithm)是一种常用的神经网络训练算法,它主要用于监督式学习任务中的模型训练。

BP算法的核心思想是通过反向传播来更新神经网络的权重和偏差,以使得神经网络的输出逼近目标输出。

在反向传播的过程中,通过求解梯度来更新每个连接权重和偏置的值,从而最小化损失函数。

以下是BP算法的代码实现示例:```pythonimport numpy as npclass NeuralNetwork:def __init__(self, layers):yers = layersself.weights = []self.biases = []self.activations = []#初始化权重和偏置for i in range(1, len(layers)):self.weights.append(np.random.randn(layers[i], layers[i-1])) self.biases.append(np.random.randn(layers[i]))def sigmoid(self, z):return 1 / (1 + np.exp(-z))def sigmoid_derivative(self, z):return self.sigmoid(z) * (1 - self.sigmoid(z))def forward_propagate(self, X):self.activations = []activation = X#前向传播计算每一层的激活值for w, b in zip(self.weights, self.biases):z = np.dot(w, activation) + bactivation = self.sigmoid(z)self.activations.append(activation)return activationdef backward_propagate(self, X, y, output):deltas = [None] * len(yers)deltas[-1] = output - y#反向传播计算每一层的误差(梯度)for i in reversed(range(len(yers)-1)):delta = np.dot(self.weights[i].T, deltas[i+1]) * self.sigmoid_derivative(self.activations[i])deltas[i] = delta#更新权重和偏置for i in range(len(yers)-1):self.weights[i] -= 0.1 * np.dot(deltas[i+1],self.activations[i].T)self.biases[i] -= 0.1 * np.sum(deltas[i+1], axis=1)def train(self, X, y, epochs):for epoch in range(epochs):output = self.forward_propagate(X)self.backward_propagate(X, y, output)def predict(self, X):output = self.forward_propagate(X)return np.round(output)```上述代码使用numpy实现了一个简单的多层神经网络,支持任意层数和任意神经元个数的构建。

BP神经网络实例分析

BP神经网络实例分析

j1
a1(i)f(u1(i))=
1 1exp(u1(i))
i 1,2
同理,输出神经元
3
u2 (1) w2 (1, j)a1 ( j) j 1
1 a2 (1) 1 exp( u2 (1))
(3) 训练输出单元的权值
PS:利用输出层各神经元的误差项 2(1)和隐含层 各神经元的输出来修正权值。
PS:利用隐含层各神经元的误差项 各神经元的输入来修正权值。
1(p1)(i)
和输入层
1 (p 1 )(i)f'[u 1(i)]2 (p 1 )(1 )W 2 (p 1 )(1 ,i)
a 1(iቤተ መጻሕፍቲ ባይዱ1 [a 1(i)]2 (p 1 )(1 )W 2 (p 1 )(1 ,i)
W 1 ( p 1 ) ( i ,j ) W 1 ( p ) ( i ,j ) 1 ( p 1 ) ( i ) a 0 ( p 1 ) ( j )
取激励函数
f
(x)
1 1ex
则 f'(x)(1 ee xx)2f(x)1 [f(x)]
2 ( 1 ) (t( 1 ) a 2 ( 1 )f') (u 2 ( 1 ))
( t ( 1 ) a 2 ( 1 ) e ) u x 2 ( 1 ) / p 1 ) ( e ( u x 2 ( 1 )2 p )) (
二、具体训练步骤如下:
令p=0,p为样本编号 (1) 网络初始化
给各连接权值分别赋一个区间(0,1)内的随机数,设定
误差函数E,给定计算精度值 和最大学习次数M。
W 1 w w 1 1((1 2,,1 1 ))
w 1(1,2) w 1(2,2)
w 1(1,3) w 1(2,3)

BP神经网络模型应用实例

BP神经网络模型应用实例

BP神经网络模型第1节基本原理简介近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注.目前,已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart等的多层感知机模型和Kohonen的自组织网络模型等等。

在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。

多层感知机神经网络的研究始于50年代,但一直进展不大。

直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,如图34-1所示。

BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。

对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。

节点的作用的激励函数通常选取S 型函数,如Qx e x f /11)(-+=式中Q 为调整激励函数形式的Sigmoid 参数。

该算法的学习过程由正向传播和反向传播组成。

在正向传播过程中,输入信息从输入层经隐含层逐层处理,并传向输出层。

每一层神经元的状态只影响下一层神经输入层 中间层 输出层 图34-1 BP 神经网络模型元的状态。

如果输出层得不到期望的输出,则转入反向传播,将误差信号沿原来的连接通道返回,通过修改各层神经元的权值,使得误差信号最小。

社含有n 个节点的任意网络,各节点之特性为Sigmoid 型。

BP神经网络详解与实例

BP神经网络详解与实例

模型,它是一个互联的非线性动力学网络.他解决问题
的方法是一种反复运算的动态过程,这是符号逻辑处理 方法所不具备的性质. 1987年首届国际ANN大会在圣地 亚哥召开,国际ANN联合会成立,创办了多种ANN国际
人工神经网络研究的局限性
(1)ANN研究受到脑科学研究成果的限制。 (2)ANN缺少一个完整、成熟的理论体系。
图6 简单网络
假设有P个训练样本,即有P个输入输出对 (Ip, Tp),p=1,…,P, 其中

输入向量为 :
I p (i p1 ,...,i pm )
pn
T
目标输出向量为(实际上的):
Tp
(t p1 ,...,t
)
T
网络输出向量为 (理论上的)
Op (o p1 ,...,o pn )T
y f ( wi xi )
i 1
• θ 为阈值,f(X)是激发函数;它可以是线性 函数,也可以是非线性函数.
m
例如,若记
z
w x
i 1 i
m
i

取激发函数为符号函数
1, sgn( x) 0,

1, y f ( z) 0,
x 0, x 0.
ANN研究的目的和意义
(1)通过揭示物理平面与认知平面之间的映射,了 解它们相互联系和相互作用的机理,从而揭示思 维的本质,探索智能的本源。 (2)争取构造出尽可能与人脑具有相似功能的计算
机,即ANN计算机。
(3)研究仿照脑神经系统的人工神经网络,将在模
式识别、组合优化和决策判断等方面取得传统计
算机所难以达到的效果。
人工神经网络 (Artificial Neural Netwroks -----ANN) -----HZAU 数模基地

BP神经网络算法程序

BP神经网络算法程序

BP神经网络算法程序一、BP神经网络算法原理BP神经网络算法包括输入层、隐藏层和输出层三个层次。

每个层次的神经元节点与下一层次的神经元节点之间存在权重系数。

神经元节点通过输入信号经过激活函数的处理得到输出信号,并将输出信号传递给下一层次的神经元节点。

反向传播过程中,首先根据误差评估结果计算输出层的误差信号,再根据该误差信号分别计算隐藏层和输入层的误差信号。

然后根据误差信号的计算结果,逐层更新网络的权重系数。

二、BP神经网络算法步骤1.初始化网络权重:随机初始化网络各层次之间的权重系数。

2.设置学习率和最大迭代次数。

3.迭代训练网络:重复以下步骤直到满足停止条件为止。

a)根据当前样本的输入信号,通过前向传播算法计算输出结果。

c)根据误差信号,通过反向传播算法更新网络的权重系数。

4.测试网络:使用独立的测试数据集,通过前向传播算法计算网络的输出结果,评估网络的泛化能力。

三、BP神经网络算法示例程序下面给出一个简单的使用Python编写的BP神经网络算法示例程序。

```pythonimport numpy as npclass BPNeuralNetwork:def __init__(self, input_dim, hidden_dim, output_dim): self.input_dim = input_dimself.hidden_dim = hidden_dimself.output_dim = output_dimself.W1 = np.random.randn(input_dim, hidden_dim)self.W2 = np.random.randn(hidden_dim, output_dim)def sigmoid(self, x):return 1 / (1 + np.exp(-x))def sigmoid_derivative(self, x):return x * (1 - x)def forward_propagation(self, X):self.z2 = np.dot(X, self.W1)self.a2 = self.sigmoid(self.z2)self.z3 = np.dot(self.a2, self.W2)self.y_hat = self.sigmoid(self.z3)return self.y_hatdef backward_propagation(self, X, y, lr):self.loss = y - self.y_hatdelta3 = self.loss * self.sigmoid_derivative(self.y_hat) dW2 = np.dot(self.a2.T, delta3)delta2 = np.dot(delta3, self.W2.T) *self.sigmoid_derivative(self.a2)dW1 = np.dot(X.T, delta2)self.W2 += lr * dW2self.W1 += lr * dW1def train(self, X, y, lr=0.1, epochs=1000):for i in range(epochs):y_hat = self.forward_propagation(X)self.backward_propagation(X, y, lr)def predict(self, X):return np.round(self.forward_propagation(X))#示例用法X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])y = np.array([[0], [1], [1], [0]])nn = BPNeuralNetwork(2, 2, 1)print("预测结果:")print(nn.predict(X))```以上是一个简单的BP神经网络算法示例程序,用于训练一个XOR逻辑门的分类模型。

bp神经网络算法步骤结合实例

bp神经网络算法步骤结合实例

bp神经网络算法步骤结合实例
BP神经网络算法步骤包括以下几个步骤:
1.输入层:将输入数据输入到神经网络中。

2.隐层:在输入层和输出层之间,通过一系列权值和偏置将输入数据进行处理,得到输出
数据。

3.输出层:将隐层的输出数据输出到输出层。

4.反向传播:通过反向传播算法来计算误差,并使用梯度下降法对权值和偏置进行调整,
以最小化误差。

5.训练:通过不断地进行输入、隐层处理、输出和反向传播的过程,来训练神经网络,使
其达到最优状态。

实例:
假设我们有一个BP神经网络,它的输入层有两个输入节点,隐层有三个节点,输出层有一个节点。

经过训练,我们得到了权值矩阵和偏置向量。

当我们给它输入一组数据时,它的工作流程如下:
1.输入层:将输入数据输入到神经网络中。

2.隐层:将输入数据与权值矩阵相乘,再加上偏置向量,得到输出数据。

3.输出层:将隐层的输出数据输出到输出层。

4.反向传播:使用反向传播算法计算误差,并使用梯度下降法调整权值和偏置向量,以最
小化误差。

5.训练:通过不断地输入、处理、输出和反向传播的过程,来训练神经网络,使其达到最
优状态。

这就是BP神经网络算法的基本流程。

在实际应用中,还需要考虑许多细节问题,如权值和偏置的初始值、学习率、激活函数等。

但是,上述流程是BP神经网络算法的基本框架。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特点:任意两个神经元之间都可能有 联系
BP神经网络
多层前馈神经网络,信号向前传播,误差向后传播。
输入层
i
中间层 j
输出层
k
输入层
i
中间层 j
输出层
k
xi
ji
kj
中间层:
输入
p
u j xi ji i 1
输出
v j f (u j )
输入层
i
中间层 j
输出层
k
xi
ji
kj
输出层:
输入
n
U k v j kj j 1
输出 Vk f (Uk )
输入层
i
中间层 j
输出层
k
xi
ji
kj
n
p
Uk ( f ( (xi ji )) kj )
j 1
i1
n
p
Vk f ( ( f ( (xi ji )) kj ))
j 1
i 1
思路:
1、触角长和翼长作为输入信息,分别记为x1,x2。 目标输出:(0,1) 、(1,0)。 Af类记为 (1,0),Apf类记为(0,1)。
神经网络
——浅尝
数学建模工作室 张敏
神经网络浅尝
• 神经网络基础知识 • 常用函数介绍 • 案例——蠓虫分类
神经网络基础知识
构成:大量简单的基本元件——神经元相互连接 工作原理:模拟生物的神经处理信息的方式 功能:进行信息的并行处理和非线性转化
特点:比较轻松地实现非线性映射过程 具有大规模的计算能力
调用格式:A=logsig(N)
2 f (x) 1 e2x
如:
n=-10:0.1:10 a=logsig(n)
plot(n,a)
grid on
图形如下:
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-10 -8 -6 -4 -2
0
2
4
6
8 10
tansig(双曲正切S型传递函数):
叫隐含层,可以由若干层组成)和输出层。
输入层
中间层
输出层
特点:每层只接受前一层的信息,没有反馈。 如:感知器网络和BP神经网络
有反馈的前向神经网络:
特点:输出层对输入层有反馈信息。
如:认知机和回归BP网络。
层内有互相结合的前向网络:
特点:可以实现同一层内神经元之间的横 向抑制或兴奋作用
相互结合型网络:
clear p1=[1.24,1.27;1.36,1.74;1.38,1.64;1.38,1.82;1.38,1.90; 1.40,1.70;1.48,1.82;1.54,1.82;1.56,2.08]; p2=[1.14,1.82;1.18,1.96;1.20,1.86;1.26,2.00 1.28,2.00;1.30,1.96]; p=[p1;p2]'; pr=minmax(p); goal=[ones(1,9),zeros(1,6);zeros(1,9),ones(1,6)]; plot(p1(:,1),p1(:,2),'h',p2(:,1),p2(:,2),'o') net=newff(pr,[3,2],{'logsig','logsig'}); net = train(net,p,goal); x=[1.24 1.80;1.28 1.84;1.40 2.04]'; y0=sim(net,p) y=sim(net,x)
调用格式:A=tansig(n)
2 f (x) 1 e2n 1
如:
n=-10:0.1:10 a=tansig(n) plot(n,a) grid on 如右图所示
1
0.8
0.6
0.4
0.2
0
-0.2
-0.4
-0.6
-0.8
-1
-10 -8 -6 -4 -2
0
2
4
6
8 10
newff
常用函数
创建一个BP网络,其调用格式为:
train 用于对神经网络进行训练。调用格式为:
[net,tr,Y,E,Pf,Af]=train(NET,P,T,Pi,Ai)
其中,
NET:待训练的神经网络; P:网络的输入信号; T:网络的目标,默认值为0; Pi:初始的输入延迟,默认为0; Ai:初始的层次延迟,默认为0; net:函数返回值,训练后的神经网络; tr:函数返回值,训练记录(包括步数和性能); Y:函数返回值,神经网络的输出信号; E:函数返回值,神经网络的误差; Pf:函数返回值,最终输入延迟; Af:函数返回值,最终层延迟。
输入层
i
中间层 j
输出层
k
xi
ji
kj
n
p
Vk f ( ( f ( (xi ji )) kj )) 0或1
j 1
i 1
输入层
i
中间层 j
输出层
k
xi
ji
kj
2、通过已知样本训练出合适的权值 ji、kj
使输出为(0,1)或(1,0)。
3、将待区分的蠓虫数据输入网络,求值。
权值求法:向后传播法
理想输出 Af类(1,0),Apf类(0,1)记为 { Tis}
则有误差:
E()
1 2
i、s
(Ti s
Vk
)2
1 2
(Ti s
i、s
f
(
n
(
j 1
f
p
(
i 1
( xi
ji )) kj )))
使得E(w)最小的 ji、kj 作为所需的权值
传递函数(激活函数)
logsig(S型函数):
MATLAB按此函数计算:
应用范围
医学:疾病识别
图像:识别、去噪、增强、配准、 融合
金融:股票和有价证券的预测分 析、资本收益的预测和分析、风 险管理、信用评估等等
神经网络结构图
输入层
中间层
输出层
生物神经元结构:
树突
细胞体
细胞核
轴突
突触 神经末梢
神经元结构模型
x1
x2
x3
xj
ijபைடு நூலகம்
i
yi
xn
可以看出神经元一般表现为一个多输入、单输出的非线性器件
神经网络仿真函数sim 调用格式为:
[Y,Pf,Af,E,perf]=sim(net,P,Pi,Ai,T)
其中, Y:函数返回值,网络输出; Pf:函数返回值,最终输出延迟; Af:函数返回值,最终的层延迟; E:函数返回值,网络误差; perf:函数返回值,网络性能; net:待仿真的神经网络; P:网络输入; Pi:初始输入延迟,默认为0; Ai:初始的层延迟,默认为0; T:网络目标,默认为0.
xj为输入信号, i 为阈值,
表示与神经元
ij
xj
连接的权值
yi表示输出值
阈值型 线性型
S型
传递函数
f
(x)
1 0
xi 0
xi 0
1 f (xi ) axi b
0
xi x2
x1 xi x2
xi x1
1
f (xi )
( xi ) 2
1 e c
神经网络的互连模式
前向网络: 神经元分层排列,分别组成输入层、中间层(也
net=newff
net=newff(PR,[S1 S2 …SN1],{TF1 TF2…TFN1},BTF,BLF,PF)
其中,
net=newff :用于在对话框中创建一个BP网络 PR :由每组输入(共有R组输入)元素的最大值和最小值组成的R×2维的矩 阵;
Si :第i层的长度,共计N1层 TFi:第i层的传递函数,默认为“tansig” BTF:BP网络的训练函数,默认为“trainlm”; BLF:权值和阈值的BP学习算法,默认为“learngdm” PF:网络的性能函数,默认为“mse”
相关文档
最新文档