例析导数与数列型不等式的交汇

合集下载

利用导数证明数列不等式(含解析)

利用导数证明数列不等式(含解析)

利用导数证明数列不等式利用导数证明数列不等式,在高考题中能较好的考查学生灵活运用知识的能力,一方面以函数为背景让学生探寻函数的性质,另一方面体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为为有具体特征的数列,可谓一题多考,巧妙地将函数、导数、数列、不等式结合在一起,也是近年来高考的热门题型. 1、常见类型:(1)利用放缩通项公式解决数列求和中的不等问题 (2)利用递推公式处理通项公式中的不等问题 2、恒成立不等式的来源:(1)函数的最值:在前面的章节中我们提到过最值的一个作用就是提供恒成立的不等式.(2)恒成立问题的求解:此类题目往往会在前几问中进行铺垫,暗示数列放缩的方向.其中,有关恒成立问题的求解,参数范围内的值均可提供恒成立不等式. 3、常见恒成立不等式:(1) 对数→多项式 (2) 指数→多项式4、关于前项和的放缩问题:求数列前项公式往往要通过数列的通项公式来解决,高中阶段求和的方法有以下几种:(1)倒序相加:通项公式具备第项与第项的和为常数的特点.(2)错位相减:通项公式为“等差等比”的形式(例如,求和可用错位相减).(3)等比数列求和公式(4)裂项相消:通项公式可裂为两项作差的形式,且裂开的某项能够与后面项裂开的某项进行相消. 注:在放缩法处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,故优先考虑.5、大体思路:对于数列求和不等式,要谨记“求和看通项”,从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式.6、在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向.7、放缩通项公式有可能会进行多次,要注意放缩的方向:朝着可求和的通项公式进行靠拢(等比数列,裂项相消等).ln 1x x <-1x e x >+n n k 1n k -+⨯2nn a n =⋅n a8、数列不等式也可考虑利用数学归纳法进行证明(有时更容易发现所证不等式与题目条件的联系).【经典例题】1.(2020·江苏省如皋中学高三三模)已知函数()ln f x kx x x =-,k ∈R . (1)当2k =时,求函数()f x 的单调区间;(2)当01x <≤时,()f x k ≤恒成立,求k 的取值范围; (3)设n N *∈,求证:ln1ln 2ln (1)2314n n n n -+++≤+. 2.(2020·四川省内江市第六中学高三三模)已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈. 3.(2020·安徽合肥·三模)已知函数()x xf x e e ax -=--(e 为自然对数的底数),其中a ∈R.(1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 4.(2020·安徽相山·淮北一中高三三模)已知函数()||ln (0)f x x a x a =-->. (∈)讨论()f x 的单调性;(∈)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.5.(2020·云南高三三模)已知函数()1ln f x x a x =-- (1)讨论()f x 的单调性; (2)证明:()*333ln 2ln3ln 1,222332n n N n n n +++<∈≥---.【精选精练】1.(2020·榆林市第二中学高三三模)已知(),()1(xf x eg x x e ==+为自然对数的底数).(1)求证()()f x g x ≥恒成立;(2)设m 是正整数,对任意正整数n ,2111(1)(1)(1)333n m ++⋅⋅⋅+<,求m 的最小值. 2.(2020·广东广州高三三模·)已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围; (3)证明:()*11111ln 312313n N n n n n n+++++>∈++-. 3.(2020·安徽蚌埠·高三三模)已知函数()()ln 1x f x x+=.(1)分析函数()f x 的单调性;(2)证明:2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥. 4.(2020·全国高三三模)已知函数2()2ln 1()f x ax x x a =--∈R . (1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 5.(2020·辽宁沙河口·辽师大附中高三三模)已知函数()()2ln 11f x p x p x =+-+.(1)讨论函数()f x 的单调性;(2)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围; (3)证明:()()*111ln 1123n n N n+<+++⋯+∈.6.(2020·浙江省宁波市鄞州中学高三三模)已知函数()()2f x ax a a R =+∈. (1)讨论函数()f x 的单调性;(2)若()0f x ≤对任意的1x ≥-恒成立,求a 的取值范围;(32600⋅⋅⋅+<.7.(2020·广东广州·高三三模)已知函数()2ln f x a x x =+,其中a R ∈.(1)讨论()f x 的单调性;(2)当1a =时,证明:()21f x x x ≤+-;(3)试比较22222222ln2ln3ln4ln 234n n++++与()()()12121n n n -++ ()*2n N n ∈≥且的大小,并证明你的结论. 8.(2020·黑龙江南岗·哈师大附中三模)已知函数()()2ln 1f x ax bx x =+-+.(∈)当0a =时,函数()f x 存在极值,求实数b 的取值范围;(∈)当1b =时,函数()f x 在()0,∞+上单调递减,求实数a 的取值范围;(∈)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 9.(2020·黑龙江哈尔滨·三模)已知函数()()()()ln 111f x x k x k R =---+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:()()*1ln 2ln 3ln ,13414n n n n n n -++⋅⋅⋅+<∈>+N . 10.(2020·浙江三模)已知数列{}n a ,112a =,1ln 1n n a a +=-. (1)求证:11n n a a +<<; (2)求证:123201912020a a a a ⋅⋅⋅⋅⋅⋅<.【经典例题】1.(2020·江苏省如皋中学高三三模)已知函数()ln f x kx x x =-,k ∈R . (1)当2k =时,求函数()f x 的单调区间;(2)当01x <≤时,()f x k ≤恒成立,求k 的取值范围; (3)设n N *∈,求证:ln1ln 2ln (1)2314n n n n -+++≤+. 【答案】(1)单调递增区间为(0,)e ,单调递减区间为(,)e +∞;(2)[1,)+∞;(3)证明见解析.【解析】(1)当2k =时,()2ln f x x x x =-,'()1ln f x x =-,由'()0f x >,解得0x e <<;由'()0f x <,解得x e >,因此函数()f x 单调递增区间为(0,)e ,单调递减区间为(,)e +∞.(2)()ln f x kx x x =-,故'()1ln f x k x --=.当1k时,因为01x <≤,所以10ln k x -≥≥,因此'()0f x ≥恒成立,即()f x 在(]0,1上单调递增,所以()(1)f x f k ≤=恒成立.当1k <时,令'()0f x =,解得1(0,1)k x e -=∈.当1(0,)k x e -∈,'()0f x >,()f x 单调递增;当1(,1)k x e -∈,'()0f x <,()f x 单调递减; 于是1(1))(k f ef k -=>,与()f x k ≤恒成立相矛盾.综上,k 的取值范围为[1,)+∞.(3)由(2)知,当01x <≤时,ln 1x x x -≤. 令x =21n *()n N ∈,则21n +22nln 1n ≤,即22ln 1n n -≤, 因此ln 1n n +≤12n -. 所以ln1ln 2ln 011(1) (2312224)n n n n n --+++≤+++=+. 2.(2020·四川省内江市第六中学高三三模)已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈.【答案】(1)见解析;(2)[1,+∞);(3)证明见解析. 【解析】(1)求导数可得2224441(2)(1)(2)a ax a y ax x ax x +-'=-=++++, 当1a 时,0y ',∴函数()()y f x g x =-在[)0+∞,上单调递增; 当01a <<时,由0y '>可得x > ∴函数在⎡⎫∞⎪⎢⎪⎣⎭上单调递增,在0⎡⎢⎣上单调递减; (2)由(1)知当1a 时,函数()()y f x g x =-在[)0+∞,上单调递增, ()()(0)(0)1f x g x f g ∴--=,即不等式()()1f x g x +在[)0x ∈+∞,时恒成立, 当01a <<时,函数在0⎡⎢⎣上单调递减,存在00x ⎡∈⎢⎣使得00()()(0)(0)1f x g x f g -<-=, 即不等式00()()1f x g x +不成立, 综上可知实数a 的取值范围为[1,)+∞;(3)由(2)得当1a 时,不等式()()1f x g x >+在(0,)x ∈+∞时恒成立, 即2(1)2x ln x x +>+,12(1)12ln k k∴+>+,*()k N ∈. 即11[(1)]122ln k lnk k <+-+, ∴11(21)32ln ln <-,11(32)52ln ln <-,11(43)72ln ln <-,11[(1)]212ln n lnn n ⋯<+-+, 将上述式子相加可得11111111(1)(1)()357212222lnn ln lnn ln n f n n +++⋯+<-=<+=+ 原不等式得证.3.(2020·安徽合肥·三模)已知函数()x xf x e e ax -=--(e 为自然对数的底数),其中a ∈R.(1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 【答案】(1)答案见解析(2)证明见解析.【解析】(1)因为()x xf x e ea -'=+-,且2x x e e -+≥,所以当2a ≤时,()0f x '≥,所以()f x 在R 上为增函数,当2a >时,由()0f x '>,得0x x e e a -+->,所以2()10x xe ae -+>,所以22()124x a a e ->-,所以2x ae ->或2xa e -<,所以2xa e +>2xa e -<,所以24ln2aa x 或24ln2aa x ,由()0f x '<,得0x x e e a -+-<,解得2244ln22aa aax ,所以()f x 在ln 22a a ⎛⎫⎪ ⎪⎝⎭上递减,在,ln2a ⎛--∞ ⎪⎝⎭和ln 2a ⎛⎫++∞ ⎪ ⎪⎝⎭上递增.(2)由(1)知,当2a =时,()2xxf x e e x -=--在R 上为增函数,所以1()(ln )2ln g x f x x x x==--在(0,)+∞上为增函数, 所以当*n N ∈且2n ≥时,13()(2)22ln 2ln 422g n g ≥=--=-=32ln 04e >, 即12ln 0n n n-->,所以212211ln 1(1)(1)11n n n n n n n >==---+-+, 所以211111ln 2ln 23ln 34ln 4ln ni i i n n==++++∑ 1111111121213131414111n n >-+-+-++--+-+-+-+ 111121n n =+--+2322(1)n n n n --=+, 所以22132ln 2(1)ni n n i i n n =-->+∑.4.(2020·安徽相山·淮北一中高三三模)已知函数()||ln (0)f x x a x a =-->. (∈)讨论()f x 的单调性;(∈)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.【答案】(I )见解析;(II )见解析 【解析】(∈)函数()f x 可化为ln ,()ln ,0x x a x af x a x x x a --≥⎧=⎨--<<⎩,当0x a <<时,1()10f x x '=--<,从而()f x 在(0,)a 上总是递减的, 当x a ≥时,11()1x f x x x'-=-=,此时要考虑a 与1的大小.若1a ≥,则()0f x '≥,故()f x 在[,)a +∞上递增,若01a <<,则当1a x ≤<时,()0f x '<,当1x >时,()0f x '>,故()f x 在[,1)a 上递减, 在(1,)+∞上递增,而()f x 在x a =处连续,所以 当1a ≥时,()f x 在(0,)a 上递减,在[,)a +∞上递增; 当01a <<时,()f x 在(0,1)上递减,在[1,)+∞上递增.(∈)由(∈)可知当1a =,1x >时,1ln 0x x -->,即ln 1x x >-,所以ln 11x x x <-.所以 222222ln 2ln 3ln 23n n+++22211111123n <-+-+-222111123n n ⎛⎫=--+++⎪⎝⎭11112334(1)n n n ⎛⎫<--+++⎪⨯⨯+⎝⎭11121n n ⎛⎫=--- ⎪+⎝⎭1(1)2(1)n n n -=--+ 2221(1)(21)2(1)2(1)n n n n n n --+-+==++.5.(2020·云南高三三模)已知函数()1ln f x x a x =-- (1)讨论()f x 的单调性;(2)证明:()*333ln 2ln3ln 1,222332n n N n n n +++<∈≥---. 【答案】(1)当0a 时,()f x 在(0,)+∞内单调递增;当0a >时,()f x 在(0,)a 内单调递减,在(,)a +∞内单调递增.(2)证明见解析 【解析】(1)解:()1ln (0)f x x a x x =-->,()1af x x'∴=-.∈若0a ,则()0f x '>,()f x ∴在(0,)+∞内单调递增;∈若0a >,则()f x '在(0,)+∞内单调递增,且()0f a '=,∴当(0,)x a ∈时,()0f x '<;当(,)x a ∈+∞时,()0f x '>,()f x ∴在(0,)a 内单调递减,在(,)a +∞内单调递增.综上所述,当0a 时,()f x 在(0,)+∞内单调递增;当0a >时,()f x 在(0,)a 内单调递减,在(,)a +∞内单调递增.(2)证明:当1a =时,()1ln =--f x x x .由(1)知()(1)0f x f =,ln 1x x ∴-,当且仅当1x =时,等号成立, 令()*,2x n n N n =∈,ln 1n n ∴<-,33ln 1111(1)1n n n n n n n n n n -∴<==---++. 从而3ln 2112223<--, 3ln 3113334<-- …3ln 111n n n n n <--+, 累加可得333ln 2ln3ln 11223321n n n n ++⋯+<----+, 111212n -<+, 333ln 2ln3ln 122332n n n ∴++⋯+<---,证毕.【精选精练】1.(2020·榆林市第二中学高三三模)已知(),()1(x f x e g x x e ==+为自然对数的底数).(1)求证()()f x g x ≥恒成立;(2)设m 是正整数,对任意正整数n ,2111(1)(1)(1)333n m ++⋅⋅⋅+<,求m 的最小值. 【答案】(1)证明见解析;(2) 2.【解析】(1)令()()()1xF x f x g x e x =-=--,则()1xF x e '=-∴当(),0x ∈-∞时,()0F x '<;当()0,x ∈+∞时,()0F x '>()F x ∴在(),0-∞上单调递减;在()0,∞+上单调递增()()0min 0010F x F e ∴==--=,即()()()0F x f x g x =-≥恒成立 ()()f x g x ∴≥恒成立(2)由(1)知:13113n n e +≤221111113333332111111333n n n e e e e++⋅⋅⋅+⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅+≤⋅⋅⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭又211111111133********13nn n⎛⎫⨯- ⎪⎛⎫⎝⎭++⋅⋅⋅+==⨯-<⎪⎝⎭- 11112322111111333n n e e ⎛⎫⨯- ⎪⎝⎭⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅+≤< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭又2111111333n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭恒成立 12m e ∴≥ m 为正整数 m ∴的最小值为:22.(2020·广东广州高三三模·)已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围; (3)证明:()*11111ln 312313n N n n n n n+++++>∈++-. 【答案】(1)()f x 单调递增区间为()3+∞,;() f x 单调递减区间为()03,;(2)43a ≥;(3)详见解析. 【解析】(1)因为()()3246x f x x ex x -=-+-,所以()()()()3332632x x f x x ex x e --=-+-='-+,令()0f x '=得3x =,当3x >时,()0f x '>,()f x 单调递增; 当03x <<时,()0f x '<,()f x 单调递减;所以函数()f x 在()0+∞,上的单调递增区间为()3+∞,,单调递减区间为()03,; (2)由(1)知()()()332x f x x e-'=-+,当3x ≥时,()0f x '≥恒成立,故()0h x ≥恒成立;当3x <时,()0f x '<,又因为()()(){}0h x max f x g x '=≥,恒成立,所以()0g x ≥在()03,上恒成立, 所以11ln 03a x x ⎛⎫---≥ ⎪⎝⎭,即11ln 3xa x+-≥在()03,上恒成立, 令()()1ln 03x F x x x +=<<,则()13max a F x -≥, 由()()221ln 1ln x xF x x x-+-'==, 令()0F x '=得1x =,易得()F x 在()01,上单调递增,在[)13,上单调递减,所以()()11max F x F ==,所以113a -≥,即43a ≥, 综上可得43a ≥.(3)证明:设()()10xm x e x x =-->,则()10xm x e '=->,所以()m x 在()0+∞,上单调递增,所以()()00m x m >=,即1x e x >+, 所以1111111111312312333112313n n n nn n n nn n n n n ee eeen n n n n++++++++++++=⋅⋅⋅⋅⋅⋅⋅>⋅⋅⋅⋅⋅⋅⋅⋅++- 123331231n n n nn n n n +++>⋅⋅⋅⋅⋅⋅⋅=++-,所以11111ln 312313n n n n n+++++>++-. 3.(2020·安徽蚌埠·高三三模)已知函数()()ln 1x f x x+=.(1)分析函数()f x 的单调性;(2)证明:2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥. 【答案】(1)()f x 在区间()–1,0和()0,∞+上单调递减;(2)证明见解析. 【解析】(1)由题意得:()f x 的定义域为()()–1,00,+∞,且()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x=-++则()()21x g x x -'=+,()–1,0x ∈时,()0g x '>; ()0,x ∈+∞时,()0g x '<.即()g x 在()–1,0上单调递增,在()0,∞+上单调递减.因为()00g =,则在()–1,0和()0,∞+上()0g x <. 因为20x >,所以在()–1,0和()0,∞+上()0f x '<, 即函数()f x 在区间()–1,0和()0,∞+上单调递减. (2)由(1)可知,当02x <≤时,()()ln 322x f f =≥,即()ln 3ln 12x x +≥, 当2n ≥时,2021n <≤-,则2ln 3ln 111n n ⎛⎫+≥⎪--⎝⎭, 即()()2ln 3ln 1ln 1ln 111n n n n ⎛⎫+=+--≥ ⎪--⎝⎭, 所以()()()ln 1ln 1ln ln 2ln 4ln 2ln3ln1n n n n +--+--++-+-111ln 31122n n ⎛⎫≥++++ ⎪--⎝⎭整理得:()111ln 1ln ln 2ln1ln 31122n n n n ⎛⎫++--≥++++⎪--⎝⎭, 即2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥,不等式得证.4.(2020·全国高三三模)已知函数2()2ln 1()f x ax x x a =--∈R . (1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 【答案】(1)见解析;(2)见解析【解析】(1)由题意可得,()'222(0,)f x ax lnx x a R =-->∈,由1x e =时,函数()f x 取得极值知12'220af e e ⎛⎫=+-= ⎪⎝⎭,所以0a =. 所以()()21,'22(0)f x xlnx f x lnx x =--=-->, 所以10x e <<时,()'0f x >;1x e>时,()'0f x <; 所以()f x 的单调增区间10e ⎛⎫ ⎪⎝⎭,,单调减区间为1e⎛⎫+∞ ⎪⎝⎭,. (2)当1a =时,()221f x x xlnx =--,所以()()'22221f x x lnx x lnx =--=--,令()ln 1g x x x =--,则()11'1x g x x x-=-=,当01x <<时,()'0g x <;当1x >时,()'0g x >,()g x 的单调减区间为()01,,单调增区间为()1+∞,, 所以()()10g x g ≥=,所以()'0f x ≥,()f x 是增函数,所以1x >时,()()22ln 110f x x x x f =-->=,所以1x >时,12ln x x x->, 令*211,21n x n N n +=>∈-,得2121212ln 212121n n n n n n +-+->-+- 即2221112ln 212121n n n n +⎛⎫+--> ⎪-+-⎝⎭ 所以1121111ln 2122122121n n n n n +⎛⎫>+- ⎪---+⎝⎭上式中123n =,,,…,n ,然后n 个不等式相加, 得到()11111...ln 213521221nn n n ++++>++-+ 5.(2020·辽宁沙河口·辽师大附中高三三模)已知函数()()2ln 11f x p x p x =+-+.(2)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围; (3)证明:()()*111ln 1123n n N n+<+++⋯+∈. 【答案】(1) 见详解;(2)1k;(3)证明见解析.【解析】(1)()f x 的定义域为()0 +∞,,()()()221'21p x p p f x p x x x-+=+-=,当1p >时,()'0f x >,故()f x 在()0,∞+单调递增; 当0p ≤时,()'0f x <,故()f x 在()0,∞+单调递减;当10p -<<时,令()'0f x =,解得x =则当x ⎛∈ ⎝时,()'0f x >; x ⎫∈+∞⎪⎪⎭,时,()'0f x <.故()f x 在⎛ ⎝单调递增,在 ⎫+∞⎪⎪⎭,单调递减. (2)因为0x >,所以:当1p =时,()f x kx ≤恒成立11ln ln kx xx k x+⇔+≤⇔≥, 令()1ln xh x x +=,则()max k x h ≥, 因为()2ln 'xh x x-=,由()'0h x =得x =1, 且当()0,1x ∈时,()'0h x >;当()1,x ∈+∞时,()'0h x <.所以()h x 在()0,1上递增,在()1,+∞上递减,所以()()max 11h x h ==, 故1k .(3)取,则代入由题设可得,取,并将上述各不等式两边加起来可得()()*111ln 1123n n N n+<+++⋯+∈.6.(2020·浙江省宁波市鄞州中学高三三模)已知函数()()2f x ax a a R =+∈.(2)若()0f x ≤对任意的1x ≥-恒成立,求a 的取值范围;(32600⋅⋅⋅+<. 【答案】(1)()f x 在211,14a ⎛⎫-- ⎪⎝⎭上单增;在211,4a ⎛⎫-+∞ ⎪⎝⎭上单减;(2)1,2⎛⎤-∞- ⎥⎝⎦;(3)证明见解析. 【解析】()'f x a =+.(1)当0a ≥时,()'0f x ≥,所以()f x 在()1,-+∞上单调递增; 当0a <时,由()'0f x >解得21114x a -<<-, 所以()f x 在211,14a ⎛⎫-- ⎪⎝⎭上单调递增;在211,4a ⎛⎫-+∞ ⎪⎝⎭上单调递减.(2)当0a ≥时,()()2000f x a x =+≥+=,故不合题意;当0a <时,由(∈)知()max 21104x f f a ⎛⎫=-≤ ⎪⎝⎭,211(21)(21)20141244a a f a a a a a a +-⎛⎫=-+- ⎪⎝-+=≤⎭102a a <∴≤-,综上,a 的取值范围为1,2⎛⎤-∞- ⎥⎝⎦.(3)由(2)知,取12a =-112x ≤+成立.当()1,2,3,,20482020kx k ==时,1111220204040k k =≤⨯+=⨯+,⋅⋅⋅+()11234204820484040++++++<20491024204826004040⨯=+<.7.(2020·广东广州·高三三模)已知函数()2ln f x a x x =+,其中a R ∈. (1)讨论()f x 的单调性;(2)当1a =时,证明:()21f x x x ≤+-;(3)试比较22222222ln2ln3ln4ln 234n n++++与()()()12121n n n -++ ()*2n N n ∈≥且的大小,并证明你的结论. 【答案】(1)见解析;(2)见解析;(3)见解析【解析】(1)函数()f x 的定义域为:()0,∞+,()'f x = 222a a x x x x++=∈当0a ≥时,()'0f x >,所以()f x 在()0,∞+上单调递增∈当0a <时,令()'0f x =,解得x =当0x <<时,220a x +<,所以()'0f x <, 所以()f x 在⎛ ⎝上单调递减;当x >220a x +>,所以()'0f x >,所以()f x 在⎫+∞⎪⎪⎭上单调递增. 综上,当0a ≥时,函数()f x 在()0,∞+上单调递增;当0a <时,函数()f x 在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增. (2)当a 1=时,()2ln f x x x =+,要证明()21f x x x ≤+-,即证ln 1x x ≤-,即证:ln 10x x -+≤. 设()g ln 1x x x =-+,则()g'x =1xx-,令()0g x '=得,1x =. 当()0,1x ∈时,()0g x '>,当()1,x ∈+∞时,()0g x '<. 所以1x =为极大值点,且()g x 在1x =处取得最大值.所以()()10g x g ≤=,即ln 10x x -+≤.故()21f x x x ≤+-.(3)证明:ln 1x x ≤-(当且仅当1x =时等号成立),即11lnx x x≤-, 则有2222ln +22222222223111111111n 132323ln lnn n n n ⎛⎫+⋯+<-+-+⋯+-=--++⋯+ ⎪⎝⎭()111n 123341n n ⎛⎫<--++⋯+ ⎪ ⎪⨯⨯+⎝⎭ ()()()12111111111n 1n 1233412121n n n n n n -+⎛⎫⎛⎫=---+-+⋯+-=---=⎪ ⎪+++⎝⎭⎝⎭, 故:2222ln +()()()22221213321n n ln lnn n n -++⋯+<+ 8.(2020·黑龙江南岗·哈师大附中三模)已知函数()()2ln 1f x ax bx x =+-+.(∈)当0a =时,函数()f x 存在极值,求实数b 的取值范围;(∈)当1b =时,函数()f x 在()0,∞+上单调递减,求实数a 的取值范围;(∈)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 【答案】(∈)0b >;(∈)12a ≤-;(∈)证明见解析. 【解析】(∈)当0a =时,()()()ln 11f x bx x x =-+>-,()()1111bx b f x b x x --'=-=++, ∈当0b ≤时,()0f x '<,则()f x 在()1,-+∞递减,无极值; ∈当0b >时,令()1'0,11f x x b==->-, 1()0,(1,1),()f x x f x b '<∈--单调递减,1()0,(1,),()f x x f x b '>∈-+∞单调递增,所以11,()x f x b=-取得极小值.综上可知:0b >.(∈)当1b =时,()()()2ln 10f x ax x x x =+-+>,()1212011x f x ax ax x x '=+-=+≤++恒成立 121a x ⇔-≥+对一切()0,x ∈+∞恒成立, ∈11x +>,∈1011x <<+,∈21a -≥,∈12a ≤-.(∈)由(∈)知:当12a =-时,()()21ln 12f x x x x =-+-+在()0,∞+递减,∈()()00f x f ≤=,即:()2ln 12x x x -+<,令221x n =-,则()22212ln 212121n n n n +-<---, 当2n ≥时,()2222122ln 212144121n n n n n n +-<=---+- ()21114121n n n n ⎛⎫<=- ⎪--⎝⎭,∈23ln 2ln 311-=- 2511ln 13322⎛⎫-<- ⎪⎝⎭ 27111ln 55223⎛⎫-<- ⎪⎝⎭……221111ln 212121n n n n n +⎛⎫-<- ⎪---⎝⎭累加得,()11112ln 212ln 31212nk n k n =⎛⎫⋅-+<-+- ⎪-⎝⎭∑ 5153ln3ln32222n =--<-<, 当1n =时,131ln 324-<,即:1ln 32>,综上,()1113ln 212124nk n k =-+<-∑. 9.(2020·黑龙江哈尔滨·三模)已知函数()()()()ln 111f x x k x k R =---+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:()()*1ln 2ln 3ln ,13414n n n n n n -++⋅⋅⋅+<∈>+N . 【答案】(1)答案不唯一,具体见解析;(2)[)1,+∞;(3)证明见解析. 【解析】(1)函数()()()ln 111f x x k x =---+的定义域为()1,+∞,且()11f x k x '=--. ∈当0k ≤时,()0f x '>恒成立,故函数()y f x =在()1,+∞上为增函数; ∈当0k >时,令()0f x '<,得1k x k +>时,即函数()y f x =在1,k k +⎛⎫+∞⎪⎝⎭上单调递减, 令()0f x '>,得11k x k +<<时,即函数()y f x =在11,k k +⎛⎫⎪⎝⎭上单调递增.综上:当0k ≤时,函数()y f x =在()1,+∞上为增函数; 当0k >时,函数()y f x =在11,k k +⎛⎫ ⎪⎝⎭上为增函数,在1,k k +⎛⎫+∞⎪⎝⎭上为减函数; (2)当0k ≤时,()211f k =-+≥,显然()0f x ≤不恒成立; 当0k >时,()max 11ln 0k f x f k k +⎛⎫==≤⎪⎝⎭,即1k .综上:实数k 的取值范围是[)1,+∞;(3)由(2)可知,当1k =时()0f x ≤恒成立,即()ln 12x x -<-,()ln 121x x x-∴<-, ()()22ln ln 11121212n n n n n n n --=<=+++,可得出ln 2132<,ln 3242<,,ln 112n n n -<+, ()()*1ln 2ln 3ln 121,23412224n n n n n N n n --∴+++<+++=∈≥+. 10.(2020·浙江三模)已知数列{}n a ,112a =,1ln 1n n a a +=-. (1)求证:11n n a a +<<; (2)求证:123201912020a a a a ⋅⋅⋅⋅⋅⋅<. 【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)∈先利用数学归纳法证明1n a <. (∈)当1n =时,1112a =<成立; (∈)假设n k =时1k a <成立,则1ln 10k k a a +=-<,11k a +∴<. 综上所述,对任意的n *∈N ,1n a <; ∈利用导数证明1x e x -≥,设()1x f x ex -=-,则()1e 1x f x -'=-,当1x <时,()0f x '<,此时函数()y f x =单调递减; 当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()0110f x f e ≥=-=,即1x e x -≥,当且仅当1x =时,等号成立.1n a <,()()10n f a f ∴>=,即1n a n e a ->,1ln 1n n a a +=-,11n a n n a e a -+∴=>,综合∈∈可知11n n a a +<<;(2)利用数学归纳法证明1n n a n ≤+. ∈当1n =时,112a =满足1n n a n ≤+;∈假设n k =时成立,即1k ka k ≤+,则由1ln 1n n a a +=-,得111111k k a k k k a eee---+++==≤,要证1112k k ek -++<+,令11,012t k ⎛⎫-=∈- ⎪+⎝⎭,则要证11012t e t t ⎛⎫<-<< ⎪-⎝⎭,21 / 21 构造()11x f x e x =+-,1,02x ⎛⎫∈- ⎪⎝⎭,()()()()22211111x x e x f x e x x --'=-=--,令()()211x h x e x =--,1,02x ⎛⎫∈- ⎪⎝⎭,则()()()()2212110x x x h x e x e x e x '=-+⋅-=-<, 所以,函数()y f x '=在1,02⎛⎫- ⎪⎝⎭上单调递减,()()00f x f ''∴>=,所以,函数()y f x =在1,02⎛⎫- ⎪⎝⎭上单调递增,()()00f x f ∴<=,即11x e x <-成立,即1112k k e k -++<+,112k k a k ++∴<+, 综上1n na n ≤+,当且仅当1n =时等号成立,由于1ln 1n n a a +=-,可知0n a >, 所以,1102a <≤,2203a <<,,2019201902020a <<,1220191232019123420202020a a a ⋅⋅⋅⋅<⨯⨯⨯⋅⋅⨯=.。

解答数列与不等式交汇问题的三个策略

解答数列与不等式交汇问题的三个策略

解答数列与不等式交汇问题的三个策略 廖东明基于能力立意于数列与不等式交汇处设计的综合性解答试题,将知识、能力与素质的考查融为一体,能全面检测考生的数学素养,很好地考查以思维能力为核心的多种数学能力,具有良好的区分度.因而,数列与不等式的综合性试题往往是高考的一个热点,以压轴题的角色出现也是常见的.解答此类试题,要把握以下三个基本策略.策略1 数学归纳法数学归纳法是解决与正整数有关问题的通法之一,也是解决数列与不等式综合问题的方法之一.例1(2010年湖北高考题理21题)已知函数()bf x ax c x=++(0a >)的图象在点(1,(1))f 处的切线方程为1y x =-.(1)用a 表示,b c ;(2)若()ln f x x ≥在[1,)+∞上恒成立,求a 的取值范围;(3)证明:111123n ++++ln(1)2(1)n n n >+++(1n ≥).点拨:(1)由(1)0f =及(1)1f '=可获解;(2)构造含参数a 的函数()()ln g x f x x =-,[1,)+∞,则有(1)0g =,21()(1)()a a g x x x x a -'=--g ,于是由0a >,11a a -<,11aa-≤确定对a 分类讨论研究()g x '值的正负性,得到满足条件的a 的取值范围;(3)尝试用数学归纳法证明,在利用归纳假设完成由n k =到1n k =+的递推时需要证明1212()l n 2121k k k k k k +++-≥+++对1k ≥恒成立,于是“依形”构造函数11()()ln 2x x x x ϕ=--(1x ≥),证明()0x ϕ≥在[1,)+∞上恒成立即可,这利用导数可以完成.解:(1)1b a =-,12c a =-.(2)1[,)2a ∈+∞.解答从略.(3)证明:用数学归纳法证明如下.①当1n =时,左边=1,右边=1ln 214+<(因为4332 2.7e <<),不等式成立;②假设当n k =(1k ≥)时不等式成立,即111123k++++ln(1)2(1)k k k >+++,则当1n k =+时,11111231k k ++++++1ln(1)2(1)1k k k k >+++++ 2ln(1)2(1)k k k +=+++,故只需证明2ln(1)2(1)k k k ++++≥1ln(2)2(2)k k k ++++,即只需证1212()ln 2121k k k k k k +++-≥+++对1k ≥恒成立.构造函数11()()ln 2x x x x ϕ=--(1x ≥),则(1)0ϕ=,211()(1)02x xϕ'=-≥(只在1x =处取得等号),所以()x ϕ在[1,)+∞上单调递增,所以()(1)0x ϕϕ≥=,即11()ln 2x xx-≥(1x ≥).令21k x k +=+(1k ≥),则1212()ln 2121k k k k k k +++-≥+++.所以当1n k =+时不等式也成立.根据①和②,可知不等式对任何n +∈N 都成立.点评:运用数学归纳法证明数列不等式一般要用到放缩法且放缩要适度.本例若用通常的放缩法是无法证明不等式2ln(1)2(1)k k k ++++≥1ln(2)2(2)k k k ++++.然而审视需要证明的不等式的结构特征,构造相应的函数,通过函数的单调性(利用导数)去证明又显得容易.细于审察,把握特征,寻求“对症”的方法,是解答数学问题应具备的素养.策略2 放缩法只要涉及不等式的证明,就会用到放缩法.放缩法也是证明数列不等式问题的一个很重要的策略.例2(2010年4月济南模拟题)设数列{}n a 、{}n b 满足:14a =,252a =,12n n n a b a ++=,12n nn n na b b a b +=+.(1)用n a 表示1n a +,并证明对于任意n +∈N ,2n a >;(2)证明:数列2{ln }2n n a a +-是等比数列;(3)设n S 是数列{}n a 的前n 项和,当2n ≥时,n S 与42()3n +是否有确定的大小关系?若有,加以证明;若没有,请说明理由.点拨:(1)易知11114n n n n a b a b a b ++====,进而1222n n na a a +=+>(2n a ≠,否则逆推得到22a =)而获证;(2)先计算22n n a a +-,然后对这个等式两边取自然对数去判断;(3)先求出通项n a ,然后计算212S a a =+与42(2)3+比较大小猜测42()3n S n <+.尽管得到112231231n n n a --+=⋅-124231n -=+-22221122()3131n n --=+--+,但是累加无法消去中间的大多数项,裂项累加失败;转换角度,先放缩后累加再放缩,注意到要比较的项42()3n +823n =+,联想到211112(1)444n -++++81(1)34n =-83<,且当1,2n =时有1123124n n ---=⋅,只需证明当3n ≥时1123124n n --->⋅成立就可以成功放缩而获证,利用数学归纳法不难证明当3n ≥时1123124n n --->⋅成立.或者审视要证明42()3n S n <+,可以思考对2n a -进行递推式放缩:当2n ≥时1122231n n na a +---=+1(2)10n a ≤-(仅当2n =时等号成立),通过递推和累加、利用1n n n S S a -=+转换、放缩等去推证;若放缩过度,则从3n =开始放缩1122231n n na a +---=+1(2)82n a ≤-,直至成功. 解:(1)因为14a =,252a =,所以11b =.故11114n n n n a b a b a b ++====.易知:0n a >,12a >,22a >,4n nb a =,所以1222n n n a a a +=+>.因此,对任意n +∈N ,2n a >. (2)略证:21(2)22n n n a a a +++=,21(2)22n n n a a a +--=,所以21212(2)2(2)n n n n a a a a ++++=--,所以1122ln 2ln 22n n n n a a a a ++++=--,所以数列2{ln }2n n a a +-是等比数列.(3)证法1 由(2)可知11222ln (ln )222n n n a a a a -++=⨯--1(ln3)2n -=⋅12ln3n -=,所以112231231n n n a --+=⋅-124231n -=+-.212S a a =+132=<42(2)3+,猜测42()3n S n <+.当1,2n =时有1123124n n ---=⋅,下面用数学归纳法证明当3n ≥时1123124n n --->⋅.①当3n =时,左边=43180-=,右边=22432⨯=,不等式成立;②假设当n k =(3k ≥)时不等式成立,即1123124k k --->⋅,则当1n k =+时,1(1)231k -+-129(31)8k -=-+19248k ->⨯⨯+(1)124k +->⋅,即当1n k =+时不等式成立.根据①和②可知,当3n ≥且n +∈N 时不等式1123124n n --->⋅成立.因此,对于任意正整数n ,有124231n n a -=+-1224n -≤+,仅当1,2n =时取得等号.所以当3n ≥时,12n n S a a a =+++2111122(1)444n n -<+++++812(1)34n n =+-42()3n <+.当2n ≥时, 42()3n S n <+.证法 2 由(2)可知11222ln (ln )222n n n a a a a -++=⨯--1(ln3)2n -=⋅12ln3n -=,所以112231231n n n a --+=⋅-124231n -=+-.212S a a =+132=<42(2)3+,猜测42()3n S n <+. 因为124231n n a --=-,124231n n a +-=-,所以1122231231n n n n a a +---=--12131n -=+,所以当2n ≥时,11212(2)31n n n a a +--=-+1(2)10n a ≤-,当且仅当2n =时取得等号.所以3212(2)10a a -=-,4312(2)10a a -<-,…,112(2)10n n a a --<-(4n ≥),上述2n -个式子相加得,122(2)n S a a n ----111[2(2)]10n S a n -<---,所以 106520(2)n S n ---42(2)n n S a n <----,所以1122252(31)299(31)n n n S n --+<+-- 251299n <+-,即当3n ≥时,42()3n S n <+.因此,当3n ≥时,42()3n S n <+. 点评:数列不等式证明问题,有些先直接将和式化简(裂项求和或利用相关公式相关方法求和),然后放缩达到证明的目的;有些则先要对和式中的一部分项放缩,使不能求和的式子转化为能求和的式子,进而求和(有的还要继续放缩)而获证(如本例).要掌握放缩法的常用技巧和善于利用平均值不等式、柯西不等式、排序不等式、贝努力不等式、绝对值不等式和一些经典不等式进行放缩.还必须指出,判断n S 与42()3n +的大小关系,一般需要对前若干个n 值核验来寻找它们的大小关系.策略3 函数思想有些数列不等式的证明问题从正面突击难以突破,此时可以对问题的形式稍作转换,从侧面迂回,依照其“形式”构造相应的函数,利用导数证明函数的单调性或者得到某一函数不等式,进而推演到数列不等式中有效放缩而获证.若可构造的函数是熟知的函数,则直接利用该函数的性质去推证相关结论来完成证题.例3(2010年四川高考题理22题改编)设1()1xxa f x a+=-(0a >且1a ≠),1()l o g 1a x g x x -=+.(1)设关于x 的方程2log ()(1)(7)a t g x x x =--在区间[2,6]上有实数解,求t 的取值范围;(2)当a e =(e 为自然对数的底数)时,证明:22()nk g k =>∑;(3)当102a <≤时,试比较1|()|ni f k n =-∑与4的大小,并说明理由.点拨:(1)等价转化为求函数2(1)(7)t x x =--在区间[2,6]上的值域,用导数的方法可获解;(2)简化得2(1)()ln 2nk n n g k =+=-∑,等价转化为证明2(1)ln 2n n +->0,审视结构特征,构造函数1()2ln u z z z z=-+-(0z >),恰有(1)0u =,只需证明()u z 在区间[1,)+∞上单调递增即可,利用导数这个工具完成证明;(3)显然1()ni f k =∑是无法直接累加得到某一式子的,需要进行巧妙的放缩使得便于累加(或者可以裂项求和或者能用公式求和).当1n =时,11(1)1a f a +<=-211aa=+-12≤+,此时显然有|(1)1|24f -≤<,猜测1|()|4n i f k n =-<∑,从而关键是证明1()4ni f k n =<+∑.由2()11xxa f x a =+-的特征及102a <≤,k 为正整数,将()f k 中的分式的分子整数化,分母为1()1k a -,若设11pa=+(1p ≥)则可巧用二项式定理,进行适度的放缩后可以证明2k ≥时有41()1(1)f k k k <≤++,于是问题可以获证. 解:(1)解答从略,t 的取值范围为[5,32].(2)212()ln ln 34nk g k ==+∑31ln ln51n n -++++1231ln()3451n n -=⨯⨯⨯⨯+ (1)ln 2n n +=-.构造函数构造函数221()ln z u z z z -=--12ln z z z =-+-(0z >),则21()(1)0u z z'=-≥(仅当1z =时取得等号),所以()u z 在(0,)+∞上为单调递增函数.又10>>,所以(1)0u u >=,即(1)12ln 0(1)n nn n +->+,即22()nk g k =>∑ (3)设1a p=+,则1p ≥,11(1)1af a +<=-213p =+≤.当1n =时,2|(1)1|24f p -=≤<.当2n ≥时,设2k ≥,k +∈N ,则(1)1()(1)1k k p f k p ++=+- 21(1)1k p =++-12221k k k k k C p C p C p =++++,所以1221()1k kf k C C <≤++41(1)k k =++4411k k =+-+(仅当2k =,1p =时取得等号),从而21()nk n f k =-<∑≤44121n n -+-+411n n =+-+<1n +,所以2()(1)1nk n f k f n =<<++∑4n ≤+.综上,总有1|()|4ni f k n =-<∑.点评:数列是一种特殊的函数,一些数列不等式等价变形后方能凸显其结构特征,依据其特征构造相应的函数,利用导数研究该函数的单调性进而用于数列不等式是一种有效的证明方法.构造函数证明数列不等式是数学归纳法、一般的放缩法不可替代的一种重要策略,同学们要认真体味和把握.例4(2010年高考江苏题)设各项均为正数的数列{}n a 的前n 项和为n S .已知2132a a a =+,数列是公差为d 的等差数列.(1)求数列{}n a 的通项公式(用,n d 表示);(2)设c 为实数,对满足3m n k +=且m n ≠的任意正整数,,m n k ,不等式m n k S S cS +>都成立.求证:c 的最大值为92.点拨:(1)依据条件列式并利用1n n n a S S -=-(2n ≥)容易得到通项公式2(21)n a n d =- ;(2)易得0d >,22n S d n =,于是222()m n S S m n d +=+.构造函数22()f m m n =+22(3)m k m =+-22269m km k =-+,对于任意给定的正整数k ,时刻注意m n ≠利用二次函数的性质去求min ()f m ,由于对称轴为32km =,需要对k 分奇偶性讨论.最后由不等式m n k S S cS +>都成立,比较得到c 的最大值为92.解:(1)解答从略,数列{}n a 的通项公式为2(21)n a n d =-.(2d (1)n d =-,得到0d >,22n S d n =.于是对于满足题设的对满足3m n k +=且m n ≠的任意正整数,,m n k ,有222()m n S S m n d +=+.构造构造函数22()f m m n =+22(3)m k m =+-22269m km k =-+,其对称轴为32km =,图象开口向上.对于任意给定的正整数k ,当k 为偶数时,由于正整数,m n 满足m n ≠,于是在312k m =±时()f m 取得最小值29()22f m k =+;当k 为奇数时,由于正整数,m n 满足m n ≠,于是在3122k m =±时()f m 取得最小值291()22f m k =+.因此,对于任意给定的正整数k ,总有222()m n S S m n d +=+2291()22k d ≥+2292k d >92k S =.又对于满足3m n k +=且m n ≠的任意正整数,,m n k ,不等式m n k S S cS +>都成立,所以max 92c =.点评:命题者给出的是另一种解法,一方面利用平均值不等式得到max 92c ≥;另一方面假设任取实数92a >,设k 为偶数,令312k m =+,312kn =-得到当k >22122m n S S d ak +<⋅k aS =,所以满足条件的92c ≤,从而max 92c ≤,通过夹逼得到max 92c =.命题者的解法虽然新颖独到,但是在自然流畅方面不及本例的解法.利用一些常见的函数的性质来解决数列不等式也应值得重视!。

概率与数列、导数、函数和方程等知识交汇的创新题型

概率与数列、导数、函数和方程等知识交汇的创新题型

概率与数列、导数、函数和方程等知识交汇的创新题型ʏ河南省固始县信合外国语高级中学 胡云兵2019年高考全国Ⅰ卷首次把概率题作为压轴题出现,当时引起一片哗然,这是在传递什么信号?概率统计题何去何从?我们要如何备考带着这些问题,我们从近几年全国卷和部分省份的概率高考题,发现概率题增加难度,不是概率知识本身增加难度,而是难在概率与其他数学知识交汇处命题㊂下面通过几道高考题来说明概率与其他数学知识交汇的创新题型㊂一㊁概率与数列的交汇例1 (2019全国Ⅰ卷理数第21题)为治疗某种疾病,研制了甲㊁乙两种新药,希望知道哪种新药更有效,为此进行动物试验㊂试验方案如下:每一轮选取两只白鼠对药效进行对比试验㊂对于两只白鼠,随机选一只施以甲药,另一只施以乙药㊂一轮的治疗结果得出后,再安排下一轮试验㊂当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效㊂为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈,则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈,则乙药得1分,甲药得-1分;若都治愈或都未治愈,则两种药均得0分㊂甲㊁乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X ㊂(1)求X 的分布列㊂(2)若甲药㊁乙药在试验开始时都赋予4分,p i (i =0,1, ,8)表示 甲药的累计得分为i 时,最终认为甲药比乙药更有效 的概率,则p 0=0,p 8=1,p i =a p i -1+b p i +c p i +1(i =1,2, ,7),其中a =P (X =-1),b =P (X =0),c =P (X =1)㊂假设α=0.5,β=0.8㊂(i )证明:{p i +1-p i }(i =0,1,2, ,7)为等比数列;(i i)求p 4,并根据p 4的值解释这种试验方案的合理性㊂解析:(1)X 的所有可能取值为-1,0,1㊂P (X =-1)=(1-α)β,P (X =0)=αβ+(1-α)(1-β),P (X =1)=α(1-β)㊂故X 的分布列如表1㊂表1X -101P(1-α)βαβ+(1-α)(1-β)α(1-β)(2)(i )已知α=0.5,β=0.8,故由(1)得,a =0.4,b =0.5,c =0.1㊂因此,p i =0.4p i -1+0.5p i +0.1p i +1(i =1,2, ,7)㊂整理得0.1(p i +1-p i )=0.4(p i -p i -1),即p i +1-p i =4(p i -p i -1)㊂又p 1-p 0=p 1ʂ0,故{p i +1-p i }(i =0,1,2, ,7)为公比为4,首项为p 1的等比数列㊂(i i )由(i)可得:p 8=(p 8-p 7)+(p 7-p 6)+ +(p 1-p 0)+p 0=p 1(1-48)1-4=48-13p 1㊂因p 8=1,故p 1=348-1㊂因此,p 4=(p 4-p 3)+(p 3-p 2)+(p 2-p 1)+(p 1-p 0)+p 0=44-13p 1=1257㊂p 4表示最终认为甲药更有效的概率㊂由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为p 4=1257ʈ0.0039,此时得出错误结论的概率非常小,说明这种试验方案合理㊂点评:本题是函数与数列的综合题,主要考查数列和函数的应用,考查离散型随机变量的分布列㊂根据条件推出数列的递推关系是解决本题的关键㊂其本质仍然是常规的概率与统计问题,只是其中涉及了数列问题的应用,一般转化为等差㊁等比数列的定义㊁通项公式或者数列求和问题㊂二㊁概率与函数㊁方程和导数的交汇例2 (2021新高考Ⅱ卷第21题)一种微生物群体可以经过自身繁殖不断生存下63 解题篇 创新题追根溯源 高二数学 2023年4月Copyright ©博看网. All Rights Reserved.来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代, ,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,P(X=i)=p i(i =0,1,2,3)㊂(1)已知p0=0.4,p1=0.3,p2=0.2,p3 =0.1,求E(X)㊂(2)设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的方程:p0+ p1x+p2x2+p3x3=x的一个最小正实根㊂求证:当E(X)ɤ1时,p=1;当E(X)>1时,p<1㊂(3)根据你的理解,请说明(2)问结论的实际含义㊂解析:(1)E(X)=0ˑ0.4+1ˑ0.3+2ˑ0.2+3ˑ0.1=1㊂(2)设f(x)=p3x3+p2x2+(p1-1)x+p0㊂因为p3+p2+p1+p0=1,所以f(x)= p3x3+p2x2-(p2+p0+p3)x+p0㊂①若E(X)ɤ1,则p1+2p2+3p3ɤ1,故p2+2p3ɤp0㊂f'(x)=3p3x2+2p2x-(p2+p0+p3)㊂因为f'(0)=-(p2+p0+p3)<0, f'(1)=p2+2p3-p0ɤ0,所以f'(x)有两个不同零点x1,x2,且x1<0<1ɤx2㊂当xɪ(-ɕ,x1)ɣ(x2,+ɕ)时, f'(x)>0;当xɪ(x1,x2)时,f'(x)<0㊂故f(x)在(-ɕ,x1)上为增函数,在(x1,x2)上为减函数,在(x2,+ɕ)上为增函数㊂若x2=1,f(x)在(x2,+ɕ)为增函数且f(1)=0㊂而当xɪ(0,x2)时,因为f(x)在(x1,x2)上为减函数,所以f(x)>f(x2)= f(1)=0,故1为p0+p1x+p2x2+p3x3=x 的一个最小正实根㊂若x2>1,因为f(1)=0且在(0,x2)上为减函数,所以1为p0+p1x+p2x2+p3x3 =x的一个最小正实根㊂综上,若E(X)ɤ1,则p=1㊂②若E(X)>1,则p1+2p2+3p3>1,故p2+2p3>p0㊂此时f'(0)=-(p2+p0+p3)<0, f'(1)=p2+2p3-p0>0,故f'(x)有两个不同零点x3,x4,且x3<0<x4<1㊂当xɪ(-ɕ,x3)ɣ(x4,+ɕ)时, f'(x)>0;当xɪ(x3,x4)时,f'(x)<0㊂故f(x)在(-ɕ,x3)上为增函数,在(x3,x4)上为减函数,在(x4,+ɕ)上为增函数㊂而f(1)=0,故f(x4)<0㊂又f(0)=p0>0,故f(x)在(0,x4)存在一个零点p,且p<1㊂所以p为p0+p1x+p2x2+p3x3=x的一个最小正实根,此时p<1㊂故当E(X)>1时,p<1㊂(3)结论的实际含义:每一个该种微生物繁殖后代的平均数不超过1,则若干代必然灭绝;若繁殖后代的平均数超过1,则若干代后被灭绝的概率小于1㊂点评:在概率与统计的问题中,决策的工具是样本的数字特征或有关概率㊂决策方案的最佳选择是将概率最大(最小)或均值最大(最小)的方案作为最佳方案,这往往借助于函数㊁不等式或数列的有关性质去实现㊂例3(2018年全国Ⅰ卷理数第20题)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品进行检验,如检验出不合格品,则更换为合格品㊂检验时,先从这箱产品中任取20件进行检验,再根据检验结果决定是否对余下的所有产品检验㊂设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立㊂(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0㊂(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p 的值㊂已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用㊂①若不对该箱余下的产品进行检验,这一箱产品的检验费用与赔偿费用的和记为X,求E(X);73解题篇创新题追根溯源高二数学2023年4月Copyright©博看网. All Rights Reserved.②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验解析:(1)20件产品中恰有2件不合格品的概率为f(p)=C220p2㊃(1-p)18(0< p<1)㊂因此,f'(p)=C220[2p(1-p)18-18p2(1-p)17]=2C220p(1-p)17(1-10p),0<p<1㊂令f'(p)=0,得p=0.1㊂当pɪ(0,0.1)时,f'(p)>0;当pɪ(0.1,1)时,f'(p)<0㊂所以f(p)的最大值点为p0=0.1㊂(2)由(1)知,p=0.1㊂①令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X= 20ˑ2+25Y,即X=40+25Y㊂所以E(X)=E(40+25Y)=40+ 25E(Y)=40+25ˑ180ˑ0.1=490㊂②若对余下的产品作检验,则这一箱产品所需要的检验费用为400元㊂由于E(X)>400,故应该对余下的产品作检验㊂点评:解决概率和函数㊁导数的综合问题,关键是读懂题意,将与概率有关的问题(尤其是最值问题)转化为函数问题,再利用函数或导数知识解决,在转化过程中,对已知条件进行适当变形㊁整理,使之与求解的结论建立联系,从而解决问题㊂三、概率与不等式的交汇例4(2017年江苏卷第23题)已知一个口袋有m个白球,n个黑球(m,nɪN*, nȡ2),这些球除颜色外完全相同㊂现将口袋中的球随机地逐个取出,并放入如表2所示的编号为1,2,3, ,m+n的抽屉内,其中第k次取球放入编号为k的抽屉(k=1,2, 3, ,m+n)㊂表2123 m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量X表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明:E(X)<n(m+n)(n-1)㊂解析:(1)编号为2的抽屉内放的是黑球的概率p=C n-1m+n-1C n m+n=nm+n㊂(2)随机变量X的概率分布如表3㊂表3X1n1n+11n+2 1k 1n+m PC n-1n-1C n m+nC n-1nC n m+nC n-1n+1C n m+nC n-1k-1C n m+nC n-1n+m-1C n m+n随机变量X的期望为:E(X)=ðm+n k=n1k㊃C n-1k-1C n m+n=1C n m+nðm+n k=n1k㊃(k-1)!(n-1)!(k-n)!㊂所以E(X)<1C n m+nðm+n k=n(k-2)!(n-1)!(k-n)!=1(n-1)C n m+nðm+n k=n(k-2)!(n-2)!(k-n)!=1(n-1)C n m+n(1+C n-2n-1+C n-2n+ + C n-2m+n-2)=1(n-1)C n m+n(C n-1n-1+C n-2n-1+C n-2n+ + C n-2m+n-2)=1(n-1)C n m+n(C n-1n+C n-2n+ + C n-2m+n-2)=1(n-1)C n m+n(C n-1m+n-2+C n-2m+n-2)=C n-1m+n-1(n-1)C n m+n=n(m+n)(n-1)㊂故E(X)<n(m+n)(n-1)㊂点评:本题表面看起来是概率问题,但是它重点恰在不等式,所以对于概率统计问题,我们要有意关注与其他数学知识的整合㊂同时也提醒我们要跳出固定思维模式,学会灵活处理问题的能力㊂(责任编辑徐利杰)8 3解题篇创新题追根溯源高二数学2023年4月Copyright©博看网. All Rights Reserved.。

求解数列不等式证明问题的方法

求解数列不等式证明问题的方法

解题宝典证明数列不等式问题是一类综合性较强且难度较大的问题,不仅考查了数列知识,还考查了证明不等式的技巧.本文主要介绍三种证明数列不等式问题的方法,以供大家参考.一、利用数列的单调性我们知道,数列具有单调性.因此在证明数列不等式问题时,我们可以利用数列的单调性来讨论数列的变化趋势,进而证明不等式.利用数列的单调性解题的关键在于观察数列的特征,通过作差、作商等方法,构造出新数列,利用数列的单调性证明结论.例1.已知数列{}a n各项均为正数,前n项和S1>1,满足关系式6S n=(a n+1)(a n+2),n∈N*.设数列{}bn满足关系式an(2b n-1)=1,令T n为数列{}b n的前n项和,求证:3T n+1>log2(a n+3),n∈N*.证明:根据前n项和关系式可得a n=3n-1,将其代入到an(2b n-1)=1中可得b n=log23n3n-1,Tn=b1+b2+⋯+b n=log2(32×65×⋯×3n3n-1),则3T n+1-log2(a n+3)=log2éë(32×65×⋯×3n3n-1)3ùû×23n+2.设f(n)=(32×65×⋯×3n3n-1)3×23n+2,则f(n+1)f(n)=(3n+3)3(3n+5)(3n+2)2,变形得(3n+3)3-(3n+5)(3n+2)2=9n+7>0,则数列{}f(n)单调递增.因此f(n)≥f(1)>1,则3T n+1-log2(a n+3)=log2f(n)>0,所以3T n+1>log2(a n+3).本题的难度较大,欲证明此题,首先需要从结论出发,构造数列f(n),然后根据新数列的形式,利用作差法、作商法证明数列具有单调性,再利用其单调性证明结论.很多时候,我们并不能直接发现数列的单调性,往往需要对数列的递推式进行多次转换、变形,构造出新数列才能发现其单调性.二、放缩法放缩法是解答不等式问题的基本方法之一.在运用放缩法证明数列不等式问题时,我们必须紧紧围绕着放缩目标,掌握好放缩的尺度,灵活运用不等式的传递性证明不等式.常见的放缩技巧有添加或删除某些项、先放缩再求和(先求和再放缩)、先裂项再放缩(先放缩再裂项)等.但无论运用哪种放缩技巧,都需要把控放缩的尺度,否则容易得出错误的答案.例2.已知数列{}a n满足条件:a1=1,a n+1=2a n+1(n∈N*),试证明:n2-13<a1a2+a2a3+⋯+a n an+1<n2.证明:由a n+1=2a n+1,(n∈N*),可得a n=2n-1,则akak+1=2k-12k+1-1=2k-12(2k-12)<2k-12(2k-1)=12,所以a1a2+a2a3+⋯+anan+1<12+12+⋯+12=n2.故akak+1=2k-12k+1-1=12·2k+1-22k+1-1=12(1-12k+1-1)=12-13×2k+2k-2≥12-13×12k(k=1,2,3,⋯),即a1a2+a2a3+⋯+anan+1≥12-13(12+122+⋯+12n)=n2-13(1-12n)>n2-13.综合上述分析,即可证明不等式n2-13<a1a2+a2a3+⋯+a n a n+1<n2成立.本题主要运用了放缩法,首先结合数列不等式的表达式,对不等式进行缩放,构造出anan+1,再借助不等式的传递性证明了结论.三、导数法对于综合性较强的数列不等式问题,我们往往采用导数法来求解.首先结合不等式构造出函数模型,对函数求导,通过研究其导函数得到函数的单调性、最储文海42解题宝典值,进而证明不等式成立.例3:试证明12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1(n ∈N*).证明:令a n =1n +1、b n =1n ,于是当n ≥2时,S n -1=ln n 、S n =ln(n +1).则S n -S n -1=ln(n -1)-ln n =ln n +1n.欲证明原不等式成立,需要证明1n +1<ln n +1n<1n ,即证明1x +1<ln x +1x <1x ,x ≥1.设函数f (x )=ln x +1x -1x +1,对其进行求导可得到f ′(x )=1x +1-1x +1(x +1)2=-1x (x +1)2<0.令x +1x =t ,则1x =t -1,t -1t<ln t <t -1,(t >1).设函数h (t )=ln t -t -1t ,则h ′(t )=t -1t2>0,则函数h (t )在(1,+∞)单调递增,所以h (t )>h (1)=0,h (t )=ln t -t -1t>0,即是ln t >t -1t.同理可以证得ln t <t -1,即是ln t +1t <1t.综上可得,1t +1<ln t +1t <1t ,当t 分别取1,2,3,…,n -1时,12+13+14+⋯+1n <ln n <1+12+13+14+⋯+1n +1.运用导数法的根本目的是判断数列的单调性,求得数列的最值.这里首先构造出两个数列以及两个数列的和式,然后结合目标不等式的形式构造出函数模型,通过分析导函数确定函数的单调性,从而证明不等式.从上述分析我们不难看出,证明数列不等式问题的难度系数较大.在解答此类问题时,我们需要仔细分析数列不等式的特点,将其进行适当的变形、转化,并要学会联想,将其与不等式的性质、重要结论以及函数、导数的性质关联起来,才能将难题破解.(作者单位:江苏省华罗庚中学)立体几何是高考数学考查的重点.解答立体几何问题常用的方法是几何法和向量法.这两种方法是分别从几何和代数两个角度入手的,有着各自的优势.本文重点探讨这两种方法在解题中的应用.一、几何法几何法是指运用几何知识解答问题的方法.在解答立体几何问题时,我们需要根据题意绘制相应的图形,探寻空间中点、线、面之间的位置关系,通过延长线段,平移、变换、旋转图形,添加辅助线等方式,建立结论与已有条件之间的联系,灵活运用各种定理、定义、性质,对条件进行转化,顺利解答问题.例1.如图1,在三棱台ABC-DEF 中,已知平面BCEF ⊥平面ABC ,∠ACB -90°,BE =EF =FC =1,BC =2,AC =3,(1)求证:BF ⊥平面ACFD (2)求二面角B -AD -C 的余弦值.李鹏飞图143。

导数解答题中数列不等式的证明思路策略

导数解答题中数列不等式的证明思路策略

导数解答题中数列不等式的证明思路策略张国飞(安徽省桐城中学ꎬ安徽桐城231400)摘㊀要:导数解答题中最后一问设置数列不等式的证明ꎬ是高考函数与导数知识模块中命题时比较常见的一个压轴题型.文章结合实例ꎬ就导数解答题中数列不等式的几个常见的证明思路策略加以剖析ꎬ阐述基本证明思路与技巧方法ꎬ总结证明归纳与策略ꎬ引领并指导数学教学与复习备考.关键词:导数ꎻ数列ꎻ不等式ꎻ证明ꎻ思路ꎻ策略中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)30-0038-03收稿日期:2023-07-25作者简介:张国飞(1980.7-)ꎬ男ꎬ安徽省安庆人ꎬ本科ꎬ中学一级教师ꎬ从事高中数学教学研究.㊀㊀在函数与导数的综合应用解答题中ꎬ经常会有证明数列不等式ꎬ形如ðni=1ai<g(n)或ðni=1ai<A(A为常数)等形式成立的数列不等式设置.此类数列不等式的证明问题往往前后联系ꎬ与前面小题中的函数与导数的综合应用等着直接或间接的联系ꎬ需要借助函数的单调性㊁导数的基本性质以及不等式的性质等来应用ꎬ综合性强ꎬ时常是压轴题的首选ꎬ倍受各方关注.下面结合实例ꎬ就证明导数解答题中的数列不等式的思路策略加以剖析与应用ꎬ抛砖引玉[1].1抓住常用思路ꎬ进行逐项比较对于数列不等式ðni=1ai<g(n)ꎬ其中不等式的一边是某个数列的前n项和ꎬ而另一边g(n)如果可以看作另一个数列的前n项和ꎬ此时可以采用计算该数列的通项公式bnꎬ借助an<bn的转化ꎬ通过逐项比较ꎬ利用累加法加以分析与证明.例1㊀求证:对于任意的xɪ(0ꎬ+ɕ)ꎬ有x1+x<ln(1+x)<x恒成立.根据这个不等式证明:ln(n+1)<1+12+ +1n<lnn+1(nɪN∗).解析㊀令函数f(x)=ln(1+x)-x(x>0)ꎬ则fᶄ(x)=11+x-1=-x1+x<0ꎬ则知函数f(x)在(0ꎬ+ɕ)上单调递减ꎬ可得f(x)<f(0)=0ꎬ即ln(1+x)<x成立ꎻ令函数g(x)=x1+x-ln(1+x)(x>0)ꎬ则gᶄ(x)=1(1+x)2-11+x=-x(1+x)2<0ꎬ则知函数g(x)在(0ꎬ+ɕ)上单调递减ꎬ可得g(x)<g(0)=0ꎬ即x1+x<ln(1+x)成立ꎻ综上分析ꎬ可得对于任意的xɪ(0ꎬ+ɕ)ꎬ有x1+x<ln(1+x)<x恒成立.取x=1nꎬ可得x1+x=1n1+1n=1n+1<ln(1+x)=ln(1+1n)=lnn+1n=ln(n+1)-lnn<x=1nꎬ即831n+1<ln(n+1)-lnn<1nꎬ令n=1ꎬ2ꎬ ꎬ对应不等式累加可得12+13+ +1n+1<ln(n+1)<1+12+ +1nꎬ即ln(n+1)<1+12+ +1n<lnn+1(nɪN∗).点评㊀由函数不等式过渡到数列不等式的处理ꎬ就是合理对变量进行赋值处理ꎬ进而实现逐项比较的目的ꎬ同时在累加处理时ꎬ还要对不等式的形式进行巧妙处理ꎬ这里由12+13+ +1n+1<ln(n+1)可得1+12+13+ +1n<lnnꎬ进而得到1+12+ +1n<lnn+1.注意递推不等式的结构特征与应用.2融合可选思路ꎬ利用数列单调(性)对于数列不等式ðni=1ai<g(n)ꎬ通过恒等变形转化为证明bn=ðni=1ai-g(n)<0ꎬ先验证b1<0ꎬ接下来验证bn+1-bn<0恒成立ꎬ利用数列的单调性(单调递减)实现数列不等式的证明与应用[2].例2㊀设函数f(x)=(x-1)2+blnxꎬ其中b为常数.(1)判断函数f(x)在定义域上的单调性ꎻ(2)求证:132+142+ +1n2<ln(n+1)(nȡ3ꎬnɪN∗).㊀解析㊀由函数f(x)=(x-1)2+blnx(x>0)ꎬ则fᶄ(x)=2(x-1)+bx=2(x-12)2+b-12xꎬ所以当bȡ12时ꎬfᶄ(x)ȡ0ꎬ函数f(x)在(0ꎬ+ɕ)上单调递增ꎻ当b<12时ꎬ令fᶄ(x)=0ꎬ解得x1=12-1-2b2或x2=12+1-2b2ꎬ①当bɤ0时ꎬx1ɤ0舍去ꎬ而x2ȡ1ꎬ此时fᶄ(x)ꎬf(x)随x在定义域上的变化情况如下表:表1㊀函数单调性与导数关系x(0ꎬx2)x2(x2ꎬ+ɕ)fᶄ(x)-0+f(x)↘极小值↗x(0ꎬx1)x1(x1ꎬx2)x2(x2ꎬ+ɕ)fᶄ(x)+0-0+f(x)↗极大值↘极小值↗㊀㊀②当0<b<12时ꎬ0<x1<x2ꎬ此时fᶄ(x)ꎬf(x)随x在定义域上的变化情况如下表:综上分析ꎬ当bȡ12时ꎬ函数f(x)在(0ꎬ+ɕ)上单调递增ꎻ当0<b<12时ꎬ函数f(x)在(0ꎬ12-1-2b2)ꎬ(12+1-2b2ꎬ+ɕ)上单调递增ꎬ在(12-1-2b2ꎬ12+1-2b2)上单调递减ꎻ当bɤ0时ꎬ函数f(x)在(0ꎬ12+1-2b2)上单调递减ꎬ在(12+1-2b2ꎬ+ɕ)上单调递增.(2)设bn=132+142+ +1n2-ln(n+1)ꎬnȡ3ꎬnɪN∗ꎬ则b3=19-ln4<0显然成立ꎻ当nȡ3ꎬnɪN∗时ꎬbn+1-bn=1(n+1)2-ln(n+2)+ln(n+1)=1(n+1)2-lnn+2n+1ꎬ设x=n+2n+1=1+1n+1ɪ(1ꎬ54]ꎬ那么要证bn+1-bn<0ꎬ只需证(x-1)2-lnx<0ꎬ取b=-1ꎬ由(1)知函数f(x)在(0ꎬ1+32)上单调递减ꎬ而54<1+32ꎬ则知当xɪ(1ꎬ54]时ꎬf(x)=93(x-1)2-lnx<f(1)=0ꎬ从而bn+1-bn<0成立ꎬ即数列{bn}单调递减ꎬ则有bnɤb3<0ꎬ原数列不等式得证.点评㊀这里利用数列的单调性来证明相关的数列不等式成立时ꎬ其证明过程与逐项比较写的过程有点差异ꎬ但本质上两种方法之间有着异曲同工之妙.注意证明数列的单调性时ꎬ往往要回归题目前面部分所涉及的函数不等式问题ꎬ合理应用.3借助性质思路ꎬ合理放缩处理对于数列不等式ðni=1ai<Aꎬ经常可以借助函数的单调性质㊁不等式的基本性质等来加强命题ðni=1ai<g(n)且g(n)<Aꎬ通过合理的放缩与变形处理来巧妙转化与应用.放缩的关键是数列的求和与放缩ꎬ以及不等式性质的应用等[3].例3㊀已知函数f(x)=x-mlnx-1(mɪR)在x=1处取得极值A.(1)求出实数m的值ꎬ并判断A是函数f(x)的最大值还是最小值ꎻ(2)证明:对于任意正整数nꎬ不等式(1+12)(1+122) (1+12n)<e恒成立ꎬ其中e=2.71828 是自然对数的底数.解析㊀(1)由函数f(x)=x-mlnx-1(x>0)ꎬ则fᶄ(x)=1-mxꎬ由于x=1是函数f(x)的极值点ꎬ则有fᶄ(1)=0ꎬ即1-m1=0ꎬ解得m=1ꎬ此时函数f(x)=x-lnx-1ꎬfᶄ(x)=1-1x=x-1xꎬ则知当0<x<1时ꎬfᶄ(x)<0ꎬ函数f(x)单调递减ꎻ当x>1时ꎬfᶄ(x)>0ꎬ函数f(x)单调递增ꎬ所以函数f(x)在x=1处取得极值A=f(1)=0是最小值ꎻ(2)由(1)知ꎬ当x>1时ꎬf(x)>f(1)=0ꎬ即x-1>lnxꎬ不妨令x=1+12nꎬnɪN∗ꎬ则有ln(1+12n)<12nꎬnɪN∗ꎬ所以ln(1+12)+ln(1+122)++ln(1+12n)<12+122+ +12n=12(1-12n)1-12=1-12n<1ꎬ即ln[(1+12)(1+122) (1+12n)]<1=lneꎬ所以不等式(1+12)(1+122) (1+12n)<e恒成立.点评㊀在解决导数解答题中数列不等式的证明问题时ꎬ往往要先从前面小题的过程或结论中选取合适的函数不等式加以应用ꎬ这非常考验考生的观察能力.而在对数列不等式进行累加求和处理后ꎬ合理的放缩是正确证明的关键ꎬ要注意观察所要证明的数列不等式的结构特征加以巧妙放缩处理.在解决导数解答题中数列不等式的证明时ꎬ除了以上三种基本的证明思路策略ꎬ还可以借助推理与证明思维进一步加以综合与应用ꎬ利用可行的思路方法与技巧策略来剖析ꎬ有时在证明数列不等式时还可以多种证明思路策略联合应用ꎬ实现问题的综合应用与巧妙解决[4].参考文献:[1]韩文美.突出四个 基本点 ꎬ强化导数及应用[J].中学生数理化(高二数学)ꎬ2023ꎬ974(06):22-24ꎬ26.[2]白亚军.求解数列不等式的常见放缩技巧[J].高中数学教与学ꎬ2023(09):21-22ꎬ20.[3]蔡雯.例析高考中函数与数列不等式证明问题的突破[J].高中数理化ꎬ2023(07):26-27.[4]刘海涛.由一道高考题引发的对证明数列不等式的思考[J].中学数学月刊ꎬ2021(04):63-64.[责任编辑:李㊀璟]04。

(完整版)导数与数列不等式

(完整版)导数与数列不等式

导数与数列不等式1.设函数)1ln(2)1()(2x x x f +-+=(1)若关于x 的不等式0)(≥-m x f 在]1,0[-e 有实数解,求实数m 的取值范围;(2)设1)()(g 2--=x x f x ,若关于x 的方程p x =)(g 至少有一个解,求p 的最小值.(3)证明不等式:nn 131211)1ln(++++<+Λ )(*N n ∈ (4)证明不等式:1n +1+1n +2+…+1n +(n +1)>ln2 (n ∈N *). 2(Ⅰ)当92a =时,设g x f x k =-()(),如果函数()x g 仅有一个零点,求实数k 的取值范围;(Ⅱ)当2a =时,试比较f x ()与1的大小; (Ⅲ)求证:1111ln 135721n n +>+++++L ()n ∈*N () 3.已知函数.(1)求的单调区间和极值;的极大值为(2)求证:. 4.已知函数kx x f =)(,x x x g ln )(=(1)求函数xx x g ln )(=的单调区间 (2)若不等式)()(x g x f >在),0(+∞上恒成立,求k 的取值范围。

(3)e n n n21ln 24<∑ 5.已知函数x t tx x f ln )(--=。

(1)若函数)(x f 在),1[+∞上为增函数,求t 的取值范围。

()2ln(1)(0)f x a x x a =+->()f x ()f x 2ln 221a a a -+(1)lg lg lg 4lg lg (1)23n n n n e e e e e n n++++⋅⋅⋅+>+*()n N ∈(2)当时且2*≥∈n N n ,证明n nln ln 13ln 12ln 1>+++Λ 6.已知函数()ln 1f x x x =-+。(1)求()f x 的最大值; (2)证明不等式:()*121n n nn e n N n n n e ⎛⎫⎛⎫⎛⎫+++<∈ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭L 7.已知函数()()2ln 1f x x x =-+(1)当0x >时,求证:()3;f x x < (2)当n N *∈时,求证:()33311111511...23421nk f k n n n =⎛⎫<++++≤- ⎪+⎝⎭∑ 8.已知函数2()2ln 1f x a x x =-+。(1)当1a =时,求函数()f x 的单调区间及()f x 的最大值;(2)令()()g x f x x =+,若()g x 在定义域上是单调函数,求a 的取值范围; (3)对于任意的*2,n n N ≥∈,试比较22222ln 2ln 3ln 4ln 5ln n +++++L 与232(1)n n n n --+的大小并证明你的结论。9.已知函数()()ln 0f x x a x a =-->(1)若1a =,求()f x 的单调区间及()f x 的最小值;(2)若0a >,求()f x 的单调区间;(3)试比较()()()()222222121ln 2ln 3ln ...2,2321n n n n n N n n *-++++≥∈+与的大小,并证明。 10.已知函数)0()(>++=a c xb ax x f 的图像在点))1(,1(f 处的切线方程为1-=x y 。 (1)用a 表示出c b ,;(2)若x x f ln )(≥在),1[+∞上恒成立,求a 的取值范围;(3)证明:)1()1(2)1ln(131211≥+++>++++n n n n n Λ. 11.设函数()ln(1),()'(),0f x x g x xf x x =+=≥,其中'()f x 是()f x 的导函数.(1)11()(),()(()),n n g x g x g x g g x n N ++==∈,求()n g x 的表达式; (2)若()()f x ag x ≥恒成立,求实数a 的取值范围;(3)设n N +∈,比较(1)(2)()g g g n +++L与()n f n -的大小,并加以证明.解:由题设得,()(0)1x g x x x=≥+ (Ⅰ)由已知,1211(),()(())11211xx x x g x g x g g x x x x x+====++++ 3()13x g x x =+,…,可得()1n x g x nx=+ 下面用数学归纳法证明① 当1n =时,1()1x g x x=+,结论成立 ② 假设n k =时结论成立,即()1k x g x kx =+ 那么1n k =+时,11()(())1(1)11k k xx kx g x g g x x k x kx++===++++ 即结论成立由①②可知,结论对n N +∈成立。

高考数学-数列与不等式的交汇题型分析及解题策略论文

高考数学-数列与不等式的交汇题型分析及解题策略论文

数列与不等式的交汇题型分析及解题策略【命题趋向】数列与不等式交汇主要以压轴题的形式出现,试题还可能涉及到与导数、函数等知识综合一起考查.主要考查知识重点和热点是数列的通项公式、前n项和公式以及二者之间的关系、等差数列和等比数列、归纳与猜想、数学归纳法、比较大小、不等式证明、参数取值范围的探求,在不等式的证明中要注意放缩法的应用.此类题型主要考查学生对知识的灵活变通、融合与迁移,考查学生数学视野的广度和进一步学习数学的潜能.近年来加强了对递推数列考查的力度,这点应当引起我们高度的重视.如08年北京文20题(12分)中档偏上,考查数列与不等式恒成立条件下的参数问题、08年湖北理21题(12分)为中档偏上,考查数列与不等式交汇的探索性问题、08年江西理19题(12分)中等难度,考查数列求和与不等式的交汇、08年全国卷Ⅰ理22(12分)压轴题,难说大,考查数学归纳法与不等式的交汇,等等.预计在2009年高考中,比较新颖的数列与不等式选择题或填空题一定会出现.数列解答题的命题热点是与不等式交汇,呈现递推关系的综合性试题.其中,以函数与数列、不等式为命题载体,有着高等数学背景的数列与不等式的交汇试题是未来高考命题的一个新的亮点,而命题的冷门则是数列与不等式综合的应用性解答题.【考试要求】1.理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.2.理解等差数列的概念.掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题.3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。

4.理解不等式的性质及其证明.5.掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.6.掌握分析法、综合法、比较法证明简单的不等式.7.掌握简单不等式的解法及理解不等式│a│-│b│≤│a+b│≤│a│+│b│.【考点透视】1.以客观题考查不等式的性质、解法与数列、等差数列、等比数列的简单交汇.2.以解答题以中档题或压轴题的形式考查数列与不等式的交汇,还有可能涉及到导数、解析几何、三角函数的知识等,深度考查不等式的证明(主要比较法、综合法、分析法、放缩法、数学归纳法、反证法)和逻辑推理能力及分类讨论、化归的数学思想,试题新颖别致,难度相对较大.3.将数列与不等式的交汇渗透于递推数列及抽象数列中进行考查,主要考查转化及方程的思想.【典例分析】题型一求有数列参与的不等式恒成立条件下参数问题求得数列与不等式绫结合恒成立条件下的参数问题主要两种策略:(1)若函数f(x)在定义域为D,则当x∈D时,有f(x)≥M恒成立⇔f(x)min≥M;f(x)≤M恒成立⇔f(x)max≤M;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得.【例1】等比数列{a n}的公比q>1,第17项的平方等于第24项,求使a1+a2+…+a n>1a1+1a2+…+1a n恒成立的正整数n的取值范围.【分析】 利用条件中两项间的关系,寻求数列首项a 1与公比q 之间的关系,再利用等比数列前n 项公式和及所得的关系化简不等式,进而通过估算求得正整数n 的取值范围.【解】 由题意得:(a 1q 16)2=a 1q 23,∴a 1q 9=1.由等比数列的性质知:数列{1a n }是以1a 1为首项,以1q为公比的等比数列,要使不等式成立,则须a 1(q n-1)q -1>1a 1[1-(1q )n ]1-1q ,把a 21=q -18代入上式并整理,得q -18(q n-1)>q(1-1qn ),q n>q 19,∵q>1,∴n>19,故所求正整数n 的取值范围是n≥20. 【点评】 本题解答数列与不等式两方面的知识都用到了,主要体现为用数列知识化简,用不等式知识求得最后的结果.本题解答体现了转化思想、方程思想及估算思想的应用.【例2】 (08·全国Ⅱ)设数列{a n }的前n 项和为S n .已知a 1=a ,a n+1=S n +3n,n∈N*.(Ⅰ)设b n =S n -3n,求数列{b n }的通项公式;(Ⅱ)若a n+1≥a n ,n∈N*,求a 的取值范围.【分析】 第(Ⅰ)小题利用S n 与a n 的关系可求得数列的通项公式;第(Ⅱ)小题将条件a n+1≥a n 转化为关于n 与a 的关系,再利用a≤f(n)恒成立等价于a≤f(n)min 求解.【解】 (Ⅰ)依题意,S n+1-S n =a n+1=S n +3n ,即S n+1=2S n +3n,由此得S n+1-3 n+1=2(S n -3n).因此,所求通项公式为b n =S n -3n =(a -3)2 n -1,n∈N*, ①(Ⅱ)由①知S n =3n +(a -3)2 n -1,n∈N*,于是,当n≥2时,a n =S n -S n -1=3n +(a -3)2 n -1-3n -1-(a -3)2 n -2=2×3n -1+(a -3)2 n -2, a n+1-a n =4×3n -1+(a -3)2n -2=2n -2·[12·(32)n -2+a -3],当n≥2时,a n+1≥a n ,即2 n -2·[12·(32)n -2+a -3]≥0,12·(32)n -2+a -3≥0,∴a≥-9,综上,所求的a 的取值范围是[-9,+∞].【点评】 一般地,如果求条件与前n 项和相关的数列的通项公式,则可考虑S n 与a n的关系求解.本题求参数取值范围的方法也一种常用的方法,应当引起重视.题型二 数列参与的不等式的证明问题此类不等式的证明常用的方法:(1)比较法,特别是差值比较法是最根本的方法;(2)分析法与综合法,一般是利用分析法分析,再利用综合法分析;(3)放缩法,主要是通过分母分子的扩大或缩小、项数的增加与减少等手段达到证明的目的.【例3】 已知数列{a n }是等差数列,其前n 项和为S n ,a 3=7,S 4=24.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设p 、q 都是正整数,且p ≠q ,证明:S p+q <12(S 2p +S 2q ).【分析】 根据条件首先利用等差数列的通项公式及前n 项公式和建立方程组即可解决第(Ⅰ)小题;第(Ⅱ)小题利用差值比较法就可顺利解决.【解】 (Ⅰ)设等差数列{a n }的公差是d ,依题意得,⎩⎨⎧ a 1+2d =74a 1+6d =24,解得⎩⎨⎧ a 1=3d =2,∴数列{a n }的通项公式为a n =a 1+(n -1)d =2n +1. (Ⅱ)证明:∵a n =2n +1,∴S n =n(a 1+a n )2=n 2+2n .2S p+q -(S 2p +S 2q )=2[(p +q)2+2(p +q)]-(4p 2+4p)-(4q 2+4q)=-2(p -q)2,∵p ≠q ,∴2S p+q -(S 2p +S 2q )<0,∴S p+q <12(S 2p +S 2q ).【点评】 利用差值比较法比较大小的关键是对作差后的式子进行变形,途径主要有:(1)因式分解;(2)化平方和的形式;(3)如果涉及分式,则利用通分;(4)如果涉及根式,则利用分子或分母有理化.【例4】 (08·安徽高考)设数列{a n }满足a 1=0,a n+1=ca n 3+1-c ,c∈N*,其中c 为实数.(Ⅰ)证明:a n ∈[0,1]对任意n∈N*成立的充分必要条件是c∈[0,1];(Ⅱ)设0<c <13,证明:a n ≥1-(3c)n -1,n∈N*;(Ⅲ)设0<c <13,证明:a 12+a 22+…+a n 2>n +1-21-3c ,n ∈N*.【分析】 第(1)小题可考虑用数学归纳法证明;第(2)小题可利用综合法结合不等关系的迭代;第(3)小题利用不等式的传递性转化等比数列,然后利用前n 项和求和,再进行适当放缩.【解】(Ⅰ)必要性:∵a 1=0,a 2=1-c ,又∵a 2∈[0,1],∴0≤1-c≤1,即c∈[0,1].充分性:设c∈[0,1],对n∈N*用数学归纳法证明a n ∈[0,1]. (1)当n =1时,a 1∈[0,1].(2)假设当n =k 时,a k ∈[0,1](k≥1)成立,则a k +1=ca k 3+1-c≤c+1-c =1,且a k +1=ca k 3+1-c≥1-c≥0, ∴a k +1∈[0,1],这就是说n =k +1时,a n ∈[0,1]. 由(1)、(2)知,当c∈[0,1]时,知a n ∈[0,1]对所胡n∈N*成立. 综上所述,a n ∈[0,1]对任意n∈N*成立的充分必要条件是c∈[0,1].(Ⅱ)设0<c <13,当n =1时,a 1=0,结论成立.当n≥2时,由a n =ca n -13+1-c ,∴1-a n =c(1-a n -1)(1+a n -1+a n -12)∵0<c <13,由(Ⅰ)知a n -1∈[0,1],所以1+a n -1+a n -12≤3,且1-a n -1≥0,∴1-a n ≤3c(1-a n -1),∴1-a n ≤3c(1-a n -1)≤(3c)2(1-a n -2)≤…≤(3c) n -1(1-a 1)=(3c) n -1,∴a n ≥1-(3c)n -1,n∈N*.(Ⅲ)设0<c <13,当n =1时,a 12=0>2-21-3c,结论成立.当n≥2时,由(Ⅱ)知a n ≥1-(3c)n -1>0,∴a n 2≥[(1-(3c)n -1)] 2=1-2(3c)n -1+(3c)(n -1)>1-2(3c)n -1, a 12+a 22+…+a n 2=a 22+…+a n 2>n -1-2[3c +(3c)2+…+(3c)n -1]=n -1-2[1+3c +(3c)2+…+(3c)n -1-1]=n +1-2[1-(3c)n]1-3c >n +1-21-3c.【点评】 本题是数列与不等式、数学归纳法的知识交汇题,属于难题,此类试题在高考中点占有一席之地,复习时应引起注意.本题的第(Ⅰ)小题实质也是不等式的证明,题型三 求数列中的最大值问题求解数列中的某些最值问题,有时须结合不等式来解决,其具体解法有:(1)建立目标函数,通过不等式确定变量范围,进而求得最值;(2)首先利用不等式判断数列的单调性,然后确定最值;(3)利用条件中的不等式关系确定最值.【例5】 (08·四川高考)设等差数列{a n }的前n 项和为S n ,若S 4≥10,S 5≤15,则a 4的最大值为______.【分析】 根据条件将前4项与前5项和的不等关系转化为关于首项a 1与公差d 的不等式,然后利用此不等关系确定公差d 的范围,由此可确定a 4的最大值.【解】 ∵等差数列{a n }的前n 项和为S n ,且S 4≥10,S 5≤15,∴⎩⎪⎨⎪⎧ S 4=4a 1+4×32d≥10S 5=5a 1+5×42d≤15,即⎩⎨⎧ a 1+3d≥5a 1+2d≤3,∴⎩⎨⎧ a 4=a 1+3d≥5-3d 2+3d =5+3d 2a 4=a 1+3d =(a 1+2d)+d≤3+d , ∴5+3d 2≤a 4≤3+d ,则5+3d≤6+2d ,即d≤1.∴a 4≤3+d≤3+1=4,故a 4的最大值为4. 【点评】 本题最值的确定主要是根据条件的不等式关系来求最值的,其中确定数列的公差d 是解答的关键,同时解答中要注意不等式传递性的应用.【例6】 等比数列{a n }的首项为a 1=2002,公比q =-12.(Ⅰ)设f(n)表示该数列的前n 项的积,求f(n)的表达式;(Ⅱ)当n 取何值时,f(n)有最大值.【分析】 第(Ⅰ)小题首先利用等比数列的通项公式求数列{a n }的通项,再求得f(n)的表达式;第(Ⅱ)小题通过商值比较法确定数列的单调性,再通过比较求得最值.【解】 (Ⅰ)a n =2002·(-12)n -1,f(n)=2002n·(-12)n(n -1)2(Ⅱ)由(Ⅰ),得|f(n +1)||f(n)|=20022n ,则当n≤10时,|f(n +1)||f(n)|=20022n >1,∴|f(11)|>|f(10)|>…>|f(1)|,当n≥11时,|f(n +1)||f(n)|=20022n <1,∴|f(11)|>|f(12)|>|f(13)|>…,∵f(11)<0,f(10)<0,f(9)>0,f(12)>0,∴f(n)的最大值为f(9)或f(12)中的最大者.∵f(12)f(9)=200212·(12)6620029·(12)36=20023·(12)30=(2002210)3>1, ∴当n =12时,f(n)有最大值为f(12)=200212·(12)66.【点评】 本题解答有两个关键:(1)利用商值比较法确定数列的单调性;(2)注意比较f(12)与f(9)的大小.整个解答过程还须注意f(n)中各项的符号变化情况.题型四 求解探索性问题数列与不等式中的探索性问题主要表现为存在型,解答的一般策略:先假设所探求对象存在或结论成立,以此假设为前提条件进行运算或逻辑推理,若由此推出矛盾,则假设不成立,从而得到“否定”的结论,即不存在.若推理不出现矛盾,能求得在范围内的数值或图形,就得到肯定的结论,即得到存在的结果.【例7】 已知{a n }的前n 项和为S n ,且a n +S n =4.(Ⅰ)求证:数列{a n }是等比数列;(Ⅱ)是否存在正整数k ,使S k+1-2S k -2>2成立.【分析】 第(Ⅰ)小题通过代数变换确定数列a n +1与a n 的关系,结合定义判断数列{a n }为等比数列;而第(Ⅱ)小题先假设条件中的不等式成立,再由此进行推理,确定此不等式成立的合理性.【解】 (Ⅰ)由题意,S n +a n =4,S n +1+a n +1=4,由两式相减,得(S n +1+a n +1)-(S n +a n )=0,即2a n +1-a n =0,a n +1=12a n ,又2a 1=S 1+a 1=4,∴a 1=2,∴数列{a n }是以首项a 1=2,公比为q =12的等比数列.(Ⅱ)由(Ⅰ),得S n =2[1―(12)n]1―12=4-22-n.又由S k+1-2S k -2>2,得4-21-k-24-22-k-2>2,整理,得23<21-k <1,即1<2 k -1<32, ∵k ∈N *,∴2k -1∈N *,这与2k -1∈(1,32)相矛盾,故不存在这样的k ,使不等式成立.【点评】 本题解答的整个过程属于常规解法,但在导出矛盾时须注意条件“k ∈N *”,这是在解答数列问题中易忽视的一个陷阱.【例8】 (08·湖北高考)已知数列{a n }和{b n }满足:a 1=λ,a n+1=23a n +n -4,b n =(-1)n(a n -3n +21),其中λ为实数,n 为正整数.(Ⅰ)对任意实数λ,证明数列{a n }不是等比数列;(Ⅱ)试判断数列{b n }是否为等比数列,并证明你的结论;(Ⅲ)设0<a <b,S n 为数列{b n }的前n 项和.是否存在实数λ,使得对任意正整数n ,都有a <S n <b?若存在,求λ的取值范围;若不存在,说明理由.【分析】 第(Ⅰ)小题利用反证法证明;第(Ⅱ)小题利用等比数列的定义证明;第(Ⅲ)小题属于存在型问题,解答时就假设a <S n <b 成立,由此看是否能推导出存在存在实数λ.【解】 (Ⅰ)证明:假设存在一个实数λ,使{a n }是等比数列,则有a 22=a 1a 3,即 (23λ-3)2=λ(49λ-4)⇔49λ2-4λ+9=49λ2-4λ⇔9=0,矛盾,所以{a n }不是等比数列.(Ⅱ)解:因为b n+1=(-1)n+1[a n+1-3(n +1)+21]=(-1)n+1(23a n -2n +14)=-23(a n -3n -21)=-23b n ,又b 1=-(λ+18),所以当λ=-18时,b n =0(n∈N*),此时{b n }不是等比数列;当λ≠-18时,b 1=-(λ+18)≠0,由上可知b n ≠0,∴b n+1b n =-23(n∈N*).故当λ≠-18时,数列{b n }是以-(λ+18)为首项,-23为公比的等比数列.(Ⅲ)由(Ⅱ)知,当λ=-18,b n =0(n∈N*),S n =0,不满足题目要求;.∴λ≠-18,故知b n =-(λ+18)×(-23)n -1,于是S n =-35(λ+18)·[1-(-23)n]要使a <S n <b 对任意正整数n 成立,即a <--35(λ+18)·[1-(-23)n]<b ,(n∈N*).得a 1-(-23)n <-35(λ+18)<b 1-(-23)n,(n∈N*) ①令f(n)=1-(-23)n ,则当n 为正奇数时,1<f(n)≤53,当n 为正偶数时59≤f(n)<1;∴f(n)的最大值为f(1)=53,f(n)的最小值为f(2)=59,于是,由①式得59a <-35(λ+18)<35b ,∴-b -18<λ<-3a -18,(必须-b <-3a ,即b >3a).当a <b <3a 时,由-b -18≥-3a -18,不存在实数满足题目要求;当b >3a 存在实数λ,使得对任意正整数n ,都有a <S n <b,且λ的取值范围是(-b -18,-3a -18). 【点评】 存在性问题指的是命题的结论不确定的一类探索性问题,解答此类题型一般是从存在的方面入手,寻求结论成立的条件,若能找到这个条件,则问题的回答是肯定的;若找不到这个条件或找到的条件与题设矛盾,则问题的回答是否定的.其过程可以概括为假设——推证——定论.本题解答注意对参数λ及项数n 的双重讨论.【专题训练】 一、选择题1.已知无穷数列{a n }是各项均为正数的等差数列,则有( )A .a 4a 6<a 6a 8B .a 4a 6≤a 6a 8C .a 4a 6>a 6a 8D .a 4a 6≥a 6a 82.设{a n }是由正数构成的等比数列,b n =a n+1+a n+2,c n =a n +a n+3,则( ) A .b n >c nB .b n <c nC .b n ≥c nD .b n ≤c n3.已知{a n }为等差数列,{b n }为正项等比数列,公比q≠1,若a 1=b 1,a 11=b 11,则( )A .a 6=b 6B .a 6>b 6C .a 6<b 6D .a 6>b 6或a 6<b 64.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k = ( )A .9B .8C .7D .65.已知等比数列{a n }的公比q >0,其前n 项的和为S n ,则S 4a 5与S 5a 4的大小关系是( )A .S 4a 5<S 5a 4B .S 4a 5>S 5a 4C .S 4a 5=S 5a 4D .不确定 6.设S n =1+2+3+…+n ,n∈N*,则函数f(n)=S n(n +32)S n+1的最大值为( )A .120B .130C .140D .1507.已知y 是x 的函数,且lg3,lg(sinx -12),lg(1-y)顺次成等差数列,则( ) A .y 有最大值1,无最小值 B .y 有最小值1112,无最大值C .y 有最小值1112,最大值1D .y 有最小值-1,最大值18.已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是( )A.(-∞,-1] B.(-∞,-1)∪(1,+∞) C.[3,+∞) D.(-∞,-1]∪[3,+∞)9.设3b 是1-a 和1+a 的等比中项,则a +3b 的最大值为( ) A .1 B .2 C .3 D .410.设等比数列{a n }的首相为a 1,公比为q ,则“a 1<0,且0<q <1”是“对于任意n∈N*都有a n+1>a n ”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分比要条件 D .既不充分又不必要条件11.{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最小值,那么当S n 取得最小正值时,n = ( )A .11B .17C .19D .2112.设f(x)是定义在R 上恒不为零的函数,对任意实数x 、y∈R,都有f(x)f(y)=f(x +y),若a 1=12,a n =f(n)(n∈N*),则数列{a n }的前n 项和S n 的取值范围是( )A .[12,2)B .[12,2]C .[12,1)D .[12,1]二、填空题13.等差数列{a n }的前n 项和为S n ,且a 4-a 2=8,a 3+a 5=26,记T n =S nn2,如果存在正整数M ,使得对一切正整数n ,T n ≤M 都成立.则M 的最小值是__________.14.无穷等比数列{a n }中,a 1>1,|q|<1,且除a 1外其余各项之和不大于a 1的一半,则q的取值范围是________. 15.已知x >0,y >0,x ,a ,b ,y 成等差数列,x ,c ,d ,y 成等比数列,则(a +b)2cd 的最小值是________. A.0 B.1 C.2 D.416.等差数列{a n }的公差d 不为零,S n 是其前n 项和,给出下列四个命题:①A.若d <0,且S 3=S 8,则{S n }中,S 5和S 6都是{S n }中的最大项;②给定n ,对于一定k∈N*(k<n),都有a n -k +a n+k =2a n ;③若d >0,则{S n }中一定有最小的项;④存在k∈N*,使a k -a k+1和a k -a k -1同号其中真命题的序号是____________. 三、解答题17.已知{a n }是一个等差数列,且a 2=1,a 5=-5.(Ⅰ)求{a n }的通项n a ;(Ⅱ)求{a n }前n 项和S n 的最大值.18.已知{a n }是正数组成的数列,a 1=1,且点(a n ,a n +1)(n ∈N *)在函数y =x 2+1的图象上.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若列数{b n }满足b 1=1,b n +1=b n +2a n ,求证:b n ·b n +2<b 2n +1.19.设数列{a n }的首项a 1∈(0,1),a n =3-a n -12,n =2,3,4,….(Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =a n 3-2a n ,证明b n <b n+1,其中n 为正整数.20.已知数列{a n }中a 1=2,a n+1=(2-1)( a n +2),n =1,2,3,….(Ⅰ)求{a n }的通项公式;(Ⅱ)若数列{a n }中b 1=2,b n+1=3b n +42b n +3,n =1,2,3,….证明:2<b n ≤a 4n -3,n =1,2,3,…21.已知二次函数y =f(x)的图像经过坐标原点,其导函数为f '(x)=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n∈N*)均在函数y =f(x)的图像上.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =1a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m20对所有n∈N*都成立的最小正整数m ;22.数列{}n a 满足11a =,21()n n a n n a λ+=+-(12n =,,),λ是常数.(Ⅰ)当21a =-时,求λ及3a 的值;(Ⅱ)数列{}n a 是否可能为等差数列?若可能,求出它的通项公式;若不可能,说明理由;(Ⅲ)求λ的取值范围,使得存在正整数m ,当n m >时总有0n a <.【专题训练】参考答案 一、选择题1.B 【解析】a 4a 8=(a 1+3d)(a 1+7d)=a 12+10a 1d +21d 2,a 62=(a 1+5d)2=a 12+10a 1d +25d 2,故a 4a 6≤a 6a 8. 2.D 【解析】设其公比为q,则b n -c n =a n (q -1)(1-q 2)=-a n (q -1)2(q +1),当q =1时,b n =c n ,当q >0,且q≠1时,b n <c n ,故b n ≤c n .3.B 【解析】因为q≠1,b 1>0,b 11>0,所以b 1≠b 11,则a 6=a 1+a 112=b 1+b 112>b 1b 11=b 6.4.B 【解析】因数列为等差数列,a n =S n -S n -1=2n -10,由5<2k -10<8,得到k =8. 5.A 【解析】S 4a 5-S 5a 4 =(a 1+a 2+a 3+a 4)a 4q -(a 1+a 2+a 3+a 4+a 5)a 4=-a 1a 4=-a 12q 3<0,∴S 4a 5<S 5a 4. 6.D 【解析】由S n =n(n +1)2,得f(n)=n (n +32)(n +2)=nn 2+34n +64=1n +64n+34≤1264+34=150,当n =64n ,即n =8时取等号,即f(n)max =f(8)=150.7.B 【解析】由已知y =-13(sinx -12)2+1,且sinx >12,y <1,所以当sinx =1时,y有最小值1112,无最大值.8.D 【解】∵等比数列{a n }中a 2=1,∴S 3=a 1+a 2+a 3=a 2(1q +1+q)=1+q +1q .∴当公比q >0时,S 3=1+q +1q ≥1+2q·1q =3,当公比q <0时,S 3=1-(-q -1q)≤1-2(-q)·(-1q )=-1,∴S 3∈(-∞,-1]∪[3,+∞).9.B 【解析】3b 是1-a 和1+a 的等比中项,则3b 2=1-a 2⇔a 2+3b 2=1,令a =cos θ,3b =sin θ,θ∈(0,2π),所以a +3b =cos θ+3in θ=2sin(θ+π6)≤2.10.A 【解析】当a 1<0,且0<q <1时,数列为递增数列,但当数列为递增数列时,还存在另一情况a 1>0,且q >1,故选A. 11.C 【解析】由a 11a 10<-1,得a 10+a 11a 10<0⇔a 1+a 20a 10<0⇔12×20(a 1+a 20)12×19(a 1+a 19)<0⇔S 20S 19<0,则要使S n 取得最小正值必须满足S 19>0,且S 20<0,此时n =19.12.C 【解析】f(x)是定义在R 上恒不为零的函数,对任意实数x 、y∈R,都有f(x)f(y)=f(x +y),a 1=12,a n =f(n)(n∈N*),a n+1=f(n +1)=f(1)f(n)=12a n ,∴S n =12[1-(12)n ]1-12=1-(12)n .则数列{a n }的前n 项和的取值范围是[12,1).二、填空题13.2 【解析】由a 4-a 2=8,可得公差d =4,再由a 3+a 5=26,可得a 1=1,故S n =n +2n (n -1)=2n 2-n ,∴T n =2n -1n =2-1n,要使得T n ≤M ,只需M ≥2即可,故M 的最小值为2,答案:214.(-1,0]∪(0,13] 【解析】a 1q 1-q ≤a 12⇒q≤13,但|q|<1,且q≠0,故q∈(-1,0]∪(0,13]. 15.4 【解析】∵(a +b)2cd =(x +y)2xy ≥(2xy)2xy=4.16.D 【解析】对于①:∵S 8-S 3=a 4+a 5+a 6+a 7+a 8=5a 6=0,∴S 5=S 6,又d <0,S 5=S 6为最大,故A 正确;对于②:根据等差中项知正确;对于③:∵d>0,点(n ,S n )分布在开口向上的抛物线,故{S n }中一定有最小的项,故③正确;而a k -a k+1=-d ,a k -a k -1=d ,且d≠0,故④为假命题. 三、解答题17.【解】(Ⅰ)设{a n }的公差为d ,由已知条件,⎩⎨⎧ a 1+d =1a 1+4d =-5,解出a 1=3,d =-2.所以a n =a 1+(n -1)d =-2n +5.(Ⅱ)S n =na 1+n(n -1)2d =-n 2+4n =-(n -2)2+4,所以n =2时,S n 取到最大值4.18.【解】(Ⅰ)由已知得a n +1=a n +1,即a n +1-a n =1,又a 1=1,所以数列{a n }是以1为首项,公差为1的等差数列,故a n =1+(a -1)×1=n.(Ⅱ)由(Ⅰ)知:a n =n 从而b n +1-b n =2n.b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=2n -1+2n -2+…+2+1=1-2n1-2=2n-1.因为b n ·b n +2-b 21+n =(2n-1)(2n +2-1)-(2n -1-1)2=(22n +2-2n +2-2n +1)-(22n +2-2-2n +1-1)=-5·2n +4·2n =-2n<0,所以b n ·b n +2<b 21+n .19.【解】(Ⅰ)由a n =3-a n -12,n =2,3,4,….整理得1-a n =-12(1-a n -1).又1-a 1≠0,所以{1-a n }是首项为1-a 1,公比为-12的等比数列,得a n =1-(1-a 1)(-12)n -1, (Ⅱ)由(Ⅰ)可知0<a n <32,故b n >0.那么,b n+12-b n 2=a n+12(3-2a n+1)-a n 2(3-2a n )=(3-a n 2)2(3-2×3-a n 2)-a n 2(3-2a n )=9a n 4(a n -1)2.又由(Ⅰ)知a n >0,且a n ≠1,故b n+12-b n 2>0,因此b n <b n+1,为正整数.20.【解】(Ⅰ)由题设:a n+1=(2-1)(a n +2)=(2-1)(a n -2)+(2-1)(2+2),=(2-1)(a n -2)+2,∴a n+1-2=(2-1)(a n -2). 所以,数列{a n -2}a 是首项为2-2,公比为2-1)的等比数列,a n -2=2(2-1)n,即a n 的通项公式为a n =2[(2-1)n+1],n =1,2,3,…. (Ⅱ)用数学归纳法证明.(ⅰ)当n =1时,因2<2,b 1=a 1=2,所以2<b 1≤a 1,结论成立. (ⅱ)假设当n =k 时,结论成立,即2<b k ≤a 4k -3,,也即0<b n -2≤a 4k -3-2, 当n =k +1时,b k+1-2=3b k +42b k +3-2=(3-22)b k +(4-32)2b k +3=(3-22)(b k -2)2b k +3>0,又12b k +3<122+3=3-22, 所以b k+1-2=(3-22)(b k -2)2b k +3<(3-22)2(b k -2)≤(2-1)4(a 4k -3-2)=a 4k+1- 2也就是说,当n =k +1时,结论成立.根据(ⅰ)和(ⅱ)知2<b n ≤a 4n -3,n =1,2,3,….21.【解】(Ⅰ)设这二次函数f(x)=ax 2+bx (a≠0) ,则 f`(x)=2ax +b ,由于f`(x)=6x -2,得a =3 ,b =-2,所以f(x)=3x 2-2x.,又因为点(n ,S n )(n∈N*)均在函数y =f(x)的图像上,所以S n =3n 2-2n , 当n≥2时,a n =S n -S n -1=(3n 2-2n )-[3(n -1)2-2(n -1)]=6n -5, 当n =1时,a 1=S 1=3×12-2=6×1-5,所以,a n =6n -5(n∈N*). (Ⅱ)由(Ⅰ)得知b n =3a n a n +1=3(6n -5)[6(n -1)-5]=12(16n -5-16n +1), 故T n =∑ni=1b i =12[(1-17)+(17–113)+…+(16n -5-16n +1)]=12(1–16n +1),因此,要使12(1-16n +1)<m 20(n∈N*)成立的m ,必须且仅须满足12≤m20,即m≥10,所以满足要求的最小正整数m 为10.22.【解】(Ⅰ)由于21()(12)n n a n n a n λ+=+-=,,,且11a =. 所以当21a =-时,得12λ-=-,故3λ=.从而23(223)(1)3a =+-⨯-=-. (Ⅱ)数列{}n a 不可能为等差数列,证明如下:由11a =,21()n n a n n a λ+=+-得22a λ=-,3(6)(2)a λλ=--,4(12)(6)(2)a λλλ=---.若存在λ,使{}n a 为等差数列,则3221a a a a -=-,即(5)(2)1λλλ--=-, 解得3λ=.于是2112a a λ-=-=-,43(11)(6)(2)24a a λλλ-=---=-. 这与{}n a 为等差数列矛盾.所以,对任意λ,{}n a 都不可能是等差数列.(Ⅲ)记2(12)n b n n n λ=+-=,,,根据题意可知,10b <且0n b ≠,即2λ> 且2*()n n n λ≠+∈N ,这时总存在*0n ∈N ,满足:当0n n ≥时,0n b >;当01n n -≤时,0n b <.所以由1n n n a b a +=及110a =>可知,若0n 为偶数,则00n a <,从而当0n n >时,0n a <;若0n 为奇数,则00n a >,从而当0n n >时0n a >.因此“存在*m ∈N ,当n m >时总有0n a <”的充分必要条件是:0n 为偶数,记02(12)n k k ==,,,则λ满足22221(2)20(21)210k k b k k b k k λλ-⎧=+->⎪⎨=-+--<⎪⎩.故λ的取值范围是22*4242()k k k k k λ-<<+∈N都是“定义域”惹的祸函数三要素中,定义域是十分重要的,研究函数的性质时应首先考虑其定义域.在求解函数有关问题时,若忽视定义域,便会直接导致错解.下面我们举例分析错从何起.一、求函数解析式时例1.已知x x x f 2)1(+=+,求函数)(x f 的解析式 . 错解:令1+=x t ,则1-=t x ,2)1(-=t x ,1)1(2)1()(22-=-+-=∴t t t t f ,1)(2-=∴x x f剖析:因为x x x f 2)1(+=+隐含着定义域是0≥x ,所以由1+=x t 得1≥t ,1)(2-=∴t t f 的定义域为1≥t ,即函数)(x f 的解析式应为1)(2-=x x f (1≥x )这样才能保证转化的等价性.正解:由x x x f 2)1(+=+,令1+=x t 得1≥t ,()21-=∴t x 代入原解析式得1)(2-=t t f (1≥t ),即1)(2-=x x f (1≥x ).二、求函数最值(或值域)时例2.若,62322x y x =+求22y x +的最大值.错解:由已知有 x x y 32322+-= ①,代入22y x +得 22y x +()2932132122+--=+-=x x x ,∴当3=x 时,22y x +的最大值为29.剖析:上述错解忽视了二次函数的定义域必须是整个实数的集合,同时也未挖掘出约束条件x y x 62322=+中x 的限制条件.正解:由032322≥+-=x x y 得20≤≤x , ∴22y x +()2932132122+--=+-=x x x ,[]2,0∈x ,因函数图象的对称轴为3=x ,∴当[]2,0∈x 是函数是增函数,故当当2=x 时,22y x +的最大值为4.例3.已知函数()()32log 19f x x x =+≤≤,则函数()()22y f x f x =+⎡⎤⎣⎦的最大值为( )A .33B .22C .13D .6错解:()()22y f x f x=+⎡⎤⎣⎦=()22332log 2log x x +++=()23log 33x +-在()19x ≤≤上是增函数,故函数()()22y f x f x =+⎡⎤⎣⎦在9x =时取得最大值为33.正解:由已知所求函数()()22y f x f x =+⎡⎤⎣⎦的定义域是21919x x ≤≤⎧⎨≤≤⎩得13x ≤≤,()()22y f x f x =+⎡⎤⎣⎦=()22332log 2log x x +++=()23log 33x +-在13x ≤≤是增函数,故函数()()22y f x f x=+⎡⎤⎣⎦在3x =时取得最大值为13.例4.已知()()4232≤≤=-x x f x ,求()[]()2121x f x f y --+=的最大值和最小值.错解:由()()4232≤≤=-x x f x 得91≤≤y .∴()()91log 231≤≤+=-x x x f .∴()[]()()6log 6log log 2log 232323232121++=+++=+=--x x x x x f x f y()33log 23-+=x . ∵91≤≤x ,∴2log 03≤≤x .∴22max =y ,6min =y .剖析:∵()x f 1-中91≤≤x ,则()21x f -中912≤≤x ,即31≤≤x ,∴本题的定义域应为[]3,1.∴1log 03≤≤x .正解:(前面同上)()33log 23-+=x y ,由31≤≤x 得1log 03≤≤x .∴13max =y ,6min =y .例5.求函数3254-+-=x x y 的值域.错解:令32-=x t ,则322+=t x ,∴()1253222++=+-+=t t t t y87874122≥+⎪⎭⎫⎝⎛+=t .故所求函数的值域是⎪⎭⎫⎢⎣⎡+∞,87.剖析:经换元后,应有0≥t ,而函数122++=t t y 在[)+∞,0上是增函数,随着t 增大而无穷增大.所以当0=t 时,1min =y .故所求函数的值域是[)+∞,1.三、求反函数时例6.求函数)20(242≤≤++-=x x x y 的反函数.错解:函数)20(242≤≤++-=x x x y 的值域为[]6,2∈y ,又6)2(2+--=x y ,即 y x -=-6)2(2∴y x -±=-62,∴所求的反函数为()6262≤≤-±=x x y .剖析:上述解法中忽视了原函数的定义域 ,没有对x 进行合理取舍,从而得出了一个非函数表达式.正解:由242(02)y x x x =-++≤≤的值域为[]6,2∈y , 因y x -=-6)2(2,又02≤-x ∴y x --=-62,∴所求的反函数为()6262≤≤--=x x y .四、求函数单调区间时例7.求函数)4lg()(2x x f -=的单调递增区间.错解:令24x t -=,则t y lg =,它是增函数. 24x t -= 在]0,(-∞上为增函数,。

专题06 函数、导数与数列、不等式的综合应用【解析版】

专题06 函数、导数与数列、不等式的综合应用【解析版】

第一章函数与导数专题06 函数、导数与数列、不等式的综合应用【压轴综述】纵观近几年的高考命题,应用导数研究函数的单调性、极(最)值问题,证明不等式、研究函数的零点等,是高考考查的“高频点”问题,常常出现在“压轴题”的位置.其中,函数、导数与数列、不等式的综合应用问题的主要命题角度有:函数与不等式的交汇、函数与数列的交汇、导数与数列不等式的交汇等.本专题就函数、导数与数列、不等式的综合应用问题,进行专题探讨,通过例题说明此类问题解答规律与方法.1.数列不等式问题,通过构造函数、应用函数的单调性或对不等式进行放缩,进而限制参数取值范围.如2.涉及等差数列的求和公式问题,应用二次函数图象和性质求解.3.涉及数列的求和问题,往往要利用“错位相减法”、“裂项相消法”等,先求和、再构造函数.【压轴典例】例1.(2018·浙江高考真题)已知成等比数列,且.若,则A. B. C. D.【答案】B【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断.详解:令则,令得,所以当时,,当时,,因此,若公比,则,不合题意;若公比,则但,即,不合题意;因此,,选B.例2.(2019·全国高考真题(文))记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围. 【答案】(1)210n a n =-+; (2)110()n n N *≤≤∈. 【解析】(1)设等差数列{}n a 的首项为1a ,公差为d ,根据题意有111989(4)224a d a d a d ⨯⎧+=-+⎪⎨⎪+=⎩, 解答182a d =⎧⎨=-⎩,所以8(1)(2)210n a n n =+-⨯-=-+,所以等差数列{}n a 的通项公式为210n a n =-+; (2)由条件95S a =-,得559a a =-,即50a =,因为10a >,所以0d <,并且有5140a a d =+=,所以有14a d =-, 由n n S a ≥得11(1)(1)2n n na d a n d -+≥+-,整理得2(9)(210)n n d n d -≥-, 因为0d <,所以有29210n n n -≤-,即211100n n -+≤, 解得110n ≤≤,所以n 的取值范围是:110()n n N *≤≤∈例3.(2019·江苏高考真题)定义首项为1且公比为正数的等比数列为“M-数列”. (1)已知等比数列{a n }满足:245132,440a a a a a a =-+=,求证:数列{a n }为“M-数列”; (2)已知数列{b n }满足:111221,n n n b S b b +==-,其中S n 为数列{b n }的前n 项和. ①求数列{b n }的通项公式;②设m 为正整数,若存在“M-数列”{c n }θ,对任意正整数k ,当k ≤m 时,都有1k k k c b c +剟成立,求m 的最大值.【答案】(1)见解析;(2)①b n =n ()*n ∈N ;②5.【解析】(1)设等比数列{a n }的公比为q ,所以a 1≠0,q ≠0.由245321440a a a a a a =⎧⎨-+=⎩,得244112111440a q a q a q a q a ⎧=⎨-+=⎩,解得112a q =⎧⎨=⎩.因此数列{}n a 为“M —数列”.(2)①因为1122n n n S b b +=-,所以0n b ≠. 由1111,b S b ==得212211b =-,则22b =. 由1122n n n S b b +=-,得112()n n n n n b b S b b ++=-,当2n ≥时,由1n n n b S S -=-,得()()111122n n n nn n n n n b b b b b b b b b +-+-=---,整理得112n n n b b b +-+=.所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n ()*n N ∈.②由①知,b k =k ,*k N ∈.因为数列{c n }为“M –数列”,设公比为q ,所以c 1=1,q >0. 因为c k ≤b k ≤c k +1,所以1k k q k q -≤≤,其中k =1,2,3,…,m .当k =1时,有q ≥1;当k =2,3,…,m 时,有ln ln ln 1k kq k k ≤≤-. 设f (x )=ln (1)x x x >,则21ln ()xf 'x x -=. 令()0f 'x =,得x =e .列表如下:因为ln 2ln8ln 9ln 32663=<=,所以max ln 3()(3)3f k f ==.取q =k =1,2,3,4,5时,ln ln kq k…,即k k q ≤, 经检验知1k qk -≤也成立.因此所求m 的最大值不小于5.若m ≥6,分别取k =3,6,得3≤q 3,且q 5≤6,从而q 15≥243,且q 15≤216, 所以q 不存在.因此所求m 的最大值小于6. 综上,所求m 的最大值为5. 例4.(2010·湖南高考真题)数列中,是函数的极小值点(Ⅰ)当a=0时,求通项; (Ⅱ)是否存在a ,使数列是等比数列?若存在,求a 的取值范围;若不存在,请说明理由. 【答案】(1);(2)详见解析【解析】 易知.令.(1)若,则当时,单调递增;当时,单调递减;当时,单调递增.故在取得极小值.由此猜测:当时,.下面先用数学归纳法证明:当时,.事实上,当时,由前面的讨论知结论成立.假设当时,成立,则由(2)知,,从而,所以.故当时,成立.于是由(2)知,当时,,而,因此.综上所述,当时,,,.(Ⅱ)存在,使数列是等比数列.事实上,由(2)知,若对任意的,都有,则.即数列是首项为,公比为3的等比数列,且.而要使,即对一切都成立,只需对一切都成立.记,则令,则.因此,当时,,从而函数当时,可得数列不是等比数列.综上所述,存在,使数列是等比数列,且的取值范围为.例5.(2017·浙江高考真题)已知数列{}n x 满足: ()()*1n n 1n 1x =1x x ln 1x n N ++=++∈, 证明:当*n N ∈时 (I )n 1n 0x x +<<;(II )n n 1n 1n x x 2x -x 2++≤; (III) n n 1n-211x 22-≤≤【答案】(I )见解析;(II )见解析;(Ⅲ)见解析. 【解析】(Ⅰ)用数学归纳法证明: 0n x >. 当n =1时,x 1=1>0. 假设n =k 时,x k >0,那么n =k +1时,若10k x +≤,则()110ln 10k k k x x x ++<=++≤,矛盾,故10k x +>. 因此()*0n x n N >∈.所以()111ln 1n n n n x x x x +++=++>,因此()*10n n x x n N +<<∈. (Ⅱ)由()11ln 1n n n x x x ++=++得,()()21111114222ln 1n n n n n n n n x x x x x x x x ++++++-+=-+++.记函数()()()()222ln 10f x x x x x x =-+++≥,()()22'ln 10(0)1x x f x x x x +=++>>+,函数f (x )在[0,+∞)上单调递增,所以()()0f x f ≥=0,因此()()()21111122ln 10n n n n n x x x x f x +++++-+++=≥,故()*1122n n n n x x x x n N ++-≤∈. (Ⅲ)因为()11111ln 12n n n n n n x x x x x x +++++=++≤+=, 所以112n n x -≥, 由1122n n n n x x x x ++≥-,得111112022n n x x +⎛⎫-≥-> ⎪⎝⎭, 所以1211111111222222n n n n x x x ---⎛⎫⎛⎫-≥-≥⋅⋅⋅≥-= ⎪ ⎪⎝⎭⎝⎭, 故212n n x -≤.综上,()*121122n n n x n N --≤≤∈. 例6.(2019·湖南高考模拟(理))设函数()ln(1)(0)f x x x =+≥,(1)()(0)1x x a g x x x ++=≥+.(1)证明:2()f x x x ≥-.(2)若()()f x x g x +≥恒成立,求a 的取值范围; (3)证明:当*n N ∈时,22121ln(32)49n n n n -++>+++. 【答案】(1)见解析;(2)(,1]-∞;(3)见解析. 【解析】(1)证明:令函数()()2h x ln x 1x x =+-+,[)x 0,∞∈+,()212x xh x 2x 101x 1x+=+=++'-≥,所以()h x 为单调递增函数,()()h x h 00≥=, 故()2ln x 1x x +≥-.(2)()()f x x g x +≥,即为()axln x 11x+≥+, 令()()axm x ln x 11x=+-+,即()m x 0≥恒成立, ()()()()22a 1x ax 1x 1a m x x 11x 1x +-+-=-=++'+, 令()m x 0'>,即x 1a 0+->,得x a 1>-.当a 10-≤,即a 1≤时,()m x 在[)0,∞+上单调递增,()()m x m 00≥=,所以当a 1≤时,()m x 0≥在[)0,∞+上恒成立;当a 10->,即a 1>时,()m x 在()a 1,∞-+上单调递增,在[]0,a 1-上单调递减, 所以()()()min m x m a 1m 00=-<=, 所以()m x 0≥不恒成立.综上所述:a 的取值范围为(],1∞-. (3)证明:由(1)知()2ln x 1x x +≥-,令1x n=,*n N ∈,(]x 0,1∈, 2n 1n 1ln n n +->,即()2n 1ln n 1lnn n-+->,故有ln2ln10->,1ln3ln24->, …()2n 1ln n 1lnn n-+->, 上述各式相加可得()212n 1ln n 149n-+>+++. 因为()()22n 3n 2n 1n 10++-+=+>,2n 3n 2n 1++>+,()()2ln n 3n 2ln n 1++>+,所以()2212n 1ln n 3n 249n-++>+++. 例7.(2018·福建省安溪第一中学高三期中(文))公差不为零的等差数列中,,,成等比数列,且该数列的前10项和为100,数列的前n 项和为,且满足.Ⅰ求数列,的通项公式;Ⅱ令,数列的前n 项和为,求的取值范围.【答案】(I ),;(II ).【解析】Ⅰ依题意,等差数列的公差,,,成等比数列,,即,整理得:,即,又等差数列的前10项和为100,,即,整理得:,,;,,即,当时,,即,数列是首项为1、公比为2的等比数列,;Ⅱ由可知,记数列的前n项和为,数列的前n项和为,则,,,,,,记,则,故数列随着n的增大而减小,又,,.例8.(2019·江苏高考模拟)已知数列满足(),().(1)若,证明:是等比数列;(2)若存在,使得,,成等差数列.① 求数列的通项公式;② 证明:.【答案】(1)见解析;(2)①,②见解析【解析】(1)由,得,得,即,因为,所以,所以(),所以是以为首项,2为公比的等比数列.(2)① 设,由(1)知,,所以,即,所以.因为,,成等差数列,则,所以,所以,所以,即.② 要证,即证,即证.设,则,且,从而只需证,当时,.设(),则,所以在上单调递增,所以,即,因为,所以,所以,原不等式得证.【压轴训练】1.(黑龙江省哈尔滨三中高考模拟)已知1(1)32(1,2)n n n b b a b n b--+-=>≥,若对不小于4的自然数n ,恒有不等式1n n a a +>成立,则实数b 的取值范围是__________. 【答案】3+∞(,) 【解析】由题设可得1(1)(1)32(1)32n n n b b n b b b b-+-+--+->,即22(1)341n b b b ->-+,也即(1)31n b b ->-对一切4n ≥的正整数恒成立,则3141b b b -<≥-,即31444311b b b b -⇒---,所以3b >,应填答案(3,)+∞. 2.(2019·山东济南一中高三期中(理))(1)已知函数的图象经过点,如图所示,求的最小值;(2)已知对任意的正实数恒成立,求的取值范围.【答案】(1)最小值,当且仅当时等号成立;(2)【解析】⑴函数的图象经过点,当且仅当时取等号⑵①令,,当时,,递增当时,,递减代入时,②,令,,,综上所述,的取值范围为3.(2019·桃江县第一中学高三月考(理))已知都是定义在R上的函数,,,且,且,.若数列的前n项和大于62,求n的最小值.【答案】6【解析】∵,∴,∵,∴,即,∴,∵,∴,∴,∴,∴,∴数列为等比数列,∴,∴,即,所以n的最小值为6.4.(2019·福建省漳平第一中学高三月考(文))已知数列的首项,前项和满足,.(1)求数列通项公式;(2)设,求数列的前项为,并证明:.【答案】(1);(2)见解析【解析】 (1)当时,,得. 又由及得,数列是首项为,公比为的等比数列,所以.(2),①②①②得: ,所以,又,故,令,则,故单调递减,又,所以恒成立,所以.5.(2019·江苏高考模拟(文))已知正项等比数列{}n a 的前n 项和为n S ,且218S =,490S =. (1)求数列{}n a 的通项公式;(2)令2115log 3n n b a ⎛⎫=- ⎪⎝⎭,记数列{}n b 的前n 项和为n T ,求n T 及n T 的最大值.【答案】(1)32nn a =⨯(2)22922n n nT =-+;最大值为105. 【解析】(1)设数列{}n a 的公比为(0)q q >,若1q =,有414S a =,212S a =,而4490236S S =≠=,故1q ≠,则()()()()21242211411811119011a q S q a q a q q S q q ⎧-⎪==-⎪⎨-+-⎪===⎪--⎩,解得162a q =⎧⎨=⎩.故数列{}n a 的通项公式为16232n nn a -=⨯=⨯. (2)由215log 215nn b n =-=-,则2(1415)29222n n n n n T +-==-+. 由二次函数22922x x y =-+的对称轴为292921222x =-=⎛⎫⨯- ⎪⎝⎭, 故当14n =或15时n T 有最大值,其最大值为14151052⨯=. 6.(2019·黑龙江高三月考(理))已知数列的前n 项和为, 其中,数列满足.(1)求数列的通项公式;(2)令,数列的前n 项和为,若对一切恒成立,求实数k 的最小值.【答案】(1),;(2)【解析】 (1)由可得,两式相减得: ,又由可得,数列是首项为2,公比为4的等比数列,从而,于是.(2)由(1)知,于是,依题意对一切恒成立,令,则由于易知,即有,∴只需,从而所求k的最小值为.7.(2018·浙江高考模拟)已知数列满足,().(Ⅰ)证明数列为等差数列,并求的通项公式;(Ⅱ)设数列的前项和为,若数列满足,且对任意的恒成立,求的最小值.【答案】(Ⅰ)证明见解析,;(Ⅱ).【解析】∵(n+1)a n+1﹣(n+2)a n=2,∴﹣==2(﹣),又∵=1,∴当n≥2时,=+(﹣)+(﹣)+…+(﹣)=1+2(﹣+﹣+…+﹣)=,又∵=1满足上式,∴=,即a n=2n,∴数列{a n}是首项、公差均为2的等差数列;(Ⅱ)解:由(I)可知==n+1,∴b n=n•=n•,令f(x)=x•,则f′(x)=+x••ln,令f′(x)=0,即1+x•ln=0,解得:x0≈4.95,则f(x)在(0, x0)上单调递增,在(x0,+单调递减.∴0<f(x)≤max{f(4),f(5),f(6)},又∵b5=5•=,b4=4•=﹣,b6=6•=﹣,∴M的最小值为.8.(2018·浙江镇海中学高三期中)已知数列的前项和为,且,(1)求证:数列为等比数列,并求出数列的通项公式;(2)是否存在实数,对任意,不等式恒成立?若存在,求出的取值范围,若不存在请说明理由.【答案】(1)证明略;(2)【解析】证明:(1)已知数列{a n}的前n项和为S n,且,①当n=1时,,则:当n≥2时,,②①﹣②得:a n=2a n﹣2a n﹣1﹣+,整理得:,所以:,故:(常数),故:数列{a n}是以为首项,2为公比的等比数列.故:,所以:.由于:,所以:(常数).故:数列{b n}为等比数列.(2)由(1)得:,所以:+(),=,=,假设存在实数λ,对任意m,n∈N*,不等式恒成立,即:,由于:,故当m=1时,,所以:,当n=1时,.故存在实数λ,且.9.(2019·宁夏银川一中高三月考(理))(1)当时,求证:;(2)求的单调区间;(3)设数列的通项,证明.【答案】(1)见解析;(2)见解析;(3)见解析.【解析】(1)的定义域为,恒成立;所以函数在上单调递减,得时即:(2)由题可得,且.当时,当有,所以单调递减,当有,所以单调递增,当时,当有,所以单调递增,当有,所以单调递减,当时,当有,所以单调递增,当时,当有,所以单调递增,当有,所以单调递减,当时,当有,所以单调递减,当有,所以单调递增,(3)由题意知.由(1)知当时当时即令则,同理:令则.同理:令则以上各式两边分别相加可得:即所以:10.(2019·北京人大附中高考模拟(理))已知数列{a n}满足:a1+a2+a3+…+a n=n-a n,(n=1,2,3,…)(Ⅰ)求证:数列{a n-1}是等比数列;(Ⅱ)令b n=(2-n)(a n-1)(n=1,2,3,…),如果对任意n∈N*,都有b n+t≤t2,求实数t的取值范围.【答案】(Ⅰ)见解析. (Ⅱ).【解析】(Ⅰ)由题可知:,①,②②-①可得.即:,又.所以数列是以为首项,以为公比的等比数列.(Ⅱ)由(Ⅰ)可得,∴.由可得,由可得.所以,,故有最大值.所以,对任意,都有,等价于对任意,都有成立.所以,解得或.所以,实数的取值范围是.11.(2019·江苏高三月考)已知数列的各项均为正数,前项和为,首项为2.若对任意的正整数,恒成立.(1)求,,;(2)求证:是等比数列;(3)设数列满足,若数列,,…,(,)为等差数列,求的最大值.【答案】(1),,;(2)详见解析;(3)3.【解析】(1)由,对任意的正整数,恒成立取,得,即,得.取,,得,取,,得,解得,.(2)取,得,取,得,两式相除,得,即,即.由于,所以对任意均成立,所以是首项为4,公比为2的等比数列,所以,即.时,,而也符合上式,所以.因为(常数),所以是等比数列.(3)由(2)知,.设,,成等差数列,则.即,整理得,.若,则,因为,所以只能为2或4,所以只能为1或2.若,则.因为,故矛盾.综上,只能是,,,成等差数列或,,成等差数列,其中为奇数.所以的最大值为3.12.(2019·上海高考模拟)已知平面直角坐标系xOy,在x轴的正半轴上,依次取点,,,,并在第一象限内的抛物线上依次取点,,,,,使得都为等边三角形,其中为坐标原点,设第n个三角形的边长为.⑴求,,并猜想不要求证明);⑵令,记为数列中落在区间内的项的个数,设数列的前m项和为,试问是否存在实数,使得对任意恒成立?若存在,求出的取值范围;若不存在,说明理由;⑶已知数列满足:,数列满足:,求证:.【答案】⑴,,;⑵;⑶详见解析【解析】,猜想,由,,,,对任意恒成立⑶证明:,记,则,记,则,当时,可知:,13.(2019·广西高考模拟(理))已知函数2()2ln 1()f x ax x x a =--∈R .(1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 【答案】(1)见解析;(2)见解析 【解析】(1)由题意可得,()'222(0,)f x ax lnx x a R =-->∈,由1x e =时,函数()f x 取得极值知12'220af e e ⎛⎫=+-= ⎪⎝⎭,所以0a =. 所以()()21,'22(0)f x xlnx f x lnx x =--=-->, 所以10x e <<时,()'0f x >;1x e>时,()'0f x <; 所以()f x 的单调增区间10e ⎛⎫ ⎪⎝⎭,,单调减区间为1e⎛⎫+∞ ⎪⎝⎭,. (2)当1a =时,()221f x x xlnx =--,所以()()'22221f x x lnx x lnx =--=--,令()ln 1g x x x =--,则()11'1x g x x x-=-=,当01x <<时,()'0g x <;当1x >时,()'0g x >,()g x 的单调减区间为()01,,单调增区间为()1+∞,, 所以()()10g x g ≥=,所以()'0f x ≥,()f x 是增函数,所以1x >时,()()22ln 110f x x x x f =-->=,所以1x >时,12ln x x x->, 令*211,21n x n N n +=>∈-,得2121212ln 212121n n n n n n +-+->-+- 即2221112ln 212121n n n n +⎛⎫+--> ⎪-+-⎝⎭ 所以1121111ln 2122122121n n n n n +⎛⎫>+- ⎪---+⎝⎭上式中123n =,,,…,n ,然后n 个不等式相加, 得到()11111...ln 213521221nn n n ++++>++-+ 14.(2019·宁夏高考模拟(文))已知函数()()ln 1(0)f x ax x a =->.()1求函数()y f x =的单调递增区间;()2设函数()()316g x x f x =-,函数()()h x g x =' .①若()0h x ≥恒成立,求实数a 的取值范围;②证明:()22222ln(123)123.e n n n N +⨯⨯⨯⋯⨯<+++⋯+∈【答案】(1)单调递增区间为[)1,+∞.(2)①(]0,e .②见证明 【解析】()10a >,0x >.()()1'ln 1ln 0f x a x ax a x x=-+⋅=≥. 解得1x ≥.∴函数()y f x =的单调递增区间为[)1,+∞.()2函数()()316g x x f x =-,函数()()21h =x ln 2x g x a x '=-.()'ah x x x=-①,0a ≤时,函数()h x 单调递增,不成立,舍去; 0a >时,()('x x a h x x xx+=-=,可得x =()h x 取得极小值即最小值,()11ln 022h x ha a a ∴≥=-≥,解得:0a e <≤. ∴实数a 的取值范围是(]0,e .②证明:由①可得:a e =,1x ≥时满足:22ln x e x ≥,只有1x =时取等号.依次取x n =,相加可得:()222221232ln1ln2ln ln(12)en e n n +++⋯+>++⋯⋯+=⨯⨯⋯.因此()22222ln(123)123.e n n n N +⨯⨯⨯⋯⨯<+++⋯+∈15.(2019·黑龙江高考模拟(理))已知函数2()2ln 2(1)(0)a f x ax x a a x-=-+-+>. (1)若()0f x ≥在[1,)+∞上恒成立,求实数a 的取值范围; (2)证明:11113521n ++++>-*1ln(21)()221nn n N n ++∈+.【答案】(1)[1,)+∞;(2)证明见解析. 【解析】(1)()f x 的定义域为()0,+∞,()2222222a ax x a f x a x x x--+-=--=' ()221a a x x a x -⎛⎫-- ⎪⎝⎭=. ①当01a <<时,21aa->, 若21a x a -<<,则()0f x '<,()f x 在21,a a -⎡⎫⎪⎢⎣⎭上是减函数,所以21,a x a -⎛⎫∈ ⎪⎝⎭时,()()10f x f <=,即()0f x ≥在[)1,+∞上不恒成立. ②当1a ≥时,21aa-≤,当1x >时,()0f x '>,()f x 在[)1,+∞上是增函数,又()10f =,所以()0f x ≥. 综上所述,所求a 的取值范围是[)1,+∞.(2)由(1)知当1a ≥时,()0f x ≥在[)1,+∞上恒成立.取1a =得12ln 0x x x --≥,所以12ln x x x-≥. 令21121n x n +=>-,*n N ∈,得2121212ln 212121n n n n n n +-+->-+-, 即2221112ln 212121n n n n +⎛⎫+--> ⎪-+-⎝⎭, 所以1121111ln 2122122121n n n n n +⎛⎫>+- ⎪---+⎝⎭. 上式中1,2,3,,n n =,然后n 个不等式相加,得到()11111ln 213521221nn n n ++++>++-+. 16.(2019·江苏高考模拟)已知数列{}n a ,12a =,且211n n n a a a +=-+对任意n N *∈恒成立.(1)求证:112211n n n n a a a a a a +--=+(n N *∈);(2)求证:11nn a n +>+(n N *∈). 【答案】(1)见解析(2)见解析 【解析】(1)①当1n =时,2221112213a a a =-+=-+= 满足211a a =+成立.②假设当n k =时,结论成立.即:112211k k k k a a a a a a +--=+成立下证:当1n k =+时,112211k k k k a a a a a a +-+=+成立.因为()211211111k k k k k a a a a a +++++=-+-+=()()11221112211111k k k k k k k k a a a a a a a a a a a a +--+--=+=++-即:当1n k =+时,112211k k k k a a a a a a +-+=+成立由①、②可知,112211n n n n a a a a a a +--=+(n *N ∈)成立.(2)(ⅰ)当1n =时,221221311a >=-=++成立,当2n =时,()2322222172131112a a a a a =-+=-+=>⨯>++成立,(ⅱ)假设n k =时(3k ≥),结论正确,即:11kk a k +>+成立 下证:当1n k =+时,()1211k k a k ++>++成立.因为()()2211112111111kkkk k k k k k a a a a a k k kk +++++-+==-+>++=++要证()1211k k a k ++>++,只需证()12111k k k k k k +++>++只需证:()121k k k k ++>,只需证:()12ln ln 1k k k k ++>即证:()()12l l n n 10k k k k -++>(3k ≥) 记()()()2ln 11ln h x x x x x -++=∴()()()()2ln 1112ln 11ln ln x x x x h x +-++=-++⎡⎤⎦=⎣'21ln 1ln 12111x x x x ⎛⎫=+=++-+ ⎪++⎝⎭当12x +≥时,1111ln 121ln 221ln 1ln 10122x x e ⎛⎫⎛⎫++-+≥+-+=+>+= ⎪ ⎪+⎝⎭⎝⎭所以()()()2ln 11ln h x x x x x -++=在[)1,+∞上递增, 又()6423ln34ln3ln 34ln729ln2564l 0n h ⨯-=-=->=所以,当3x ≥时,()()30h x h ≥>恒成立. 即:当3k ≥时,()()30h k h ≥>成立.即:当3k ≥时,()()12l l n n 10k k k k -++>恒成立. 所以当3k ≥,()1211k k a k ++>++恒成立.由(ⅰ)(ⅱ)可得:对任意的正整数n *∈N ,不等式11nn a n +>+恒成立,命题得证.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档