正态分布与参数估计共30页文档
合集下载
课件3:§7.5 正态分布

( B) A.95.45%
B.99.73%
C.4.55%
D.0.27%
【解析】由 X~N(-2,14),知 μ=-2,σ=21,
∴P(-3.5<X≤-0.5)=P(-2-3×0.5<X≤-2+3×0.5)
=0.997 3.
3.已知正态分布总体的数据落在区间(-3,-1)内的概率 和落在区间(3,5)内的概率相等,那么这个正态总体的均值 为________. 【解析】区间(-3,-1)和区间(3,5)关于直线 x=1 对称, 所以均值 μ 为 1. 【答案】1
课堂检测
1.下列函数可以作为正态分布密度函数的是 ( A )
A.f(x)=
( x1)2
1e 2 2π
B.f(x)=σ
1
( xu)2
e 2 2
2π
C.f(x)=
1
e
(
x u )2 2 2
2πσ
D.f(x)=21π
e
(
xu 2π
)2
2.若 X~N(-2,41),则 X 落在(-3.5,-0.5]内的概率是
归纳领悟 1.在正态分布 X~N(μ,σ2)中,μ 就是随机变量 X 的均值,σ2 就是随机变量 X 的方差,它们分别反映 X 取值的平均大小和 稳定程度. 2.正态密度曲线的性质 (1)曲线位于 x 轴上方,与 x 轴不相交; (2)曲线是单峰的,它关于直线 x=μ 对称;
(3)曲线在
x=μ
处达到峰值 σ
课堂小结 1.知识清单: (1)正态曲线及其特点. (2)正态分布. (3)正态分布的应用,3σ原则. 2.方法归纳:转化化归、数形结合. 3.常见误区:概率区间转化不等价.
本节内容结束 更多精彩内容请登录:
正态分布完整ppt课件

正态性检验
使用如Shapiro-Wilk检验、Kolmogorov-Smirnov检验等方法,对 误差项进行正态性检验,以验证其是否符合正态分布。
方差分析中F分布应用
01 02
F分布的定义
F分布是一种连续型概率分布,常用于方差分析中的假设检验。在方差 分析中,通过比较不同组间的方差与组内方差,判断各因素对结果的影 响是否显著。
筛选方法
包括单变量分析和多变量分析等,结合临床 意义和统计学显著性进行生物标志物的筛选 。
社会科学调查数据分析
社会科学调查数据特点
大量、复杂、多维度的数据,往往需要进行统计分析和数据挖掘。
正态分布在社会科学调查数据分析中的应用
通过对调查数据进行正态性检验,选择合适的数据处理和分析方法,如参数检验、回归分析等。
有对称性和单峰性。
性质
对称性:正态分布曲线关于均值对称 。
单峰性:正态分布曲线只有一个峰值 ,位于均值处。
均值、中位数和众数相等。
概率密度函数在均值两侧呈指数下降 。
正态曲线特点
01
02
03
04
形状
钟形曲线,中间高,两边低。
对称性
关于均值对称,即左右两侧形 状相同。
峰值
位于均值处,且峰值高度由标 准差决定。
05
正态分布在金融学领域应用
风险评估及资产组合优化
风险评估
正态分布用于描述金融资产的收益和风险分布,通过计算均值和标准差来评估投资组合 的风险水平。
资产组合优化
基于正态分布假设,利用马科维茨投资组合理论等方法,构建最优资产组合以降低风险 并提高收益。
VaR(Value at Risk)计算
正态分布用于计算投资组合在一定置信水平下的最大可能损失(VaR),以衡量潜在风 险。
使用如Shapiro-Wilk检验、Kolmogorov-Smirnov检验等方法,对 误差项进行正态性检验,以验证其是否符合正态分布。
方差分析中F分布应用
01 02
F分布的定义
F分布是一种连续型概率分布,常用于方差分析中的假设检验。在方差 分析中,通过比较不同组间的方差与组内方差,判断各因素对结果的影 响是否显著。
筛选方法
包括单变量分析和多变量分析等,结合临床 意义和统计学显著性进行生物标志物的筛选 。
社会科学调查数据分析
社会科学调查数据特点
大量、复杂、多维度的数据,往往需要进行统计分析和数据挖掘。
正态分布在社会科学调查数据分析中的应用
通过对调查数据进行正态性检验,选择合适的数据处理和分析方法,如参数检验、回归分析等。
有对称性和单峰性。
性质
对称性:正态分布曲线关于均值对称 。
单峰性:正态分布曲线只有一个峰值 ,位于均值处。
均值、中位数和众数相等。
概率密度函数在均值两侧呈指数下降 。
正态曲线特点
01
02
03
04
形状
钟形曲线,中间高,两边低。
对称性
关于均值对称,即左右两侧形 状相同。
峰值
位于均值处,且峰值高度由标 准差决定。
05
正态分布在金融学领域应用
风险评估及资产组合优化
风险评估
正态分布用于描述金融资产的收益和风险分布,通过计算均值和标准差来评估投资组合 的风险水平。
资产组合优化
基于正态分布假设,利用马科维茨投资组合理论等方法,构建最优资产组合以降低风险 并提高收益。
VaR(Value at Risk)计算
正态分布用于计算投资组合在一定置信水平下的最大可能损失(VaR),以衡量潜在风 险。
参数估计

第三节
参数估计
参数估计就是用样本统计量来推算总体参 数,有点估计和区间估计两种方法。 一、参数估计的理论基础 按正态分布理论对参数进行估计。 正态分布的主要特征有: 1.以总体平均数为中心两侧呈对称分布,即 1.以总体平均数为中心两侧呈对称分布,即 样本平均数大于或小于总体平均数的概率完全相 等,就是说样本平均数的正离差与负离差出现的 可能性完全相等。
2.样本平均数越接近总体平均数,其出现的 2.样本平均数越接近总体平均数,其出现的 可能性越大;反之样本平均数越远离总体平均数, 其出现的可能性越小。这种可能性数学上称为概 率F(t),也就是可靠性。与概率对应的数值称为 ),也就是可靠性。与概率对应的数值称为 概率度,即抽样误差扩大的倍数,用字母t表示。 概率F(t)与概率度t 的对应函数关系如图4-2所 的对应函数关系如图4 示。
30
f x
25 20
( )
15
10
5
0
-4 -3 -2 -1 0 1 2 3 4
x
-3t
x 3 x 2
-2t
x
-1t
0 68.27% 95.45% 99.73% F(t)
X
x + x + 2
1t
2t
x + 3
3t
图4 - 2
正态分布概率图
图4-2显示样本平均数与总体平均数的平均误差不超过1μ的 显示样本平均数与总体平均数的平均误差不超过1 概率为0.6827,不超过2 的概率为0.9545,不超过3 概率为0.6827,不超过2μ的概率为0.9545,不超过3μ的概率为 0.9973。即: 0.9973。即: 当t =1时,F(t) = 0.6827 =1时, 当t =2时,F(t) = 0.9545 =2时, 当t =3时,F(t) = 0.9973 =3时, 概率度t与概率F(t)的对应关系是:概率F(t)越大,则概率 度t值越大,估计的可靠性越高,样本统计量与总体参数之间正 负离差的变动范围也越大。对于t每取一个值,概率保证程度F(t) 有一个唯一确定的值与之对应。因此人们制定正态分布概率表 有一个唯一确定的值与之对应。因此人们制定正态分布概率表 (见书后附页)供大家查找。
参数估计
参数估计就是用样本统计量来推算总体参 数,有点估计和区间估计两种方法。 一、参数估计的理论基础 按正态分布理论对参数进行估计。 正态分布的主要特征有: 1.以总体平均数为中心两侧呈对称分布,即 1.以总体平均数为中心两侧呈对称分布,即 样本平均数大于或小于总体平均数的概率完全相 等,就是说样本平均数的正离差与负离差出现的 可能性完全相等。
2.样本平均数越接近总体平均数,其出现的 2.样本平均数越接近总体平均数,其出现的 可能性越大;反之样本平均数越远离总体平均数, 其出现的可能性越小。这种可能性数学上称为概 率F(t),也就是可靠性。与概率对应的数值称为 ),也就是可靠性。与概率对应的数值称为 概率度,即抽样误差扩大的倍数,用字母t表示。 概率F(t)与概率度t 的对应函数关系如图4-2所 的对应函数关系如图4 示。
30
f x
25 20
( )
15
10
5
0
-4 -3 -2 -1 0 1 2 3 4
x
-3t
x 3 x 2
-2t
x
-1t
0 68.27% 95.45% 99.73% F(t)
X
x + x + 2
1t
2t
x + 3
3t
图4 - 2
正态分布概率图
图4-2显示样本平均数与总体平均数的平均误差不超过1μ的 显示样本平均数与总体平均数的平均误差不超过1 概率为0.6827,不超过2 的概率为0.9545,不超过3 概率为0.6827,不超过2μ的概率为0.9545,不超过3μ的概率为 0.9973。即: 0.9973。即: 当t =1时,F(t) = 0.6827 =1时, 当t =2时,F(t) = 0.9545 =2时, 当t =3时,F(t) = 0.9973 =3时, 概率度t与概率F(t)的对应关系是:概率F(t)越大,则概率 度t值越大,估计的可靠性越高,样本统计量与总体参数之间正 负离差的变动范围也越大。对于t每取一个值,概率保证程度F(t) 有一个唯一确定的值与之对应。因此人们制定正态分布概率表 有一个唯一确定的值与之对应。因此人们制定正态分布概率表 (见书后附页)供大家查找。
2多元正态分布及参数估计

或表达为
定X (2) X ,, X f x (2) 0 r 1 p 2
的条件下,
f x | x
(1)
(2)
f 2 x (2)
12
f x
4、独立性
设 X 1 , X 2 , , X p 是 p 个随机变量, Xi的分布函数记为 Fi(xi)
(i=1,2,…,p); F ( x1 , x2 ,, x p ) 是 ( X 1 , X 2 ,, X p ) ' 的联合分布
C OV X , Y X D X D D Y Y C OV Y , X
21
第二章 多元正态分布及参数的估计
§2.1 随 机 向 量
三﹑ 协方差阵的性质 (1) 设X,Y为随机向量(矩阵) D(AX+b)=A· D(X)· A' COV(AX,BY)=A· COV(X,Y)· B'
17
2、协方差矩阵
协方差定义为
Cov X , Y E ( X E ( X ))(Y E (Y ))
ห้องสมุดไป่ตู้
若Cov(X,Y)=0,则称X和Y不相关。 两个独立的随机变量必然不相关,但两个不相关的 随机变量未必独立。 当X=Y时,协方差即为方差,也就是
Cov X , X Var X D ( X ) 和Y Y ,Y ,,Y X X 1 , X 2 ,, X p 1 2 q 的协方差矩
19
X和Y的协方差矩阵与Y和X的协差阵互为转置关系,即有 若COV(X,Y)=0,则称X和Y不相关。 两个独立的随机向量必然不相关,但两个不相关的随机向量未必独 立。 X=Y时的协差阵COV(X,X)称为X的协差阵,记作D(X),即
定X (2) X ,, X f x (2) 0 r 1 p 2
的条件下,
f x | x
(1)
(2)
f 2 x (2)
12
f x
4、独立性
设 X 1 , X 2 , , X p 是 p 个随机变量, Xi的分布函数记为 Fi(xi)
(i=1,2,…,p); F ( x1 , x2 ,, x p ) 是 ( X 1 , X 2 ,, X p ) ' 的联合分布
C OV X , Y X D X D D Y Y C OV Y , X
21
第二章 多元正态分布及参数的估计
§2.1 随 机 向 量
三﹑ 协方差阵的性质 (1) 设X,Y为随机向量(矩阵) D(AX+b)=A· D(X)· A' COV(AX,BY)=A· COV(X,Y)· B'
17
2、协方差矩阵
协方差定义为
Cov X , Y E ( X E ( X ))(Y E (Y ))
ห้องสมุดไป่ตู้
若Cov(X,Y)=0,则称X和Y不相关。 两个独立的随机变量必然不相关,但两个不相关的 随机变量未必独立。 当X=Y时,协方差即为方差,也就是
Cov X , X Var X D ( X ) 和Y Y ,Y ,,Y X X 1 , X 2 ,, X p 1 2 q 的协方差矩
19
X和Y的协方差矩阵与Y和X的协差阵互为转置关系,即有 若COV(X,Y)=0,则称X和Y不相关。 两个独立的随机向量必然不相关,但两个不相关的随机向量未必独 立。 X=Y时的协差阵COV(X,X)称为X的协差阵,记作D(X),即
多元正态分布及参数估计

2019/11/6
应用统计方法
22
2、性质 1) 设为常数,则 E (a X )a(E X ); 2)设 A,B,C 分别为常数矩阵,则
E ( A C X ) A E ( X B ) B C
3)设 X 1,X 2, ,X n为 n个同阶矩阵,则
E ( X 1 X 2 X n ) E X 1 E X 2 E X n
对一切 x、y成立,则称 x和 y相互独立。
2、设 x和 y是两个连续随机向量, x和 y相互
独立,当且仅当
f(x|y)fx(x)或 F (x ,y ) F x(x )F y(y )
对一切
2019/11/6
x
、y
成立。 应用统计方法
19
3、设 x1,x2, ,xn是 n个随机向量,若
F ( x 1 , x 2 , , x m ) F 1 ( x 1 ) F 2 ( x 2 ) F m ( x m ) mn
2019/11/6
应用统计方法
23
二、协方差矩阵
1、定义:设 x (x 1 ,x2, ,xp)和 y (y 1 ,y2, ,y q)分 别为 p维和 q维随机向量,则其协方差矩阵为
Exx2 1 E E ((xx1 2))y1E(y1)
y2E(y2) yqE(yq)
降的右连续函数;
2019/11/6
应用统计方法
4
② 分布函数的取值范围为[0,1],即
0F(a1,a2, ,ap)1
③ 分布函数当变量取值为无穷大时,函数值收敛到1,即
F(,, ,)1
2019/11/6
应用统计方法
5
二、两个常用的离散多元分布
正态分布及参考值范围估

双侧 P/2×100~P(1- /2) ×100 单侧 < P(1-)×100 或 > P×100 • 双侧95%参考值范围: P2.5~P97.5 • 单侧95%参考值范围:<P95 或 >P5
整理课件
23
3.对数正态分布法(适于对数正态分布资料) (1-)的参考值范围: 双侧 :lg-1(xlgx±uslgx) 单侧 :< lg-1(xlgx+uslgx)
整理课件
25
• 例2:某市1974年为了解该地居民发汞的 基础水平,调查了留住该市一年以上,
无汞作业接触史的健康居民238人的发汞 含量如下表,试估计该市居民发汞值的
95%参考值范围。
• 发汞值的分布为偏态分布,过高为不正
常,故求单侧95%的上限,用百分位数
法,即求P95
整理课件
26
某市238名健康人发汞含量
整理课件
11
如:区间(2.58,∞)的面积=(-2.58)=0.005 区间(- ∞,2.58)的面积= (2.58)=1- (-2.58) P(︱u︱>1.96)=2 (-1.96)=0.05 P(︱u︱﹤2.58)=(+2.58)- (-2.58)=0.99 P(u<-1.645 或 u>1.645)= (-1.645)=0.05 P(u<-1 或 u>1)= (-1)=0.1587
整理课件
17
/2
/2
-u 0
u
+u
常用的u值 单侧
-u 0
双侧
u0.1
1.282
1.645
u0.05
1.645
1.96
u0.01
2.33
整理课件
23
3.对数正态分布法(适于对数正态分布资料) (1-)的参考值范围: 双侧 :lg-1(xlgx±uslgx) 单侧 :< lg-1(xlgx+uslgx)
整理课件
25
• 例2:某市1974年为了解该地居民发汞的 基础水平,调查了留住该市一年以上,
无汞作业接触史的健康居民238人的发汞 含量如下表,试估计该市居民发汞值的
95%参考值范围。
• 发汞值的分布为偏态分布,过高为不正
常,故求单侧95%的上限,用百分位数
法,即求P95
整理课件
26
某市238名健康人发汞含量
整理课件
11
如:区间(2.58,∞)的面积=(-2.58)=0.005 区间(- ∞,2.58)的面积= (2.58)=1- (-2.58) P(︱u︱>1.96)=2 (-1.96)=0.05 P(︱u︱﹤2.58)=(+2.58)- (-2.58)=0.99 P(u<-1.645 或 u>1.645)= (-1.645)=0.05 P(u<-1 或 u>1)= (-1)=0.1587
整理课件
17
/2
/2
-u 0
u
+u
常用的u值 单侧
-u 0
双侧
u0.1
1.282
1.645
u0.05
1.645
1.96
u0.01
2.33
7正态总体的参数的估计

a
1-α
2
x
b
2
(n)
2
iii)
n
P{
i 1
( Xi )2
2
(
n)
2
n i 1
( Xi )2 2 (n)
} 1
1-
2
2
σ2 的置信度 为1α 置信区间为
n i 1
( Xi )2
2
(n)
2
n
,
i 1
( Xi )2
2 1-
(n)
2
(4)
例1 :某厂生产一批滚珠, 其直径 X 服从 N( 2), 现
(U0.025 1.96, x 14.95, n 6; s 0.226, s2 0.051,
t0.025
(5)
2.5706,
2 0.025
(5)
12.833
,
2 0975
(5)
0.831)
1) 若 2 = 0.06, 求 的置信度为 95% 的置信区间
解
U n( X ) ~ N (0,1)
从某天的产品中随机抽取 6 件, 测得直径为 15.1, 14.8, 15.2, 14.9, 14.6,15.1, 求解以下问题:
1) 若 2 = 0.06, 求 的置信度为 95% 的置信区间;
2) 若 2 未知,求 的置信度为 95% 的置信区间;
3) 求方差 2的置信度为 95% 的置信区间.
解
2
(n 1)S 2
2
~ 2 (n 1)
(n 1)S 2
2
(n
1)2ຫໍສະໝຸດ ,(n 1)S 2
2 1
(n
1)
2
正态总体参数的区间估计

总体均值μ的区间估计是一种基于抽样 调查的方法,通过样本均值和标准差 来估计总体均值的范围,常用t分布或z 分布计算置信区间。
详细描述
在进行总体均值μ的区间估计时,首先 需要收集样本数据,计算样本均值和 标准差。然后,根据样本数据的大小 和置信水平,选择适当的分布(如t分 布或z分布)来计算置信区间。最后, 根据置信区间的大小和分布特性,可 以得出总体均值μ的可能取值范围。
正态分布的性质
集中性
正态分布的曲线关于均值μ对称。
均匀变动性
随着x的增大,f(x)逐渐减小,但速 度逐渐减慢。
随机变动性
在μ两侧对称的位置上,离μ越远, f(x)越小。
正态分布在生活中的应用
金融
正态分布在金融领域的应用十分 广泛,如股票价格、收益率等金 融变量的分布通常被假定为正态 分布。
生物医学
THANKS
感谢观看
实例二:总体方差的区间估计
总结词
在正态分布下,总体方差的区间估计可以通过样本方 差和样本大小来计算。
详细描述
当总体服从正态分布时,根据中心极限定理,样本方差 近似服从卡方分布。因此,总体方差σ²的置信区间可以 通过以下公式计算:$[s^2 cdot frac{n - 1}{n} cdot F^{-1}(1 - frac{alpha}{2}), s^2 cdot frac{n - 1}{n} cdot F^{-1}(1 - frac{alpha}{2})]$,其中$s^2$是样本 方差,$n$是样本容量,$F^{-1}$是自由度为1的卡方 分布的逆函数,$alpha$是显著性水平。
详细描述
当总体服从正态分布时,根据中心极限定理,样本均值 近似服从正态分布。因此,总体均值μ的置信区间可以通 过以下公式计算:$[bar{x} - frac{s}{sqrt{n}} cdot Phi^{-1}(1 - frac{alpha}{2}), bar{x} + frac{s}{sqrt{n}} cdot Phi^{-1}(1 - frac{alpha}{2})]$,其中$bar{x}$是样 本均值,$s$是样本标准差,$n$是样本容量,$Phi^{1}$是标准正态分布的逆函数,$alpha$是显著性水平。