2008年河北省中考数学试题及答案
2008年华北各省中考数学代数解答题(含答案)-.rar试题试卷

2008年华北各省中考数学代数---解答题(08北京市卷)13.(本小题满分5分)计112sin45(2)3-⎛⎫+-π- ⎪⎝⎭.112sin45(2π)3-⎛⎫+-- ⎪⎝⎭2132=⨯+-············································································ 4分2=.··························································································· 5分(08北京市卷)14.(本小题满分5分)解不等式5122(43)x x--≤,并把它的解集在数轴上表示出来14.(本小题满分5分)解:去括号,得51286x x--≤. ···························································· 1分移项,得58612x x--+≤. ··································································· 2分合并,得36x-≤. ··············································································· 3分系数化为1,得2x-≥.········································································· 4分不等式的解集在数轴上表示如下:(08北京市卷)16.(本小题满分5分)如图,已知直线3y kx=-经过点M,求此直线与x轴,y轴的交点坐标.16.(本小题满分5分)解:由图象可知,点(21)M-,在直线3y kx=-上, ····································· 1分231k∴--=.解得2k=-. ······················································································· 2分∴直线的解析式为23y x=--.······························································· 3分y令0y =,可得32x =-. ∴直线与x 轴的交点坐标为302⎛⎫- ⎪⎝⎭,. ······················································· 4分令0x =,可得3y =-.∴直线与y 轴的交点坐标为(03)-,.························································· 5分 (08北京市卷)17.(本小题满分5分)已知30x y -=,求222()2x yx y x xy y +--+的值.解:222()2x yx y x xy y+--+ 22()()x yx y x y +=-- ················································································· 2分2x yx y+=-.··························································································· 3分 当30x y -=时,3x y =. ······································································ 4分原式677322y y y y y y +===-. ······································································· 5分(08北京市卷)20.为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天,在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:图1“限塑令”实施前,平均一次购物使用不同数量塑料..购物袋的人数统计图 “限塑令”实施后,使用各种 购物袋的人数分布统计图其它%46%24%“限塑令”实施后,塑料购物袋使用后的处理方式统计表请你根据以上信息解答下列问题:(1)补全图1,“限塑令”实施前,如果每天约有2 000人次到该超市购物.根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋? (2)补全图2,并根据..统计图...和.统计..表.说.明.,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能对环境保护带来积极的影响.解:(1)补全图1见下图. ······································································ 1分9137226311410546373003100100⨯+⨯+⨯+⨯+⨯+⨯+⨯==(个). 这100位顾客平均一次购物使用塑料购物袋的平均数为3个. ························· 3分200036000⨯=.估计这个超市每天需要为顾客提供6000个塑料购物袋. ································· 4分 (2)图2中,使用收费塑料购物袋的人数所占百分比为25%. ······················· 5分根据图表回答正确给1分,例如:由图2和统计表可知,购物时应尽量使用自备袋和押金式环保袋,少用塑料购物袋;塑料购物袋应尽量循环使用,以便减少塑料购物袋的使用量,为环保做贡献.图1“限塑令”实施前,平均一次购物使用不同数量塑料..购物袋的人数统计图·········································································································· 6分(08北京市卷)21.(本小题满分5分)列方程或方程组解应用题:京津城际铁路将于2008年8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果这次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?21.解:设这次试车时,由北京到天津的平均速度是每小时x 千米,则由天津返回北京的平均速度是每小时(40)x +千米. ········································································· 1分 依题意,得3061(40)602x x +=+. ···························································· 3分 解得200x =. ······················································································ 4分 答:这次试车时,由北京到天津的平均速度是每小时200千米. ······················ 5分(08北京市卷)23.已知:关于x 的一元二次方程2(32)220(0)mx m x m m -+++=>.(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中12x x <).若y 是关于m 的函数,且212y x x =-,求这个函数的解析式;(3)在(2)的条件下,结合函数的图象回答:当自变量m 的取值范围满足什么条件时,2y m ≤. 23.(1)证明:2(32)220mx m x m -+++=是关于x222[(32)]4(22)44(2)m m m m m m ∴∆=-+-+=++=+.当0m >时,2(2)0m +>,即0∆>.∴方程有两个不相等的实数根.……2分(2)解:由求根公式,得(32)(2)2m m x m+±+=.22m x m+∴=或1x =. ·········································································· 3分 0m >,222(1)1m m m m ++∴=>. 12x x <,11x ∴=,222m x m +=. ········································································ 4分 21222221m y x x m m +∴=-=-⨯=. 即2(0)y m m =>为所求. ················ 5分(3)解:在同一平面直角坐标系中分别画出2(0)y m m=>与2(0)y m m =>的图象. 6分由图象可得,当1m ≥时,2y m ≤. ··· 7分(08北京市卷)24.在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A B ,两点(点A 在点B 的左侧),与y 轴交于点C ,点B 的坐标为(30),,将直线y kx =沿y 轴向上平移3个单位长度后恰好经过B C ,两点.(1)求直线BC 及抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且APD ACB ∠=∠,求点P 的坐标; (3)连结CD ,求OCA ∠与OCD ∠两角和的度数. 24.解:(1)y kx =沿y 轴向上平移3个单位长度后经过y 轴上的点C ,(03)C ∴,.设直线BC 的解析式为3y kx =+.(30)B ,在直线BC 上,330k ∴+=.解得1k =-.∴直线BC 的解析式为3y x =-+.……1分抛物线2y x bx c =++过点B C ,,9303b c c ++=⎧∴⎨=⎩,. 解得43b c =-⎧⎨=⎩,.x0)∴抛物线的解析式为243y x x =-+. ······················································· 2分(2)由243y x x =-+. 可得(21)(10)D A -,,,.3OB ∴=,3OC =,1OA =,2AB =.可得OBC △是等腰直角三角形.45OBC ∴∠=,CB =如图1,设抛物线对称轴与x 轴交于点F ,112AF AB ∴==. 过点A 作AE BC ⊥于点E .90AEB ∴∠=.可得BE AE ==CE =在AEC △与AFP △中,90AEC AFP ∠=∠=,ACE APF ∠=∠,AEC AFP ∴△∽△.AE CEAF PF∴=,1PF =. 解得2PF =.点P 在抛物线的对称轴上,∴点P 的坐标为(22),或(22)-,. ···························································· 5分 (3)解法一:如图2,作点(10)A ,关于y 轴的对称点A ',则(10)A '-,. 连结A C A D '',,可得A C AC '==OCA OCA '∠=∠. 由勾股定理可得220CD =,210A D '=. 又210A C '=,222A D A C CD ''∴+=.A DC '∴△是等腰直角三角形,90CA D '∠=,x图1x图245DCA '∴∠=.45OCA OCD '∴∠+∠=. 45OCA OCD ∴∠+∠=.即OCA ∠与OCD ∠两角和的度数为45. ················································· 7分解法二:如图3,连结BD .同解法一可得CD =AC = 在Rt DBF △中,90DFB ∠=,1BF DF ==,DB ∴==在CBD △和COA △中,1DB AO ==3BC OC ==CD CA == DB BC CD AO OC CA∴==. CBD COA ∴△∽△. BCD OCA ∴∠=∠.45OCB ∠=,45OCA OCD ∴∠+∠=.即OCA ∠与OCD ∠两角和的度数为45. ················································· 7分(08天津市卷)19.(本小题6分)解二元一次方程组3582 1.x y x y +=⎧⎨-=⎩,19.本小题满分6分. 解 ∵3582 1.x y x y +=⎧⎨-=⎩,①②由②得12-=x y ,③ ·········································································· 2分 将③代入①,得8)12(53=-+x x .解得1=x .代入③,得1=y .x图3∴原方程组的解为11.x y =⎧⎨=⎩,······································································ 6分(08天津市卷)20.(本小题8分)已知点P (2,2)在反比例函数xky =(0≠k )的图象上, (Ⅰ)当3-=x 时,求y 的值; (Ⅱ)当31<<x 时,求y 的取值范围. 20.本小题满分8分.解 (Ⅰ)∵点P (2,2)在反比例函数xky =的图象上, ∴22k=.即4=k . ·············································································· 2分 ∴反比例函数的解析式为xy 4=. ∴当3-=x 时,34-=y . ······································································· 4分 (Ⅱ)∵当1=x 时,4=y ;当3=x 时,34=y , ······································ 6分 又反比例函数xy 4=在0>x 时y 值随x 值的增大而减小, ······························ 7分 ∴当31<<x 时,y 的取值范围为434<<y . ··············································· 8分(08天津市卷)22.(本小题8分)下图是交警在一个路口统计的某个时段来往车辆的车速情况(单位:千米/时).请分别计算这些车辆行驶速度的平均数、中位数和众数(结果精确到0.1). 22.本小题满分8分. 解 观察直方图,可得车速为50千米/时的有2辆,车速为51千米/时的有5辆, 车速为52千米/时的有8辆,车速为53千米/时的有6辆,车速为54千米/时的有4辆,车速为55千米/时的有2辆,车辆总数为27, ·················································································· 2分 ∴这些车辆行驶速度的平均数为4.52)255454653852551250(271≈⨯+⨯+⨯+⨯+⨯+⨯.································ 4分 ∵将这27个数据按从小到大的顺序排列,其中第14个数是52,∴这些车辆行驶速度的中位数是52. ····················································· 6分 ∵在这27个数据中,52出现了8次,出现的次数最多,∴这些车辆行驶速度的众数是52. ···························································· 8分(08天津市卷)24.(本小题8分)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填写表格,只需按照解答题的一般要求,进行解答即可.天津市奥林匹克中心体育场——“水滴”位于天津市西南部的奥林匹克中心内,某校九年级学生由距“水滴”10千米的学校出发前往参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度. (Ⅰ)设骑车同学的速度为x 千米/时,利用速度、时间、路程之间的关系填写下表. (要求:填上适当的代数式,完成表格)(Ⅱ)列出方程(组),并求出问题的解. 24.本小题满分8分. 解 (Ⅰ)················································· 3分 (Ⅱ)根据题意,列方程得3121010+=x x . ················································ 5分 解这个方程,得15=x . ·································································· 7分 经检验,15=x 是原方程的根. 所以,15=x .答:骑车同学的速度为每小时15千米. ···················································· 8分(08天津市卷)26.(本小题10分)已知抛物线c bx ax y ++=232,(Ⅰ)若1==b a ,1-=c ,求该抛物线与x 轴公共点的坐标;(Ⅱ)若1==b a ,且当11<<-x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围; (Ⅲ)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由. 26.本小题满分10分.解(Ⅰ)当1==b a ,1-=c 时,抛物线为1232-+=x x y , 方程01232=-+x x 的两个根为11-=x ,312=x . ∴该抛物线与x 轴公共点的坐标是()10-,和103⎛⎫ ⎪⎝⎭,. ································· 2分 (Ⅱ)当1==b a 时,抛物线为c x x y ++=232,且与x 轴有公共点.对于方程0232=++c x x ,判别式c 124-=∆≥0,有c ≤31. ·························· 3分①当31=c 时,由方程031232=++x x ,解得3121-==x x . 此时抛物线为31232++=x x y 与x 轴只有一个公共点103⎛⎫- ⎪⎝⎭,. ····················· 4分②当31<c 时, 11-=x 时,c c y +=+-=1231, 12=x 时,c c y +=++=5232.由已知11<<-x 时,该抛物线与x 轴有且只有一个公共点,考虑其对称轴为31-=x ,应有1200.y y ⎧⎨>⎩≤, 即1050.c c +⎧⎨+>⎩≤,解得51c -<-≤. 综上,31=c 或51c -<-≤. ····························································· 6分 (Ⅲ)对于二次函数c bx ax y ++=232,由已知01=x 时,01>=c y ;12=x 时,0232>++=c b a y , 又0=++c b a ,∴b a b a c b a c b a +=++++=++22)(23. 于是02>+b a .而c a b --=,∴02>--c a a ,即0>-c a .∴0>>c a . ····················································································· 7分 ∵关于x 的一元二次方程0232=++c bx ax 的判别式 0])[(412)(4124222>+-=-+=-=∆ac c a ac c a ac b ,∴抛物线c bx ax y ++=232与x 轴有两个公共点,顶点在x 轴下方. ················· 8分 又该抛物线的对称轴abx 3-=, 由0=++c b a ,0>c ,02>+b a , 得a b a -<<-2, ∴32331<-<a b . 又由已知01=x 时,01>y ;12=x 时,02>y ,观察图象,可知在10<<x 范围内,该抛物线与x 轴有两个公共点. ······························ 10分(08河北省卷)19.(本小题满分7分)已知2x =-,求21211x x x x -+⎛⎫-÷ ⎪⎝⎭的值.19.解:原式21(1)x xx x -=⨯- 11x =-.当2x =-时,原式13=-. (08河北省卷)20.(本小题满分8分)某种子培育基地用A ,B ,C ,D 四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C 型号种子的发芽率为95%,根据实验数据绘制了图10-1和图10-2两幅尚不完整的统计图.(1)D 型号种子的粒数是 ; (2)请你将图10-2的统计图补充完整;(3)通过计算说明,应选哪一个型号的种子进行推广;(4)若将所有已发芽的种子放到一起,从中随机取出一粒,求取到B 型号发芽种子的概率.20.解:(1)500; (2)如图1; (3)A 型号发芽率为90%,B 型号发芽率为92.5%,D 型号发芽率为94%,C 型号发芽率为95%.∴应选C 型号的种子进行推广.(4)3701(B )6303703804705P ==+++取到型号发芽种子.(08河北省卷)21.(本小题满分8分)如图11,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .(1)求点D 的坐标; (2)求直线2l 的解析表达式; (3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得A 35%B 20%C 20%D各型号种子数的百分比图10-1图10-2图11图1ADP △与ADC △的面积相等,请直接..写出点P 的坐标. 21.解:(1)由33y x =-+,令0y =,得330x -+=.1x ∴=.(10)D ∴,. (2)设直线2l 的解析表达式为y kx b =+,由图象知:4x =,0y =;3x =,32y =-. 4033.2k b k b +=⎧⎪∴⎨+=-⎪⎩,326.k b ⎧=⎪∴⎨⎪=-⎩,∴直线2l 的解析表达式为362y x =-. (3)由333 6.2y x y x =-+⎧⎪⎨=-⎪⎩,解得23.x y =⎧⎨=-⎩,(23)C ∴-,. 3AD =,193322ADC S ∴=⨯⨯-=△.(4)(63)P ,.(08河北省卷)25.(本小题满分12分)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式2159010y x x =++,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p 甲,p 乙(万元)均与x 满足一次函数关系.(注:年利润=年销售额-全部费用) (1)成果表明,在甲地生产并销售x 吨时,11420p x =-+甲,请你用含x 的代数式表示甲地当年的年销售额,并求年利润w 甲(万元)与x 之间的函数关系式; (2)成果表明,在乙地生产并销售x 吨时,110p x n =-+乙(n 为常数),且在乙地当年的最大年利润为35万元.试确定n 的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是2424b ac b aa ⎛⎫-- ⎪⎝⎭,.25.解:(1)甲地当年的年销售额为211420x x ⎛⎫-+ ⎪⎝⎭万元; 2399020w x x =-+-甲.(2)在乙地区生产并销售时, 年利润222111590(5)9010105w x nx x x x n x ⎛⎫=-+-++=-+-- ⎪⎝⎭乙. 由214(90)(5)535145n ⎛⎫⨯-⨯--- ⎪⎝⎭=⎛⎫⨯- ⎪⎝⎭,解得15n =或5-. 经检验,5n =-不合题意,舍去,15n ∴=. (3)在乙地区生产并销售时,年利润2110905w x x =-+-乙, 将18x =代入上式,得25.2w =乙(万元);将18x =代入2399020w x x =-+-甲, 得23.4w =甲(万元).w w >乙甲,∴应选乙地.(08内蒙古赤峰)19.(本题满分16分)(1)解分式方程:2112323x x x -=-+ 19.(1)解:方程两边同乘(23)(23)x x -+,得2(23)(23)(23)(23)x x x x x +--=-+ ··············································· (2分) 化简,得412x =- ··········································································· (5分) 解得3x =- ····················································································· (7分) 检验:3x =-时(23)(23)0x x -+≠,3-是原分式方程的解. ················· (8分)(2)如果1-是一元二次方程230x bx +-=的一个根,求它的另一根. (2)解:1-是230x bx +-=的一个根,2(1)(1)30b ∴-+--=.解方程得2b =-. ············································································ (3分)∴原方程为2230x x --=分解因式,得(1)(3)0x x +-=11x ∴=-,23x = ··········································································· (7分)。
2008年河北中考数学试题及答案 (全)

数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共20分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效. 一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(08河北)8-的倒数是( d ) A .8B .8-C .18D .18-2.(08河北)计算223a a +的结果是( b ) A .23aB .24aC .43aD .44a3.(08河北)把某不等式组中两个不等式的解集表示在数轴上,如图1则这个不等式组可能是( b ) A .41x x >⎧⎨-⎩,≤B .41x x <⎧⎨-⎩,≥C .41x x >⎧⎨>-⎩,D .41x x ⎧⎨>-⎩≤,4.(08河北)据河北电视台报道,截止到2008年5月21日,河北慈善总会已接受支援汶川地震灾区的捐款15 510 000元.将15 510 000用科学记数法表示为(A .80.155110⨯ B .4155110⨯C .71.55110⨯D .615.5110⨯5.(08河北)图2中的两个三角形是位似图形,它们的位似中心是( A .点P B .点O C .点M D .点N6.(08河北)某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( a )A .23000(1)5000x += B .230005000x =C .23000(1)5000x +=%D .23000(1)3000(1)5000x x +++=7.(08河北)如图3,已知O 的半径为5,点O 到弦AB 的距离为3,则到弦AB 所在直线的距离为2的点有( c )A .1个B .2个C .3个D .4个8.(08河北)同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6).下列事件中是必然事件的是( b ) A .两枚骰子朝上一面的点数和为6 B .两枚骰子朝上一面的点数和不小于2图1图2 图3C .两枚骰子朝上一面的点数均为偶数D .两枚骰子朝上一面的点数均为奇数9.(08河北)如图4,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且010x <≤,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( d )10.(08河北)有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图5-1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90,则完成一次变换.图5-2,图5-3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是( c )A .上B .下C .左D .右卷Ⅱ(非选择题,共100分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)11.(08河北)如图6,直线a b ∥,直线c 与a b , 相交.若170∠=, 则<2=7012.(08河北)当x = 1 时,分式31x -无意义. 13.(08河北)若m n ,互为相反数,则555m n +-= -5 .14.(08河北)如图7,AB 与O 相切于点B ,AO 的延长线交O 连结BC .若36A ∠=,则<c=27.15.(08图4 x A . x B . x C . D . 图5-1 图5-2 图5-3 …1 2b ac 图7则这些学生成绩的众数为 9 .16.(08河北)图8所示的两架天平保持平衡,且每块巧克力的质量相等, 每个果冻的质量也相等,则一块巧克力的质量是 20 g . 17.(08河北)点(231)P m -,在反比例函数1y x=的图象上,则m =18.(08河北)图9-1全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图9-2所示的“数学风车”,则这个风车的外围周长是 76 .三、解答题(本大题共8个小题;共76分.解答应写出文字说明、证明过程或演算步骤) 19.(08河北)(本小题满分7分)已知2x =-,求21211x x x x -+⎛⎫-÷ ⎪⎝⎭的值.=-1/320.(08河北)(本小题满分8分)某种子培育基地用A ,B ,C ,D 四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C 型号种子的发芽率为95%,根据实验数据绘制了图10-1和图10-2两幅尚不完整的统计图. (1)D 型号种子的粒数是 500 ; (2)请你将图10-2的统计图补充完整;(3)通过计算说明,应选哪一个型号的种子进行推广; (4)若将所有已发芽的种子放到一起,从中随机取出一粒,求取到B 型号发芽种子的概率. 1/521.(08河北)(本小题满分8分)如图11,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,ABC图9-1 图9-2图8A35% B20% C 20% 25各型号种子数的百分比 图10-1 图10-2直线1l ,2l 交于点C . (1)求点D 的坐标;D(1,0)(2)求直线2l 的解析表达式; Y=2/3X-6(3)求ADC △的面积; S ADC △=2/3(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标. P(6,3)22.(08河北)(本小题满分9分)气象台发布的卫星云图显示,代号为W 的台风在某海岛(设为点O )的南偏东45方向的B点生成,测得OB =.台风中心从点B 以40km/h 的速度向正北方向移动,经5h 后到达海面上的点C 处.因受气旋影响,台风中心从点C 开始以30km/h 的速度向北偏西60方向继续移动.以O 为原点建立如图12所示的直角坐标系. (1)台风中心生成点B 的坐标为 (100^3,-100^3) ,台风中心转折点C 的坐标为 (100^3,200-100^3) ;(结果保留根号)(2)已知距台风中心20km 的范围内均会受到台风的侵袭.如果某城市(设为点A )位于点O 的正北方向且处于台风中心的移动路线上,那么台风从生成到最初..侵袭该城要经过多长时间?11小时。
2008——2011年河北中考数学试题(精编横版适合印刷)

第1页,共21页2008年河北省初中毕业生升学数学试卷一、选择题(本大题共10个小题;每小题2分,共20分.) 1.(08河北)8-的倒数是( ) A .8B .8-C .18D .18-2.(08河北)计算223a a +的结果是( ) A .23aB .24aC .43aD .44a3.(08河北)把某不等式组中两个不等式的解集表示在数轴上,如图1所示, 则这个不等式组可能是( )A .41x x >⎧⎨-⎩,≤B .41x x <⎧⎨-⎩,≥C .41x x >⎧⎨>-⎩,D .41x x ⎧⎨>-⎩≤,4.(08河北)据河北电视台报道,截止到2008年5月21日,河北慈善总会已接受支援汶川地震灾区的捐款15 510 000元.将15 510 000用科学记数法表示为( ) A .80.155110⨯ B .4155110⨯ C .71.55110⨯D .615.5110⨯5.(08河北)图2中的两个三角形是位似图形,它们的位似中心是( ) A .点P B .点O C .点M D .点N 6.(08河北)某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( ) A .23000(1)5000x += B .230005000x =C .23000(1)5000x +=%D .23000(1)3000(1)5000x x +++=7.(08河北)如图3,已知⊙O 的半径为5,点O 到弦AB 的距离为3,则⊙O 上到弦AB 所在直线的距离为2的点有( )A .1个B .2个C .3个D .4个8.(08河北)同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6).下列事件中是必然事件的是( ) A .两枚骰子朝上一面的点数和为6 B .两枚骰子朝上一面的点数和不小于2C .两枚骰子朝上一面的点数均为偶数D .两枚骰子朝上一面的点数均为奇数9.(08河北)如图4,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且010x <≤,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( ) 10.(08河北)有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图5-1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90,则完成一次图4A .xB .C .xD.图1图2图3第2页,共21页变换.图5-2,图5-3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是( )A .上B .下C .左D .右二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上) 11.(08河北)如图6,直线a b ∥,直线c 与a b , 相交.若170∠=,则2_____∠=. 12.(08河北)当x = 时,分式31x -无意义.13.(08河北)若m n ,互为相反数,则555m n +-= .14.(08河北)如图7,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连结BC .若36A ∠=,则______C ∠=.15.(08河北)某班学生理化生实验操作测试成绩的统计结果如下表:成绩/分3 4 5 6 7 8 9 10 人数1 12 2 8 9 15 12则这些学生成绩的众数为 .16.(08河北)图8所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是 g .17.(08河北)点(231)P m -,在反比例函数1y x=的图象上,则m = . 18.(08河北)图9-1是我国古代著名的“赵爽弦图”的示意图,它是由四个 全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图9-2所示的“数学风车”,则这个风车的外围周长是 .三、解答题(本大题共8个小题;共76分.)19.(08河北)(本小题满分7分)已知2x =-,求21211x x x x -+⎛⎫-÷ ⎪⎝⎭的值.20.(08河北)(本小题满分8分)某种子培育基地用A ,B ,C ,D 四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C 型号种子的发芽率为95%,根据实验数据绘制了图10-1和图10-2两幅尚不完整的统计图. (1)D 型号种子的粒数是 ;AB C图9-1 图9-2图5-1图5-2图5-3…12ba图6c 图7图8第3页,共21页(2)请你将图10-2的统计图补充完整;(3)通过计算说明,应选哪一个型号的种子进行推广;(4)若将所有已发芽的种子放到一起,从中随机取出一粒,求取到B 型号发芽种子的概率.21.(08河北)(本小题满分8分)如图11,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C . (1)求点D 的坐标; (2)求直线2l 的解析表达式; (3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P22.(08河北)(本小题满分9分)气象台发布的卫星云图显示,代号为W 的台风在某海岛(设为点O )的南偏东45方向的B 点生成,测得OB =.台风中心从点B 以40km/h 的速度向正北方向移动,经5h 后到达海面上的点C 处.因受气旋影响,台风中心从点C 开始以30km/h 的速度向北偏西60方向继续移动.以O 为原点建立如图12所示的直角坐标系.(1)台风中心生成点B 的坐标为 ,台风中心转折点C 的坐标为 ;(结果保留根号)(2)已知距台风中心20km 的范围内均会受到台风的侵袭.如果某城市(设为点A )位于点O 的正北方向且处于台风中心的移动路线上,那么台风从生成到最初..侵袭该城要经过多长时间?23.(08河北)(本小题满分10分)在一平直河岸l 同侧有A B ,两个村庄,A B ,到l 的距离分别是3km 和2km ,km AB a = (1)a >.现计划在河岸l 上建一抽水站P ,用输水管向两个村庄供水.方案设计某班数学兴趣小组设计了两种铺设管道方案:图13-1是方案一的示意图,设该方案中管道长度为1d ,且1(km)d PB BA =+(其中BP l ⊥于点P );图13-2是方案二的示意图,设该方案中管道长度为2d ,且2(km)d PA PB =+(其中点A '与点A 关于l 对称,A B '与l 交于点P ).A35%B 20%C 20%D 各型号种子数的百分比 图10-1 图10-2 图11C 6045图12第4页,共21页观察计算(1)在方案一中,1d = km (用含a 的式子表示);(2)在方案二中,组长小宇为了计算2d 的长,作了如图13-3所示的辅助线,请你按小宇同学的思路计算,2d = km (用含a 的式子表示). 探索归纳(1)①当4a =时,比较大小:12_______d d (填“>”、“=”或“<”); ②当6a =时,比较大小:12_______d d (填“>”、“=”或“<”); (2)请你参考右边方框中的方法指导,就a (当1a >时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?24.(08河北)(本小题满分10分)如图14-1,ABC △的边BC 在直线l 上,AC BC ⊥,且AC BC =;EFP △的边FP 也在直线l 上,边EF 与边AC 重合,且EF FP =.(1)在图14-1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的数量关系和位置关系;(2)将EFP △沿直线l 向左平移到图14-2的位置时,EP 交AC 于点Q ,连结AP ,BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想;(3)将EFP △沿直线l 向左平移到图14-3的位置时,EP 的延长线交AC 的延长线于点Q ,连结AP ,BQ .你认为(2)中所猜想的BQ 与AP 的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.25.(08河北)(本小题满分12分)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式2159010y x x =++,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p 甲,p 乙(万元)均与x 满足一次函数关系.(注:年利润=年销售额-全部费用)A (E ) BC (F ) PlllBFC 图14-1图14-2图14-3图13-1 图13-2图13-3可以对它们的平方进行比较:2m n 2-=22()m n ∴-当22m n -当22m n -22m n -第5页,共21页(1)成果表明,在甲地生产并销售x 吨时,11420p x =-+甲,请你用含x 的代数式表示甲地当年的年销售额,并求年利润w 甲(万元)与x 之间的函数关系式;(2)成果表明,在乙地生产并销售x 吨时,110p x n =-+乙(n 为常数),且在乙地当年的最大年利润为35万元.试确定n 的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是2424b ac b a a ⎛⎫-- ⎪⎝⎭,.26.(08河北)(本小题满分12分)如图15,在Rt ABC △中,90C ∠=,50AB =,30AC =,D E F ,,分别是AC AB BC ,,的中点.点P 从点D 出发沿折线DE EF FC CD ---以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC CA -于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒(0t >). (1)D F ,两点间的距离是 ;(2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出t 的值.若不能,说明理由;(3)当点P 运动到折线EF FC -上,且点P 又恰好落在射线QK 上时,求t 的值;(4)连结PG ,当PG AB ∥时,请直接..写出t 的值.图15第6页,共21页4=1+3 9=3+616=6+10图7 …图32009河北省中考数学试卷一、选择题(本大题共12个小题,每小题2分,共24分.) 1.3(1)-等于( )A .-1B .1C .-3D .32.在实数范围内,x 有意义,则x 的取值范围是( )A .x ≥0B .x ≤0C .x >0D .x <03.如图1,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对 角线AC 等于( ) A .20 B .15C .10D .54.下列运算中,正确的是( )A .34=-m mB .()m n m n --=+C .236m m =()D .m m m =÷225.如图2,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点, 且位于右上方的小正方形内,则∠APB 等于( ) A .30° B .45°C .60°D .90°6.反比例函数1y x =(x >0)的图象如图3所示,随着x 值的增大,y 值( ) A .增大 B .减小C .不变D .先减小后增大7.下列事件中,属于不可能事件的是( )A .某个数的绝对值小于0 BC .某两个数的和小于0D .某两个负数的积大于8.图4是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线, ∠ABC =150°,BC 的长是8 m ,则乘电梯从点B 到点 C 上升的高度h 是( )A mB .4 mC . mD .8 m 9.某车的刹车距离y (m )与开始刹车时的速度x (m/s )之间满足二次函数2120y x =(x >0),若该车某次的刹车距离为5 m ,则开始刹车时的速度为( ) A .40 m/sB .20 m/sC .10 m/sD .5 m/s10.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的表面积是( ) A .20 B .22 C .24D .2611.如图6所示的计算程序中,y 与x 象应为( ) .古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图7中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻 “三角形数”之和.下列等式中,符 合这一规律的是( ) A .13 = 3+10 B .25 = 9+16 C .36 = 15+21D .49 = 18+31BACD图1A DCB 图6图2图5 图4第7页,共21页电视机月销量扇形统计图第一个月 15%第二个月 30% 第三个月25%第四个月图11-1二、填空题(本大题共6个小题,每小题3分,共18分)13.比较大小:-6 -8.(填“<”、“=”或“>”)14.据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约为12 000 000千瓦.12 000 000用科学记数法表示为 . 15.在一周内,小明坚持自测体温,每天3次.测量结果统计如下表:则这些体温的中位数是 ℃.16.若m 、n 互为倒数,则2(1)mn n --的值为 . 17.如图8,等边△ABC 的边长为1 cm ,D 、E 分别是AB 、AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部,则阴影部分图形的周长 为 cm .18.如图9,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15.两根铁棒长度之和为55 cm ,此时木桶中水的深度是 cm . 三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分8分)已知a = 2,1-=b ,求2221a b a ab --+÷1a的值.20.(本小题满分8分)图10是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m ,OE ⊥CD 于点E .已测得sin ∠DOE = 1213. (1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降,则经过多长时间才能将水排干?21.(本小题满分9分)某商店在四个月的试销期内,只销售A 、B 两个品牌的电视机,共售出400台.试销结束后,只能经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图11-1和图11-2.(1)第四个月销量占总销量的百分比是 ;(2)在图11-2中补全表示B 品牌电视机月销量的折线;(3)为跟踪调查电视机的使用情况,从该商店第四个月售出的电视机中,随机抽取一台,求 抽到B 品牌电视机的概率;O图10图9 图8第8页,共21页(4)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断 该商店应经销哪个品牌的电视机.22.(本小题满分9分)已知抛物线2y a x b x =+经过(33)A --,和点P (t ,0),且t ≠ 0.(1)若该抛物线的对称轴经过点A 图12,请通过观察图象,指出此时y 值,并写出t 的值;(2)若4t =-,求a 、b 此时抛物线的开口方向;(3)直.接.写出使该抛物线开口向下的t 的一个值.23.(本小题满分10分)如图13-1至图13-5,⊙O 均作无滑动滚动,⊙O 1、⊙O2、⊙O3、⊙O 4均表示⊙O 与线段AB 或BC 相切于端点时刻的位置,⊙O 的周长为c .阅读理解:(1)如图13-1,⊙O 从⊙O 1的位置出发,沿AB 滚动到⊙O 2的位置,当AB = c 时,⊙O恰好自转1周.(2)如图13-2,∠ABC 相邻的补角是n °,⊙O 在∠ABC 外部沿A -B -C 滚动,在点B 处,必须由⊙O 1的位置旋转到⊙O 2的位置,⊙O 绕点B 旋转的角∠O 1BO 2 = n °,⊙O在点B 处自转︒360n周.实践应用:(1)在阅读理解的(1)中,若AB = 2c ,则⊙O 自转 周;若AB = l ,则⊙O 自转 周.在阅读理解的(2)中,若∠ABC = 120°,则⊙O 在点B 处自转 周;若∠ABC = 60°,则⊙O 在点B 处自转 周. (2)如图13-3,∠ABC=90°,AB=BC=12c .⊙O 从 时间/月图11-2第一 第二 第三 第四 电视机月销量折线统计图图12图13-1图13-2图13-3第9页,共21页⊙O 1的位置出发,在∠ABC 外部沿A -B -C 滚动 到⊙O 4的位置,⊙O 自转 周.拓展联想:(1)如图13-4,△ABC 的周长为l ,⊙O 从与AB 相切于点D的位置出发,在△ABC 外部,按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,⊙O 自转了多少周?请说明理由.(2)如图13-5,多边形的周长为l ,⊙O 从与某边相切于点D 的位置出发,在多边形外部,按顺时针方向沿多 边形滚动,又回到与该边相切于点D 的位置,直接..写 出⊙O 自转的周数.24.(本小题满分10分)在图14-1至图14-3中,点B 是线段AC 的中点,点D 是线段CE 的中点.四边形BCGF 和CDHN 都是正方形.AE 的中点是M .(1)如图14-1,点E 在AC的延长线上,点N 与点G 重合时,点M 与点C 重合,求证:FM = MH ,FM ⊥MH ;(2)将图14-1中的CE 绕点C 顺时针旋转一个锐角,得到图14-2, 求证:△FMH 是等腰直角三角形; (3)将图14-2中的CE 缩短到图14-3的情况,△FMH 还是等腰直角三角形吗?(不必 说明理由)25.(本小题满分12分)某公司装修需用A 型板材240块、B 型板材180块,A 型板材规格是60 cm×30 cm ,B 型板材规格是40 cm×30 cm .现只能购得规格是150 cm×30 cm 的标准板材.一张标准板材尽可能多地裁出A 型、B 型板材,共有下列三种裁法:(图15是裁法一的裁剪示意图)图13-4图14-1AHC (M )DEBFG (N )G图14-2AHCDEBFNMHCFG N图13-5第10页,共21页设所购的标准板材全部裁完,其中按裁法一裁x 张、按裁法二裁y 张、按裁法三裁z 张,且所裁出的A 、B 两种型号的板材刚好够用. (1)上表中,m = ,n = ; (2)分别求出y 与x 和z 与x 的函数关系式;(3)若用Q 表示所购标准板材的张数,求Q 与x 的函数关系式,并指出当x 取何值时Q 最小,此时按三种裁法各裁标准板材 多少张?26.(本小题满分12分)如图16,在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接..写出t 的值.图16图15单位:cm第11页,共21页2010年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题共12个小题,每小题2分,共24分.) 1.计算3×(-2) 的结果是A .5B .-5C .6D .-62.如图1,在△ABC 中,D 是BC 延长线上一点,∠B = 40°,∠ACD = 120°,则∠A 等于 A .60° B .70°C .80°D .90°3.下列计算中,正确的是A .020=B .2a a a =+C 3=±D .623)(a a =4.如图2,在□ABCD 中,AC 平分∠DAB ,AB = 3,则□ABCD 的周长为 A .6 B .9 C .12D .155.把不等式2x -< 4的解集表示在数轴上,正确的是( )6.如图3,在5×5正方形网格中,一条圆弧经过A ,B ,C 三点,那么这条圆弧所在圆的圆心是A .点PB .点QC .点RD .点M7.化简ba b b a a ---22的结果是 A .22b a -B .b a +C .b a -D .18.小悦买书需用48元钱,付款时恰好用了1元和5元的纸币共12张.设所用的1元纸币为x 张,根据题意,下面所列方程正确的是 A .48)12(5=-+x x B .48)12(5=-+x x C .48)5(12=-+x x D .48)12(5=-+x x9.一艘轮船在同一航线上往返于甲、乙两地.已知轮船在静水中的速度为15 km/h ,水流速度为5 km/h .轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为t (h ),航行的路程为s (km ),则s 与t 的函数图象大致是10.如图4,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是A .7B .C .9D .10 11.如图5,已知抛物线c bx x y ++=2的对称轴为2=x ,点A ,B 均在抛物线上,且AB 与x 轴平行,其中A BCD图2ABC40°120°图1图3A B D CA B C D21页 点A 的坐标为(0,3),则点B 的坐标为 A .(2,3) B .(3,2) C .(3,3) D .(4,3)12.将正方体骰子(相对面上的点数分别为1和6、2和5、3和4)放置于水平桌面上,如图6-1.在图6-2中,将骰子 向右翻滚90°,然后在桌面上按逆时针方向旋转90°,则完成 一次变换.若骰子的初始位置为图6-1所示的状态,那么按 上述规则连续完成10次变换后,骰子朝上一面的点数是A .6B .5C .3D .2二、填空题(本大题共6个小题,每小题3分,共18分.) 13.的相反数是 .14.如图7,矩形ABCD 的顶点A ,B 在数轴上, CD = 6,点A对应的数为1-,则点B 所对应的数为 . 15.在猜一商品价格的游戏中,参与者事先不知道该商品的价格,主持人要求他从图8的四张卡片中任意拿走一张,使剩下的卡片从左到右连成一个三位数,该数就是他猜的价格.若商品的价格是360元,那么他一次就能猜中的概率是 .16.已知x = 1是一元二次方程02=++n mx x 的一个根,则222n mn m ++的值为 .17.某盏路灯照射的空间可以看成如图9所示的圆锥,它的高AO = 8米,母线AB 与底面半径OB 的夹角为α,34tan =α, 则圆锥的底面积是 平方米(结果保留π). 18.把三张大小相同的正方形卡片A ,B ,C 叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示.若按图10-1摆放时,阴影部分的面积为S 1;若按图10-2摆放时,阴影部分的面积为S 2,则S 1 S 2(填“>”、“<”或“=”).三、解答题(本大题共8个小题,共78分.) 19.(本小题满分8分)解方程:1211+=-x x .20.(本小题满分8分)如图11-1,正方形ABCD 是一个6 × 6网格电子屏的示意图,其中每个小正方形的边长为1.位于AD 中点处的光点P 按图11-2的程序移动.(1)请在图11-1中画出光点P 经过的路径;(2)求光点P 经过的路径总长(结果保留π).21.(本小题满分9分)甲、乙两校参加区教育局举办的学生英语口语竞赛,两校参赛人数相等.比赛结束后,图10-1图10-2D图11-1乙校成绩扇形统计图图7图8图图第13页,共21页发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.(1)在图12-1中,“7分”所在扇形的圆心角等于 °.(2)请你将图12-2的统计图补充完整. (3)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.(4)如果该教育局要组织8人的代表队参加市级团体赛,为便于管理,决定从这两所学校中的一所挑选参赛选手,请你分析,应选哪所学校?22.(本小题满分9分)如图13,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,顶点A ,C 分别在坐标轴上,顶点B 的坐标为(4,2).过点D (0,3)和E (6,0)的直线分别与AB ,BC 交于点M ,N .(1)求直线DE 的解析式和点M 的坐标;(2)若反比例函数xmy =(x >0)的图象经过点M ,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(3)若反比例函数xmy =(x >0)的图象与△MNB 有公共点,请直接..写出m 的取值范围.23.(本小题满分10分)观察思考某种在同一平面进行传动的机械装置如图14-1,图14-2是它的示意图.其工作原理是:滑块Q 在平直滑道l 上可以左右滑动,在Q 滑动的过程中,连杆PQ 也随之运动,并且PQ 带动连杆OP 绕固定点O 摆动.在摆动过程中,两连杆的接点P 在以OP 为半径的⊙O 上运动.数学兴趣小组为进一步研究其中所蕴含的数学知识,过点O 作OH ⊥l 于点H ,并测得OH = 4分米,PQ = 3分米,OP = 2分米.解决问题(1)点Q 与点O 间的最小距离是分米;点Q 与点O 间的最大距离是 分米;点Q 在l 上滑到最左端的位置与滑到最右端位置间的距离是 分米.(2)如图14-3,小明同学说:“当点Q 滑动到点H 的位置时,PQ 与⊙O 是相切的.”你认为他的判断对吗?为什么?(3)①小丽同学发现:“当点P 运动到OH 上时,点P 到l 的距离最小.”事实上,还存在着点P到l 距离最大的位置,此时,点P 到l 的距离是l lQ 图14-2 图14-1乙校成绩条形统计图图12-2第14页,共21页分米;②当OP 绕点O 左右摆动时,所扫过的区域为扇形, 求这个扇形面积最大时圆心角的度数.24.(本小题满分10分) 在图15-1至图15-3中,直线MN 与线段AB 相交 于点O ,∠1 = ∠2 = 45°. (1)如图15-1,若AO = OB ,请写出AO 与BD 的数量关系和位置关系; (2)将图15-1中的MN 绕点O 顺时针旋转得到 图15-2,其中AO = OB . 求证:AC = BD ,AC ⊥ BD ; (3)将图15-2中的OB 拉长为AO 的k 倍得到 图15-3,求AC BD 的值. 25.(本小题满分12分)如图16,在直角梯形ABCD 中,AD ∥BC ,90B ∠=︒,AD = 6,BC = 8,33=AB ,点M 是BC 的中点.点P 从点M 出发沿MB 以每秒1个单位长的速度向点B 匀速运动,到达点B 后立刻以原速度沿BM 返回;点Q 从点M 出发以每秒1个单位长的速度在射线MC 上匀速运动.在点P ,Q 的运动过程中,以PQ 为边作等边三角形EPQ ,使它与梯形ABCD 在射线BC 的同侧.点P ,Q 同时出发,当点P 返回到点M 时停止运动,点Q 也随之停止.设点P ,Q 运动的时间是t 秒(t >0).(1)设PQ 的长为y ,在点P 从点M 向点B 运动的过程中,写出y 与t 之间的函数关系式(不必写t 的取值范围).(2)当BP = 1时,求△EPQ 与梯形ABCD 重叠部分的面积. (3)随着时间t 的变化,线段AD 会有一部分被△EPQ 覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接..写出t 的取值范围;若不能,请说明理由.P Q 图16 (备用图)图15-2A D OB C 2 1 M N 图15-1A DB M N 1 2 图15-3A D OBC21 M N O第15页,共21页26.(本小题满分12分)某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y (元/件)与月销量x (件)的函数关系式为y =1001-x +150, 成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w 内(元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为常数,10≤a ≤40),当月销量为x (件)时,每月还需缴纳1001x 2元的附加费,设月利润为w 外(元)(利润 = 销售额-成本-附加费).(1)当x = 1000时,y = 元/件,w 内 = 元;(2)分别求出w 内,w 外与x 间的函数关系式(不必写x 的取值范围); (3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a 的值;(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是24(,)24b ac b a a--.第16页,共21页2011河北省初中毕业生升学文化课考试数 学 试 卷卷Ⅰ(选择题,共30分)一、选择题(本大题共12个小题.1-6小题,每小题2分,7-12小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的 1.计算30的结果是A .3B .30C .1D .0 2.如图1,∠1+∠2等于A .60°B .90°C .110°D .180°3.下列分解因式正确的是A .-a +a 3=-a (1+a 2)B .2a -4b +2=2(a -2b )C .a 2-4=(a -2)2D .a 2-2a +1=(a -1)2 4.下列运算中,正确的是A .2x -x =1B .x +x 4=x 5C .(-2x )3=-6x 3D .x 2y ÷y =x 25.一次函数y =6x +1的图象不经过... A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.将图2①围成图2②的正方体,则图②中的红心“”标志所在的正方形是正方体中的A .面CDHEB .面BCEFC .面ABFGD .面ADHG 7.甲、乙、丙三个旅行团的游客人数都相等,且每团游客的平均年龄都是32岁,这三个团游客年龄的方并有分别是227S =甲,219.6S =乙,21.6S =丙,导游小王最喜欢带游客年龄相近的团队,若在这三个团中选择一个,则他应选A .甲团B .乙团C .丙团D .甲或乙团8.一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下面的函数关系式:h =-5(t -1)2+6,则小球距离地面的最大高度是 A .1米 B .5米 C .6米 D .7米9.如图3,在△ABC 中,∠C =90°,BC =6,D ,E 分别在AB ,AC 上,将△ABC 沿DE 折叠,使点A 落在A ′处,若A ′为CE 的中点,则折痕DE 的长为A .12B .5米C .6米D .7米10.已知三角形三边长分别为2,x ,13,若x 为正整数,则这样的三角形个数为 A .2 B .3 C .5 D .13 11.如图4,在长形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆住的侧面,刚好能组合成圆住.设矩形的长和宽分别为y 和x ,则y 与x 的函数图象大致是12.根据图5中①所示的程序,得到了y 与x 的函数图象,如图5中②,若点M 是y 轴正半轴上任意一点,过点M 作PQ ∥x 轴交图象于点P 、Q ,连接OP 、OQ ,则以下结论:ABD图1图4① ② 图2。
2008河北中考数学试卷(节选)

数学试卷 第1页 (共6页)2008年河北省初中毕业生升学文化课考试数 学 试 卷一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.的倒数是A .8B .C .18D .18-2.计算223a a +的结果是A .B .C .D .4.据河北电视台报道,截止到2008年5月21日,元. 将15510000用科学记数法表示为 A .0.155 1×108 B .1551×104 C .1。
551×107 D .15。
51×1068.同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6).下列事件中是必然事件的是A .两枚骰子朝上一面的点数和为6B .两枚骰子朝上一面的点数和不小于2C .两枚骰子朝上一面的点数均为偶数D .两枚骰子朝上一面的点数均为奇数10.有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众"、“志"、“成"、“城”四个字牌,如图5—1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90°,则完成一次变换.图5-2、图5-3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是A .上B .下C .左D .右二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上) 11.如图6,直线a b ∥,直线c 与a ,b 相交.若170∠=︒,则=°.13.若m ,n 互为相反数,则5m +5n -5=_________.15.某班学生理化生实验操作测试成绩的统计结果如下表:则这些学生成绩的众数为.图5-1图5-2…图5-3第2次变换图6a 1 2bc 巧克力 图8图1 - 1 04数学试卷 第2页 (共6页)16.图8所示的两架天平保持平衡,且每块巧克力的质量相等, 每个果冻的质量也相等,则一块巧克力的质量是______ g . 18.图9-1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC =6, BC =5,将四个直角三角形中边长为6的直角边分 别向外延长一倍,得到图9-2所示的“数学风车”, 则这个风车的外围周长是.三、解答题(本大题共8个小题;共76分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分8分)某种子培育基地用A,B,C ,D 四种型号的小麦种子共2 000 粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得 知,C 型号种子的发芽率为95%,根据实验数据绘制了图10—1和图10—2两幅尚不完整的统计图.(1)D 型号种子的粒数是;(2)请你将图10-2的统计图补充完整;(3)通过计算说明,应选哪一个型号的种子进行推广;21.(本小题满分8分)如图11,直线的解析表达式为33y x =-+,且与x 轴交于点D .直线经过点A ,B ,直线,交于点C .(1)求点D 的坐标; (2)求直线的解析表达式; (3)求△ADC 的面积;(4)在直线上存在异于点C 的另一点P ,使得△ADP 与△ADC 的面积相等,请直接..写出 点P 的坐标.图10-2各型号种子数的百分比A35% 20% 图10-1 20%C B D图9-1图9-2AC图11数学试卷 第3页 (共6页)22.(本小题满分9分)气象台发布的卫星云图显示,代号为W 的台风在某海岛(设为点O )的南偏东45°方向的B 点生成,测得OB =100 km .台风中心从点B 以40 km/ h 的速度向正北方向移动,经5 h 后到达海面上的点C 处.因受气旋影响,台风中心从点C 开始以30 km/ h 的速度向北偏西60°方向继续移动.以O 为原点建立如图12所示的直角坐标系.(1)台风中心生成点B 的坐标为,台风中心转折点C 的坐标为;(结果保留根号)(2)已知距台风中心20 km 的范围内均会受到台风的侵袭.如果某城市(设为点A )位于点O 的正北方向且处于台风中心的移动路线上,那么台风从生成到最初..侵袭该城要经过多长时间?23.(本小题满分10分)在一平直河岸l 同侧有A ,B 两个村庄,A ,B 到l 的距离分别是3 k m 和2 k m , AB = a km (a >1).现计划在河岸l 上建一抽水站P ,用输水管向两个村庄供水.方案设计某班数学兴趣小组设计了两种铺设管道方案:图13-1是方案一的示意图,设该方案中 管道长度为d 1,且d 1=PB+BA (km )(其中BP ⊥ l 于点P );图13—2是方案二的示意图,设该方案中管道长度为d 2,且d 2=P A +PB (km )(其中点与点A 关于l 对称,B 与l 交于点P ).观察计算(1)在方案一中,d 1=km (用含a 的式子表示);(2)在方案二中,组长小宇为了计算d 2的长,作了如图13—3所示的辅助线,请你按小宇同学的思路计算,d 2=km (用含a 的式子表示). 探索归纳(1)①当a = 4时,比较大小: d 1d 2(填“>”、“="或“<”);②当a = 6时,比较大小: d 1d 2(填“>"、“=”或“<");A l 图13 -1 AB l 图13 -2A BP C 图13 -3K lBP C数学试卷 第4页 (共6页)(2)请你参考右边方框中的方法指导,就a (当a >1时)的所有取值情况进行分析,要使铺设的管道长度较短, 应选择方案一还是方案二?24.(本小题满分10分) 如图14-1,△ABC 的边BC 在直线l 上,AC ⊥BC ,且AC =BC ;△EFP 的边FP 也在直线l 上,边EF 与边AC 重合,且EF =FP .(1)在图14-1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的数量关系和位置关系;(2)将△EFP 沿直线l 向左平移到图14—2的位置时,EP 交AC 于点Q ,连结AP ,BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想;(3)将△EFP 沿直线l 向左平移到图14—3的位置时,EP 的延长线交AC 的延长线于点Q ,连结AP ,BQ .你认为(2)中所猜想的BQ 与AP 的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.图14-1B C (F ) PA (E )lC图14-2ll图14-3数学试卷第5页(共6页)。
(完整word)2008-2009-2010.2011年河北省中考数学试题和答案(word可编辑版)

2008-—-2011年2008年河北省初中毕业生升学文化课考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共20分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(08河北)8-的倒数是( )A .8B .8-C .18D .18-2.(08河北)计算223a a +的结果是( ) A .23aB .24aC .43aD .44a3.(08河北)把某不等式组中两个不等式的解集表示在数轴上,则这个不等式组可能是( ) A .41x x >⎧⎨-⎩,≤B .41x x <⎧⎨-⎩,≥C .41x x >⎧⎨>-⎩,D .41x x ⎧⎨>-⎩≤,4.(08河北)据河北电视台报道,截止到2008年5月21日,河北慈善总会已接受支援汶川地震灾区的捐款15 510 000元.将15 510 000用科学记数法表示为( ) A .80.155110⨯ B .4155110⨯C .71.55110⨯D .615.5110⨯5.(08河北)图2A .点P B .点O C .点M D .点N6.(08河北)某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( ) A .23000(1)5000x += B .230005000x =C .23000(1)5000x +=%D .23000(1)3000(1)5000x x +++=7.(08河北)如图3,已知O 的半径为5,点O 到弦AB 的距离为3到弦AB 所在直线的距离为2的点有( )A .1个B .2个C .3个D .4个图1图2 图38.(08河北)同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6).下列事件中是必然事件的是( )A .两枚骰子朝上一面的点数和为6B .两枚骰子朝上一面的点数和不小于2C .两枚骰子朝上一面的点数均为偶数D .两枚骰子朝上一面的点数均为奇数 9.(08河北)如图4,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且010x <≤,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( )10.(08河北)有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志"、“成"、“城”四个字牌,如图5—1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90,则完成一次变换.图5—2,图5—3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是( )A .上B .下C .左D .右2008年河北省初中毕业生升学文化课考试数学试卷卷Ⅱ(非选择题,共100分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上) 11.(08河北)如图6,直线a b ∥,直线c 与a b ,相交.若170∠=, 则2_____∠=.12.(08河北)当x = 时,分式31x -13.(08河北)若m n ,互为相反数,则555m n +- . 14.(08河北)如图7,AB 与O 相切于点B ,的延长线交O 于点C 连结BC .若36A ∠=,则______C ∠=.图4xA .xB .xC .D .图5-1图5-2 图5-3 …12ba 图6 cO AB图715.(08则这些学生成绩的众数为 . 16.(08河北)图8每个果冻的质量也相等,则一块巧克力的质量是 g .17.(08河北)点(231)P m -,在反比例函数1y x=18.(08河北)图9—1全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图9—2所示的“数学风车"三、解答题(本大题共8个小题;共76分.解答应写出文字说明、证明过程或演算步骤) 19.(08河北)(本小题满分7分)已知2x =-,求21211x x x x -+⎛⎫-÷ ⎪⎝⎭的值.20.(08河北)(本小题满分8分)某种子培育基地用A,B ,C ,D 四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C 型号种子的发芽率为95%,根据实验数据绘制了图10-1和图10-2两幅尚不完整的统计图.(1)D 型号种子的粒数是 ; (2)请你将图10—2的统计图补充完整;(3)通过计算说明,应选哪一个型号的种子进行推广;(4)若将所有已发芽的种子放到一起,从中随机取出一粒,求取到B 型号发芽种子的概率.21.(08河北)(本小题满分8分)如图11,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .ABC图9-1 图8 A 35%B20% C 20%D各型号种子数的百分比图10-1图10-2(1)求点D 的坐标;(2)求直线2l 的解析表达式; (3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标.22.(08河北)(本小题满分9分)气象台发布的卫星云图显示,代号为W 的台风在某海岛(设为点O )的南偏东45方向的B点生成,测得OB =.台风中心从点B 以40km/h 的速度向正北方向移动,经5h 后到达海面上的点C 处.因受气旋影响,台风中心从点C 开始以30km/h 的速度向北偏西60方向继续移动.以O 为原点建立如图12所示的直角坐标系.(1)台风中心生成点B 的坐标为 ,台风中心转折点C 的坐标为 ;(结果保留根号) (2)已知距台风中心20km 的范围内均会受到台风的侵袭.如果某城市(设为点A )位于点O 的正北方向且处于台风中心的移动路线上,那么台风从生成到最初..侵袭该城要经过多长时间?23.(08河北)(本小题满分10分)在一平直河岸l 同侧有A B ,两个村庄,A B ,到l 的距离分别是3km 和2km,km AB a =(1)a >.现计划在河岸l 上建一抽水站P ,用输水管向两个村庄供水. 方案设计某班数学兴趣小组设计了两种铺设管道方案:图13—1是方案一的示意图,设该方案中管道长度为1d ,且1(km)d PB BA =+(其中BP l ⊥于点P );图13-2是方案二的示意图,设该方案中管道长度为2d ,且2(km)d PA PB =+(其中点A '与点A 关于l 对称,A B '与l 交于点P ).观察计算BC6045图12图13-1图13-2图13-3(1)在方案一中,1d = km (用含a 的式子表示);(2)在方案二中,组长小宇为了计算2d 的长,作了如图13-3所示的辅助线,请你按小宇同学的思路计算,2d = km (用含a 的式子表示). 探索归纳(1)①当4a =时,比较大小:12_______d d (填“>”、“=”或“<”); ②当6a =时,比较大小:12_______d d (填“>”、“=”或“<");(2)就a (当1a >时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?24.(08河北)(本小题满分10分)如图14-1,ABC △的边BC 在直线l 上,AC BC ⊥,且AC BC =;EFP △的边FP 也在直线l 上,边EF 与边AC 重合,且EF FP =.(1)在图14-1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的数量关系和位置关系;(2)将EFP △沿直线l 向左平移到图14—2的位置时,EP 交AC 于点Q ,连结AP ,BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想;(3)将EFP △沿直线l 向左平移到图14-3的位置时,EP 的延长线交AC 的延长线于点Q ,连结AP ,BQ .你认为(2)中所猜想的BQ 与AP 的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.25.(08河北)(本小题满分12分)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式2159010y x x =++,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p 甲,p 乙(万元)均与x 满足一次函数关系.(注:年利润=年销A (E )BC (F ) P lllB FC 图14-1图14-2图14-3可以对它们的平方进行比较:2m n 2-=22()m n ∴-当22m n -当22m n -当22m n -售额-全部费用)(1)成果表明,在甲地生产并销售x 吨时,11420p x =-+甲,请你用含x 的代数式表示甲地当年的年销售额,并求年利润w 甲(万元)与x 之间的函数关系式; (2)成果表明,在乙地生产并销售x 吨时,110p x n =-+乙(n 为常数),且在乙地当年的最大年利润为35万元.试确定n 的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是2424b ac b a a ⎛⎫-- ⎪⎝⎭,.26.(08河北)(本小题满分12分)如图15,在Rt ABC △中,90C ∠=,50AB =,30AC =,D E F ,,分别是AC AB BC ,,的中点.点P 从点D 出发沿折线DE EF FC CD ---以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC CA -于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒(0t >). (1)D F ,两点间的距离是 ;(2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出t 的值.若不能,说明理由; (3)当点P 运动到折线EF FC -上,且点P 又恰好落在射线QK 上时,求t 的值; (4)连结PG ,当PG AB ∥时,请直接..写出t 的值.图152008年河北省初中毕业生升学文化课考试数学试题参考答案一、选择题二、选择题 11.70; 12,1; 13.5-; 14.27;15.9分(或9);16.20; 17.2; 18.76. 三、解答题 19.解:原式21(1)x xx x -=⨯- 11x =-. 当2x =-时,原式13=-.20.解:(1)500; (2)如图1;(3)A 型号发芽率为90%,B 型号发芽率为92.5%, D 型号发芽率为94%,C 型号发芽率为95%. ∴应选C 型号的种子进行推广.图1(4)3701(B )6303703804705P ==+++取到型号发芽种子.21.解:(1)由33y x =-+,令0y =,得330x -+=.1x ∴=.(10)D ∴,. (2)设直线2l 的解析表达式为y kx b =+,由图象知:4x =,0y =;3x =,32y =-. 4033.2k b k b +=⎧⎪∴⎨+=-⎪⎩,326.k b ⎧=⎪∴⎨⎪=-⎩,∴直线2l 的解析表达式为362y x =-. (3)由333 6.2y x y x =-+⎧⎪⎨=-⎪⎩,解得23.x y =⎧⎨=-⎩,(23)C ∴-,. 3AD =,193322ADC S ∴=⨯⨯-=△. (4)(63)P ,. 22.解:(1)B -,C -; (2)过点C 作CD OA ⊥于点D ,如图2,则CD =在Rt ACD △中,30ACD ∠=,CD =,3cos302CD CA ∴==.200CA ∴=. 20020630-=,5611+=, ∴台风从生成到最初侵袭该城要经过11小时. 23.观察计算 (1)2a +; (2. 探索归纳(1)①<;②>;(2)222212(2)420d d a a -=+-=-. ①当4200a ->,即5a >时,22120d d ->,120d d ∴->.12d d ∴>; ②当4200a -=,即5a =时,22120d d -=,120d d ∴-=.12d d ∴=; ③当4200a -<,即5a <时,22120d d -<,120d d ∴-<.12d d ∴<.综上可知:当5a >时,选方案二; 当5a =时,选方案一或方案二;当15a <<(缺1a >不扣分)时,选方案一./kmBC6045图224.解:(1)AB AP =;AB AP ⊥.(2)BQ AP =;BQ AP ⊥.证明:①由已知,得EF FP =,EF FP ⊥,45EPF ∴∠=. 又AC BC ⊥,45CQP CPQ ∴∠=∠=.CQ CP ∴=.在Rt BCQ △和Rt ACP △中,BC AC =,90BCQ ACP ∠=∠=,CQ CP =,Rt Rt BCQ ACP ∴△≌△,BQ AP ∴=. ②如图3,延长BQ 交AP 于点M .Rt Rt BCQ ACP △≌△,12∴∠=∠. 在Rt BCQ △中,1390∠+∠=,又34∠=∠,241390∴∠+∠=∠+∠=.90QMA ∴∠=.BQ AP ∴⊥.(3)成立.证明:①如图4,45EPF ∠=,45CPQ ∴∠=. 又AC BC ⊥,45CQP CPQ ∴∠=∠=.CQ CP ∴=.在Rt BCQ △和Rt ACP △中,BC AC =,90BCQ ACP ∠=∠=,CQ CP =,Rt Rt BCQ ACP ∴△≌△.BQ AP ∴=.②如图4,延长QB 交AP 于点N ,则PBN CBQ ∠=∠.Rt Rt BCQ ACP △≌△,BQC APC ∴∠=∠. 在Rt BCQ △中,90BQC CBQ ∠+∠=,90APC PBN ∴∠+∠=.90PNB ∴∠=. QB AP ∴⊥.25.解:(1)甲地当年的年销售额为211420x x ⎛⎫-+ ⎪⎝⎭万元;lAB FC Q 图3M12 34 EP lABQP EF图4N C2399020w x x =-+-甲. (2)在乙地区生产并销售时, 年利润222111590(5)9010105w x nx x x x n x ⎛⎫=-+-++=-+-- ⎪⎝⎭乙. 由214(90)(5)535145n ⎛⎫⨯-⨯--- ⎪⎝⎭=⎛⎫⨯- ⎪⎝⎭,解得15n =或5-. 经检验,5n =-不合题意,舍去,15n ∴=.(3)在乙地区生产并销售时,年利润2110905w x x =-+-乙,将18x =代入上式,得25.2w =乙(万元);将18x =代入2399020w x x =-+-甲, 得23.4w =甲(万元).w w >乙甲,∴应选乙地.26.解:(1)25. (2)能.如图5,连结DF ,过点F 作FH AB ⊥于点H , 由四边形CDEF 为矩形,可知QK 过DF 的中点O 时,QK 把矩形CDEF 分为面积相等的两部分(注:可利用全等三角形借助割补法或用中心对称等方法说明),此时12.5QH OF ==.由20BF =,HBF CBA △∽△,得16HB =.故12.5161748t +==. (3)①当点P 在EF 上6(25)7t ≤≤时,如图6.4QB t =,7DE EP t +=, 由PQE BCA △∽△,得7202545030t t--=. 21441t ∴=. ②当点P 在FC 上6(57)7t ≤≤时,如图7.已知4QB t =,从而5PB t =,由735PF t =-,20BF =,得573520t t =-+.解得172t =.(4)如图8,213t =;如图9,39743t =.E B图5B图6EB图7B图86027t <≤时,点P 下(注:判断PG AB ∥可分为以下几种情形:当行,点G 上行,可知其中存在PG AB ∥的时刻,如图8;此后,点G 继续上行到点F 时,4t =,而点P 却在下行到点E 再沿EF 上行,发现点P 在EF 上运动时不存在PG AB ∥;当6577t ≤≤时,点P G ,均在FC 上,也不存在行,所以在6787t <<PG AB ∥;由于点P 比点G 先到达点C 并继续沿CD 下中存在PG AB ∥的时刻,如图9;当810t ≤≤时,点P G ,均在CD 上,不存在PG AB ∥)B图9图32009年河北省初中毕业生升学文化课考试数 学 试 卷卷Ⅰ(选择题,共24分)一、选择题(本大题共12个小题,每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.3(1)-等于( ) A .-1 B .1 C .-3 D .3 2.在实数范围内,x 有意义,则x 的取值范围是( )A .x ≥0B .x ≤0C .x >0D .x <03.如图1,在菱形ABCD 中,AB = 5,∠BCD =120°,则对角线AC 等于( )A .20B .15C .10D .5 4.下列运算中,正确的是() A .34=-m m B .()m n m n --=+C .236m m =() D .m m m =÷225.如图2,四个边长为1的小正方形拼成一个大正方形,A 、 B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点, 且位于右上方的小正方形内,则∠APB 等于( ) A .30° B.45° C .60° D .90° 6.反比例函数1y x=(x >0)的图象如图3所示,随着x 值的增大,y 值( ) A .增大 B .减小 C .不变 D .先减小后增大 7.下列事件中,属于不可能事件的是( ) A .某个数的绝对值小于0 B .某个数的相反数等于它本身 C .某两个数的和小于0 D .某两个负数的积大于0 8.图4是某商场一楼与二楼之间的手扶电梯示意图.其中AB 、CD 分别表示一楼、二楼地面的水平线, ∠ABC =150°,BC 的长是8 m,则乘电梯从点B 到点C 上升的高度h 是( )A mB .4 mC .D .8 m9.某车的刹车距离y (m)与开始刹车时的速度x (m/s)之间满足二次函数2120y x =(x >0),若该车某次的刹车距离为5 m,则开始刹车时的速度为( ) A .40 m/s B .20 m/s C .10 m/s D .5 m/sBAC D 图1图2 图44=1+3 9=3+616=6+10 图7 …10.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的表面积是( ) A .20 B .22 C .24 D .2611.如图6所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )12.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”.从图7中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数"之和.下列等式中,符合这一规律的是( )A .13 = 3+10B .25 = 9+16C .36 = 15+21D .49 = 18+31ADCB图6电视机月销量扇形统计图2009年河北省初中毕业生升学文化课考试(数学)卷Ⅱ(非选择题,共96分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案写在题中横线上)13.比较大小:-6 -8.(填“<"、“=”或“>”)14.据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约 为12 000 000千瓦.12 000 000用科学记数法表示为 . 15.在一周内,小明坚持自测体温,每天3次.测量结果统计如下表:则这些体温的中位数是 ℃.16.若m 、n 互为倒数,则2(1)mn n --的值为 . 17.如图8,等边△ABC 的边长为1 cm,D 、E 分别是AB 、 AC 上的点,将△ADE 沿直线DE 折叠,点A 落在点A ' 处,且点A '在△ABC 外部,则阴影部分图形的周长 为 cm .18.如图9,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露 出水面的长度是它的15.两根铁棒长度之和为55 cm,此时木桶中水的深度是 cm . 三、解答题(本大题共8个小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分8分) 已知a = 2,1-=b ,求2221a b a ab --+÷1a 的值.20.(本小题满分8分)图10是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m,OE ⊥CD 于点E .已测得sin∠DOE =1213. (1)求半径OD ;(2)根据需要,水面要以每小时0.5 m 的速度下降,则经过多长时间才能将水排干?21.(本小题满分9分)某商店在四个月的试销期内,只销售A 、B 两个品牌的电视机,共售出400台.试销结束后,只能经销其中的一个品牌,为作出决定,经销人员正在绘制两幅统计图,如图11-1和图11-2.(1)第四个月销量占总销量的百分比是 ;(2)在图11-2中补全表示B 品牌电视机月销量的折线;(3)为跟踪调查电视机的使用情况,从该商店第O图10图9图8四个月售出的电视机中,随机抽取一台,求 抽到B 品牌电视机的概率;(4)经计算,同,22.(本小题满分9分)已知抛物线2y ax bx =+经过点(33)A --,和点P (t ,0),且t ≠ 0.(1称轴经过点A ,如图12,指出此时y 的最小值,并写出t 的值;(2)若4t =-,求a 、的值,并指出此时抛 物线的开口向;(3)直.接.写出使该抛物线开口向下的t 的一个值.23.(本小题满分10分)如图13-1至图13—5,⊙O 均作无滑动滚动,⊙O 1、⊙O 2、⊙O 3、⊙O 4均表示⊙O 与线段AB 或BC 相切于端点时刻的位置,⊙O 的周长为c .阅读理解:(1)如图13—1,⊙O 从⊙O 1的位置出发,沿AB 滚动到 ⊙O 2的位置,当AB = c 时,⊙O 恰好自转1周.(2)如图13—2,∠ABC 相邻的补角是n °,⊙O 在∠ABC 外部沿A -B -C 滚动,在点B 处,必须由 ⊙O 1的位置旋转到⊙O 2的位置,⊙O 绕点B 旋 转的角∠O 1BO 2 = n °,⊙O 在点B 处自转360n 周.实践应用:(1)在阅读理解的(1)中,若AB = 2c ,则⊙O自 转 周;若AB = l ,则⊙O 自转 周.在阅读理解的(2)中,若∠ABC = 120°,则⊙O 在点B 处自转 周;若∠ABC = 60°,则⊙O在点B 处自转 周.(2)如图13—3,∠ABC=90°,AB=BC=12c .⊙O从⊙O 1的位置出发,在∠ABC 外部沿A -B -C 滚动到⊙O 4的位置,⊙O 自转 周.拓展联想:(1)如图13—4,△ABC 的周长为l ,⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部,按顺时针方向沿三角形滚动,又回到与AB 相切于点D的位置,⊙O 自转了多少周?请说明理由.图12 图13-1A B图13-3单位:cm (2)如图13—5,多边形的周长为l ,⊙O 从与某边相切于点D边形滚动,又回到与该边相切于点D 的位置,直接..出⊙O 自转的周数.24.(本小题满分10分)在图14—1至图14-3中,点B 是线段AC 的中点,点D 是线段CE 的中点.四边形BCGF 和CDHN 都是正方形.AE 的中点是M .(1)如图14—1,点E 在AC 的延长线上,点N 与点G 重合时,点M 与点C 重合,求证:FM = MH ,FM ⊥MH ;(2)将图14—1中的CE 绕点C 顺时针旋转一个锐角,得到图14—2,求证:△FMH 是等腰直角三角形; (3)将图14-2中的CE 缩短到图14—3的情况,△FMH 还是等腰直角三角形吗?(不必 说明理由)25.(本小题满分12分)某公司装修需用A 型板材240块、B 型板材180块,A 型板材规格是60 cm×30 cm,B 型板材规格是40 cm×30 cm.现只能购得规格是150 cm×30 cm 的标准板材.一张标准板材尽可能多地裁出A 型、B 型板材,共有下列三种裁法:(图15是裁法一的裁剪示意图)设所购的标准板材全部裁完,其中按裁法一裁x 张、按裁法三裁z 张,且所裁出的A 、B (1)上表中,m = ,n = ;(2)分别求出y 与x 和z 与x 的函数关系式;图14-1 A HC (M )DE BFG (N )G 图14-2AHC DEB F NMAHCDE 图14-3BFG MN 图13-5(3)若用Q 表示所购标准板材的张数,求Q 与x 的函数关系式,并指出当x 取何值时Q 最小,此时按三种裁法各裁标准板材 多少张?26.(本小题满分12分)如图16,在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC(2)在点P 从C 向A 运动的过程中,求△APQ t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 为直角梯形?若能,求t (4)当DE 经过点C 时,请直接..写出t 的值.2009年河北省初中毕业生升学文化课考试数学试题参考答案一、选择题二、填空题13.>; 14.1.2 × 107; 15.36。
28年河北省中考数学试题(含答案)

2008年河北省初中毕业生升学文化课考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共20分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回. 2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.8-的倒数是()A .8B .8-C .18D .18- 2.计算223a a +的结果是()A .23aB .24aC .43aD .44a3示, 则这个不等式组可能是() A .41x x >⎧⎨-⎩,≤ B .41x x <⎧⎨-⎩,≥ C .41x x >⎧⎨>-⎩,D .41x x ⎧⎨>-⎩≤,4.据河北电视台报道,截止到2008年5月21日,河北慈善总40 图1会已接受支援汶川地震灾区的捐款15510000元.将15510000用科学记数法表示为()A.8⨯155110⨯B.40.155110C.7⨯15.5110⨯D.61.551105.图2中的两个三角形是位似图形,它们的位似中心是()A.点P B.点O C.点M D.点N6.某县为发展教育事业,加强了对教育经费的投入,2007年投入3000万元,预计2009年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.2+=B.2x=300050003000(1)5000x Array C.2+++=3000(1)5000x x3000(1)3000(1)5000x%D.2+=7.如图3,已知O的半径为5,点O到弦AB的距离为3图3 上到弦AB所在直线的距离为2的点有()A.1个B.2个C.3个D.4个8.同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6).下列事件中是必然事件的是()A.两枚骰子朝上一面的点数和为6 B.两枚骰子朝上一面的点数和不小于2C.两枚骰子朝上一面的点数均为偶数D.两枚骰子朝上一面的点数均为奇数9.如图4,正方形ABCD的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且010x ≤,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是()10.有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图5-1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90,则完成一次变换.图5-2,图5-3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是()A .上B .下C .左D .右2008年河北省初中毕业生升学文化课考试数学试卷卷Ⅱ(非选择题,共100分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.图4A . xB . xC .D . 图图图…2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)11.如图6,直线a b ∥,直线c 与a b ,相交.若170∠=, 则2_____∠=.12.当x =时,分式31x -无意义. 13.若mn ,互为相反数,则555m n +-=. 14.如图7,AB 与O 相切于点B ,AO 的延长线交连结BC .若36A ∠=,则______C ∠=.15.某班学生理化生实验操作测试成绩的统计结果如下表:则这些学生成绩的众数为.16.图817.点(231)P m -,在反比例函数1y x=的图象上,则m =.18.图9-1是我国古代着名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图9-2所1 2b a图6cB图7图8示的“数学风车”,则这个风车的外围周长是.三、解答题(本大题共8个小题;共76分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分7分)已知2x =-,求21211x x x x -+⎛⎫-÷ ⎪⎝⎭的值.20.(本小题满分8分)某种子培育基地用A ,B ,C ,D 四种型号的小麦种子共2000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C 型号种子的发芽率为95%,根据实验数据绘制了图10-1和图10-2两幅尚不完整的统计图.(1)D 型号种子的粒数是;(2)请你将图10-2的统计图补充完整;(3)通过计算说明,应选哪一个型号的种子进行推广; (4)若将所有已发芽的种子放到一起,从中随机取出一粒,求取到B 型号发芽种子的概率.21.(本小题满分8分) 如图11,直线1l 的解析表达式为33y x =-+AB C图9-1 图9-2 A 35% B 20% C 20% D 各型号种子数的图型l 2,,直线1l,2l交于点C.D,直线2l经过点A B(1)求点D的坐标;(2)求直线l的解析表达式;2(3)求ADC△的面积;(4)在直线l上存在异于点C的另一点P,使得2△的面积相等,请直接△与ADCADP..写出点P的坐标.22.(本小题满分9分)气象台发布的卫星云图显示,代号为W的台风在某海岛(设测得OB=.台风中为点O)的南偏东45方向的B点生成,心从点B以40km/h的速度向正北方向移动,经5h后到达海面上的点C处.因受气旋影响,台风中心从点C开始以30km/h的速度向北偏西60方向继续移动.以O为原点建立如图12所示的直角坐标系.(1)台风中心生成点B的坐标为,台风中心转折点C的坐标为;(结果保留根号)(2)已知距台风中心20km的范围内均会受到台风的侵袭.如果某城市(设为点A)位于点O动路线上,那么台风从生成到最初..23.(本小题满分10分)在一平直河岸l同侧有A B,l,两个村庄,A B图3km和2km,km=(1)AB aa>.现计划在河岸l上建一抽水站P,用输水管向两个村庄供水.方案设计某班数学兴趣小组设计了两种铺设管道方案:图13-1是方案一的示意图,设该方案中管道长度为1d ,且1(km)d PBBA =+(其中BP l ⊥于点P );图13-2是方案二的示意图,设该方案中管道长度为2d ,且2(km)d PA PB =+(其中点A '与点A 关于l 对称,A B '与l 交于点P ).(1)在方案一中,1d =a(2)在方案二中,组长小宇为了计算2d 的长,作了如图13-3所示的辅助线,请你按小宇同学的思路计算,2d =km (用含a 的式子表示).探索归纳(1)①当4a =时,比较大小:12_______d d (填“>”、“=”或“<”);②当6a =时,比较大小:12_______d d (填“>”、“=”或“<”);(2就a (当1a >行分析,要使铺设的管道长度较短, 应选择方案一还是方案二?24.(本小题满分10分) P图图图进行比较:2m n 2-=0n >,22(m n ∴-当m n>0m n -=0m n -=m n=0m n -<0m n -<m n<如图14-1,ABC △的边BC 在直线l 上,AC BC ⊥,且A C B C =;EFP △的边FP 也在直线l 上,边EF 与边AC 重合,且EF FP =.(1)在图14-1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的数量关系和位置关系;(2)将EFP △沿直线l 向左平移到图14-2的位置时,EP 交AC 于点Q ,连结AP ,BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想;(3)将EFP △沿直线l 向左平移到图14-3的位置时,EP 的延长线交AC 的延长线于点Q ,连结AP ,BQ .你认为(2)中所猜想的BQ 与AP 的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.25.(本小题满分12分)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式2159010y x x =++,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p 甲,p 乙(万元)均与x 满足一次函数关系.(注:年A (E BC (F Pl l lB FC 图图图P利润=年销售额-全部费用)(1)成果表明,在甲地生产并销售x 吨时,11420p x =-+甲,请你用含x 的代数式表示甲地当年的年销售额,并求年利润w 甲(万元)与x 之间的函数关系式;(2)成果表明,在乙地生产并销售x 吨时,110p x n =-+乙(n 为常数),且在乙地当年的最大年利润为35万元.试确定n 的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是2424b ac b aa ⎛⎫-- ⎪⎝⎭,. 26.(本小题满分12分)如图15,在Rt ABC △中,90C ∠=,50AB =,30AC =,D E F ,,分别是A C A BB ,,的中点.点P 从点D 出发沿折线D E E FF C ---以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC CA -于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒(0t >).(1)D F ,两点间的距离是;(2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出t 的值.若不能,说明理由;(3)当点P 运动到折线EF FC -上,且点P 又恰好落在射线QK 上时,求t 的值;(4)连结PG ,当PG AB ∥时,请直接..写出t 的值.二、选择题11.70; 12,1; 13.5-; 14.27; 15.9分(或9);16.20; 17.2; 18.76. 三、解答题 19.解:原式21(1)x xx x -=⨯-11x =-. 当2x =-时,原式13=-.20.解:(1)500;(2)如图1; (3)A 型号发芽率为90%,B 型号发芽率为D 型号发芽率为94%,C 型号发芽率为95%. 图1 A B C D 型∴应选C 型号的种子进行推广.(4)3701(B )6303703804705P ==+++取到型号发芽种子.21.解:(1)由33y x =-+,令0y =,得330x -+=.1x ∴=.(10)D ∴,. (2)设直线2l 的解析表达式为y kx b =+,由图象知:4x =,0y =;3x =,32y =-. 4033.2k b k b +=⎧⎪∴⎨+=-⎪⎩,326.k b ⎧=⎪∴⎨⎪=-⎩,∴直线2l 的解析表达式为362y x =-. (3)由333 6.2y x y x =-+⎧⎪⎨=-⎪⎩,解得23.x y =⎧⎨=-⎩,(23)C ∴-,. 3AD =,193322ADC S ∴=⨯⨯-=△.(4)(63)P ,. 22.解:(1)B -,C -;(2)过点C 作CD OA ⊥于点D ,如图2,则CD =.在Rt ACD △中,30ACD ∠=,CD =,3cos30CD CA ∴==200CA ∴=. 20020630-=,5611+=, ∴台风从生成到最初侵袭该城要经过11小时.23.观察计算 (1)2a +;(2 探索归纳 (1)①<;②>;/k图2(2)222212(2)420d d a a -=+-=-.①当4200a ->,即5a >时,22120d d ->,120d d ∴->.12d d ∴>; ②当4200a -=,即5a =时,22120d d -=,120d d ∴-=.12d d ∴=; ③当4200a -<,即5a <时,22120d d -<,120d d ∴-<.12d d ∴<. 综上可知:当5a >时,选方案二; 当5a =时,选方案一或方案二;当15a <<(缺1a >不扣分)时,选方案一. 24.解:(1)AB AP =;AB AP ⊥. (2)BQ AP =;BQ AP ⊥.证明:①由已知,得EF FP =,EF FP ⊥,45EPF ∴∠=. 又AC BC ⊥,45CQP CPQ ∴∠=∠=.CQ CP ∴=. 在Rt BCQ △和Rt ACP △中,BC AC =,90BCQ ACP ∠=∠=,CQ CP =,Rt Rt BCQ ACP ∴△≌△,BQ AP ∴=.②如图3,延长BQ 交AP 于点M .Rt Rt BCQ ACP △≌△,12∴∠=∠.在Rt BCQ △中,1390∠+∠=,又34∠=∠,241390∴∠+∠=∠+∠=.90QMA ∴∠=.BQ AP ∴⊥.(3)成立. 证明:①如图4,45EPF ∠=,45CPQ ∴∠=.又AC BC ⊥,45CQP CPQ ∴∠=∠=.CQ CP ∴=. lA B F C Q 图3M E PlAB P EFNC在Rt BCQ △和Rt ACP △中,BC AC =,90BCQ ACP ∠=∠=,CQ CP =,Rt Rt BCQ ACP ∴△≌△.BQ AP ∴=.②如图4,延长QB 交AP 于点N ,则PBN CBQ ∠=∠.Rt Rt BCQ ACP △≌△,BQC APC ∴∠=∠.在Rt BCQ △中,90BQC CBQ ∠+∠=,90APC PBN ∴∠+∠=.90PNB ∴∠=.QB AP ∴⊥.25.解:(1)甲地当年的年销售额为211420x x ⎛⎫-+ ⎪⎝⎭万元; 2399020w x x =-+-甲. (2)在乙地区生产并销售时, 年利润222111590(5)9010105w x nx x x x n x ⎛⎫=-+-++=-+-- ⎪⎝⎭乙. 由214(90)(5)535145n ⎛⎫⨯-⨯--- ⎪⎝⎭=⎛⎫⨯- ⎪⎝⎭,解得15n =或5-. 经检验,5n =-不合题意,舍去,15n ∴=.(3)在乙地区生产并销售时,年利润2110905w x x =-+-乙, 将18x =代入上式,得25.2w =乙(万元);将18x =代入2399020w x x =-+-甲, 得23.4w =甲(万元).w w >乙甲,∴应选乙地.26.解:(1)25. (2)能.E BQ 图5H如图5,连结DF ,过点F 作FH AB ⊥于点H , 由四边形CDEF 为矩形,可知QK 过DF 的中点O 时,QK 把矩形CDEF 分为面积相等的两部分(注:可利用全等三角形借助割补法或用中心对称等方法说明), 此时12.5QH OF ==.由20BF =,HBF CBA △∽△,得16HB =. 故12.5161748t +==. (3)①当点P 在EF 上6(25)7t ≤≤时,如图64QB t =,7DE EP t +=,由PQE BCA △∽△,得7202545030t t--=. 21441t ∴=.②当点P 在FC上6(57)7t ≤≤时,如图7.已知4QB t =,从而5PB t=,由735PF t =-,20BF =,得573520t t =-+.解得172t =.(4)如图8,213t =;如图9,39743t =.(注:判断PG AB ∥可分为以下几种情形:当6027t <≤时,点P 下行,点G 上行,可知其中存在PG AB ∥的时刻,如图8;此后,点G 继续上行到点F 时,4t =,而点P 却在下行到点E 再沿EF 上行,发现点P 在EF 上运动时不存在PG AB ∥;当6577t ≤≤时,点P G ,均在FC 上,也不存在PG AB ∥;由于点P 比点G 先到达点C 并继续沿CD 下行,所以在6787t <<中B图6EBQ 图7B图8B图9存在PG AB,均在CD上,≤≤时,点P Gt∥的时刻,如图9;当810不存在PG AB∥)。
河北省2008至2010年数学中考答案

2010年河北省初中毕业生升学文化课考试数学试题参考答案一、选择题二、填空题13.5 14.5 15.4116.1 17.36 π 18. = 三、解答题19.解:)1(21-=+x x , 3=x . 经检验知,3=x 是原方程的解.20.解:(1)如图1; 【注:若学生作图没用圆规,所画路线光滑且基本准确即给4分】(2)∵90π346π180⨯⨯=,∴点P 经过的路径总长为6 π.21.解:(1)144;(2)如图2;)甲校的平均分为8.3分,中位数为7分;由于两校平均分相等,乙校成绩的中位数大于甲 校的中位数,所以从平均分和中位数角度上判断,乙校的成绩较好. )因为选8名学生参加市级口语团体赛,甲校得 10分的有8人,而乙校得10分的只有5人,所以应选甲校. 22.解:(1)设直线DE 的解析式为b kx y +=,∵点D ,E 的坐标为(0,3)、(6,0),∴ ⎩⎨⎧+==.60,3b k b解得 ⎪⎩⎪⎨⎧=-=.3,21b k ∴ 321+-=x y .∵ 点M 在AB 边上,B (4,2),而四边形OABC 是矩形,D 图1乙校成绩条形统计图图2∴ 点M 的纵坐标为2.又 ∵ 点M 在直线321+-=x y 上,∴ 2 = 321+-x .∴ x = 2.∴ M (2,2). (2)∵xm y =(x >0)经过点M (2,2),∴ 4=m .∴x y 4=.又 ∵ 点N 在BC 边上,B (4,2),∴点N 的横坐标为4. ∵ 点N 在直线321+-=x y 上, ∴ 1=y .∴ N (4,1).∵ 当4=x 时,y =4x = 1,∴点N 在函数 xy 4= 的图象上. (3)4≤ m ≤8.23.解:(1)4 5 6;(2)不对.∵OP = 2,PQ = 3,OQ = 4,且42≠32 + 22,即OQ 2≠PQ 2 + OP 2, ∴OP 与PQ 不垂直.∴PQ 与⊙O 不相切. (3)① 3;②由①知,在⊙O 上存在点P ,P '到l 的距离为3,此时,OP 将不能再向下转动,如图3.OP 在绕点O 左右摆动过程中所扫过的最大扇形就是P 'OP .连结P 'P ,交OH 于点D .∵PQ ,P 'Q '均与l 垂直,且PQ =P '3Q '=,∴四边形PQ Q 'P '是矩形.∴OH ⊥P P ',PD =P 'D . 由OP = 2,OD = OH -HD = 1,得∠DOP = 60°. ∴∠PO P ' = 120°.∴ 所求最大圆心角的度数为120°.24.解:(1)AO = BD ,AO ⊥BD ;(2)证明:如图4,过点B 作BE ∥CA 交DO 于E ,∴∠ACO = ∠BEO .又∵AO = OB ,∠AOC = ∠BOE ,∴△AOC ≌ △BOE .∴AC = BE . 又∵∠1 = 45°,A D OB C21 ME Fl图3∴∠ACO = ∠BEO = 135°. ∴∠DEB = 45°.∵∠2 = 45°,∴BE = BD ,∠EBD = 90°.∴AC = BD . 延长AC 交DB 的延长线于F ,如图4.∵BE ∥AC ,∴∠AFD = 90°.∴AC ⊥BD .(3)如图5,过点B 作BE ∥CA 交DO 于E ,∴∠BEO = ∠ACO .又∵∠BOE = ∠AOC , ∴△BOE ∽ △AOC .∴AOBOAC BE =. 又∵OB = kAO ,由(2)的方法易得 BE = BD .∴k ACBD=. 25.解:(1)y = 2t ;(2)当BP = 1时,有两种情形:①如图6,若点P 从点M 向点B 运动,有 MB =BC 21= 4,MP = MQ = 3, ∴PQ = 6.连接EM ,∵△EPQ 是等边三角形,∴EM ⊥PQ .∴33=EM . ∵AB = 33,∴点E 在AD 上.∴△EPQ 与梯形ABCD 重叠部分就是△EPQ ,其面积为39.②若点P 从点B 向点M 运动,由题意得 5=t .PQ = BM + M Q -BP = 8,PC = 7.设PE 与AD 交于点F ,QE 与AD 或AD的延长线交于点G ,过点P 作PH ⊥AD 于点H ,则HP = 33,AH = 1.在Rt △HPF 中,∠HPF =图6A OBC1D 2图5M NE∴HF = 3,PF = 6.∴FG = FE = 2.又∵FD = 2,∴点G 与点D 重合,如图7.此时△EPQ 与梯形ABCD 的重叠部分就是梯形FPCG ,其面积为3227.(3)能.4≤t ≤5.26.解:(1)140 57500;(2)w 内 = x (y -20)- 62500 = 1001-x 2+130 x 62500-, w 外 = 1001-x 2+(150a -)x . (3)当x = )1001(2130-⨯-= 6500时,w 内最大;分由题意得 2214()(62500)1300(150)100114()4()100100a ⨯-⨯----=⨯-⨯-, 解得a 1 = 30,a 2 = 270(不合题意,舍去).所以 a = 30. (4)当x = 5000时,w 内 = 337500, w 外 =5000500000a -+. 若w 内 < w 外,则a <32.5; 若w 内 = w 外,则a = 32.5; 若w 内 > w 外,则a >32.5.所以,当10≤ a <32.5时,选择在国外销售; 当a = 32.5时,在国外和国内销售都一样;当32.5< a ≤40时,选择在国内销售.2009年河北省初中毕业生升学文化课考试数学试题参考答案一、选择题二、填空题13.>; 14.1.2 × 107; 15.36.4; 16.1; 17.3; 18.20. 三、解答题 19.解:原式=()()1()a b a b a a a b +-+⋅-=1a b ++. 当a = 2,1-=b 时, 原式 = 2.【注:本题若直接代入求值,结果正确也相应给分】 20.解:(1)∵OE ⊥CD 于点E ,CD =24,∴ED =12CD =12.在Rt△DOE 中,∵sin∠DOE =ED OD =1213, ∴OD =13(m ).(2)OE5.∴将水排干需:5÷0.5=10(小时).21.解:(1)30%; (2)如图1; (3)8021203=;(4)由于月销量的平均水平相同,从折线的走势看,A 品牌的月销量呈下降趋势,而B 品牌的月销量呈上升趋势.所以该商店应经销B 品牌电视机./月图1电视机月销量折线统计图22.解:(1)-3.t =-6.(2)分别将(-4,0)和(-3,-3)代入2y ax bx =+,得0164,393.a b a b =-⎧⎨-=-⎩解得 1,4.a b =⎧⎨=⎩向上.(3)-1(答案不唯一).【注:写出t >-3且t ≠0或其中任意一个数均给分】 23.解:实践应用(1)2;l c .16;13.(2)54. 拓展联想(1)∵△ABC 的周长为l ,∴⊙O 在三边上自转了lc周.又∵三角形的外角和是360°, ∴在三个顶点处,⊙O 自转了3601360=(周).∴⊙O 共自转了(lc +1)周.(2)lc+1.24.(1)证明:∵四边形BCGF 和CDHN 都是正方形,又∵点N 与点G 重合,点M 与点C 重合,∴FB = BM = MG = MD = DH ,∠FBM =∠MDH = 90°. ∴△FBM ≌ △MDH . ∴FM = MH .∵∠FMB =∠DMH = 45°,∴∠FMH = 90°.∴FM ⊥HM .(2)证明:连接MB 、MD ,如图2,设FM 与AC 交于点P . ∵B 、D 、M 分别是AC 、CE 、AE 的中点,HBFG NP∴MD ∥BC ,且MD = BC = BF ;MB ∥CD , 且MB =CD =DH .∴四边形BCDM 是平行四边形. ∴ ∠CBM =∠CDM .又∵∠FBP =∠HDC ,∴∠FBM =∠MDH . ∴△FBM ≌ △MDH . ∴FM = MH , 且∠MFB =∠HMD .∴∠FMH =∠FMD -∠HMD =∠APM -∠MFB =∠FBP = 90°. ∴△FMH 是等腰直角三角形. (3)是.25.解:(1)0 ,3.(2)由题意,得2240x y +=, ∴11202y x =-. 23180x z +=,∴2603z x =-.(3)由题意,得 121206023Q x y z x x x =++=+-+-.整理,得 11806Q x =-.由题意,得112022603x x ⎧-⎪⎪⎨⎪-⎪⎩解得 x ≤90.【注:事实上,0≤x ≤90 且x 是6的整数倍】由一次函数的性质可知,当x =90时,Q 最小. 此时按三种裁法分别裁90张、75张、0张.26.解:(1)1,85;(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC,4BC ==, 得45QF t =.∴45QF t =. ∴14(3)25S t t =-⋅,图3F即22655S t t =-+.(3)能.①当DE ∥QB 时,如图4.∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°. 由△APQ ∽△ABC ,得AQ APAC AB=, 即335t t -=. 解得98t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形. 此时∠APQ =90°. 由△AQP ∽△ABC ,得AQ APAB AC=, 即353t t -=. 解得158t =.(4)52t =或4514t =. 【注:①点P 由C 向A 运动,DE 经过点C .方法一、连接QC ,作QG ⊥BC 于点G ,如图6. PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.方法二、由CQ CP AQ ==,得QAC QCA ∠=∠,进而可得B BCQ ∠=∠,得CQ BQ =,∴52AQ BQ ==.∴52t =. ②点P 由A 向C 运动,DE 经过点C ,如图7.22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】2008年河北省初中毕业生升学文化课考试数学试题参考答案P图5二、选择题 11.70; 12,1; 13.5-; 14.27; 15.9分(或9);16.20; 17.2;18.76.三、解答题 19.解:原式21(1)x xx x -=⨯- 11x =-. 当2x =-时,原式13=-.20.解:(1)500; (2)如图1;(3)A 型号发芽率为90%,B 型号发芽率为92.5%, D 型号发芽率为94%,C 型号发芽率为95%. ∴应选C 型号的种子进行推广.(4)3701(B )6303703804705P ==+++取到型号发芽种子. 21.解:(1)由33y x =-+,令0y =,得330x -+=.1x ∴=.(10)D ∴,. (2)设直线2l 的解析表达式为y kx b =+,由图象知:4x =,0y =;3x =,32y =-. 4033.2k b k b +=⎧⎪∴⎨+=-⎪⎩,326.k b ⎧=⎪∴⎨⎪=-⎩,∴直线2l 的解析表达式为362y x =-. (3)由333 6.2y x y x =-+⎧⎪⎨=-⎪⎩,解得23.x y =⎧⎨=-⎩,(23)C ∴-,. 3AD =,193322ADC S ∴=⨯⨯-=△. (4)(63)P ,. 22.解:(1)B -,200C -; (2)过点C 作CD OA ⊥于点D ,如图2,则CD =.图110在Rt ACD △中,30ACD ∠=,CD =,3cos30CD CA ∴==200CA ∴=. 20020630-=,5611+=, ∴台风从生成到最初侵袭该城要经过11小时.23.观察计算 (1)2a +; (2. 探索归纳(1)①<;②>;(2)222212(2)420d d a a -=+-=-.①当4200a ->,即5a >时,22120d d ->,120d d ∴->.12d d ∴>; ②当4200a -=,即5a =时,22120d d -=,120d d ∴-=.12d d ∴=; ③当4200a -<,即5a <时,22120d d -<,120d d ∴-<.12d d ∴<.综上可知:当5a >时,选方案二; 当5a =时,选方案一或方案二;当15a <<(缺1a >不扣分)时,选方案一. 24.解:(1)AB AP =;AB AP ⊥. (2)BQ AP =;BQ AP ⊥.证明:①由已知,得EF FP =,EF FP ⊥,45EPF ∴∠=. 又AC BC ⊥,45CQP CPQ ∴∠=∠=.CQ CP ∴=.在Rt BCQ △和Rt ACP △中,BC AC =,90BCQ ACP ∠=∠=,CQ CP =,Rt Rt BCQ ACP ∴△≌△,BQ AP ∴=.lAB FC Q 图3M1234 EP11②如图3,延长BQ 交AP 于点M .Rt Rt BCQ ACP △≌△,12∴∠=∠.在Rt BCQ △中,1390∠+∠=,又34∠=∠,241390∴∠+∠=∠+∠=.90QMA ∴∠=.BQ AP ∴⊥.(3)成立. 证明:①如图4,45EPF ∠=,45CPQ ∴∠=.又AC BC ⊥,45CQP CPQ ∴∠=∠=.CQ CP ∴=.在Rt BCQ △和Rt ACP △中,BC AC =,90BCQ ACP ∠=∠=,CQ CP =,Rt Rt BCQ ACP ∴△≌△.BQ AP ∴=.②如图4,延长QB 交AP 于点N ,则PBN CBQ ∠=∠.Rt Rt BCQ ACP △≌△,BQC APC ∴∠=∠.在Rt BCQ △中,90BQC CBQ ∠+∠=,90APC PBN ∴∠+∠=.90PNB ∴∠=. QB AP ∴⊥.25.解:(1)甲地当年的年销售额为211420x x ⎛⎫-+ ⎪⎝⎭万元; 2399020w x x =-+-甲. (2)在乙地区生产并销售时,lABQP EF图4N C12年利润222111590(5)9010105w x nx x x x n x ⎛⎫=-+-++=-+-- ⎪⎝⎭乙. 由214(90)(5)535145n ⎛⎫⨯-⨯--- ⎪⎝⎭=⎛⎫⨯- ⎪⎝⎭,解得15n =或5-. 经检验,5n =-不合题意,舍去,15n ∴=. (3)在乙地区生产并销售时,年利润2110905w x x =-+-乙, 将18x =代入上式,得25.2w =乙(万元);将18x =代入2399020w x x =-+-甲, 得23.4w =甲(万元).w w >乙甲,∴应选乙地.26.解:(1)25. (2)能.如图5,连结DF ,过点F 作FH AB ⊥于点H , 由四边形CDEF 为矩形,可知QK 过DF 的中点O 时,QK 把矩形CDEF 分为面积相等的两部分(注:可利用全等三角形借助割补法或用中心对称等方法说明),此时12.5QH OF ==.由20BF =,HBF CBA △∽△,得16HB =.故12.5161748t +==. (3)①当点P 在EF 上6(25)7t ≤≤时,如图6.4QB t =,7DE EP t +=,由PQE BCA △∽△,得7202545030t t--=. 21441t ∴=. ②当点P 在FC 上6(57)7t ≤≤时,如图7. 已知4QB t =,从而5PB t =,EB图5B图6E B图7B13由735PF t =-,20BF =,得573520t t =-+. 解得172t =. (4)如图8,213t =;如图9,39743t =. (注:判断PG AB ∥可分为以下几种情形:当6027t <≤时,点P 下行,点G 上行,可知其中存在PG AB ∥的时刻,如图8;此后,点G 继续上行到点F 时,4t =,而点P 却在下行到点E 再沿EF 上行,发现点P 在EF 上运动时不存在PG AB ∥;当6577t ≤≤时,点P G ,均在FC 上,也不存在PG AB ∥;由于点P 比点G 先到达点C 并继续沿CD下行,所以在6787t <<中存在PG AB ∥的时刻,如图9;当810t ≤≤时,点P G ,均在CD 上,不存在PG AB ∥)(注:可编辑下载,若有不当之处,请指正,谢谢!)B 图9。
2008年河北省中考数学试题(学生版)

2008年河北省中考数学试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)﹣8的倒数是()A.8 B.﹣8 C.D.2.(2分)计算a2+3a2的结果是()A.3a2B.4a2C.3a4D.4a43.(2分)把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是()A.B.C.D.4.(2分)某电视台报道,截止到2010年5月5日,慈善总会已接受支援玉树地震灾区的捐款15510000元.将15510000用科学记数法表示为()A.0.1551×108B.1551×104C.1.551×107D.15.51×106 5.(2分)图中的两个三角形是位似图形,它们的位似中心是()A.点P B.点O C.点M D.点N6.(2分)某县为发展教育事业,加强了对教育经费的投入,2007年投入3000万元,预计2009年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.3000(1+x)2=5000B.3000x2=5000C.3000(1+x%)2=5000D.3000(1+x)+3000(1+x)2=50007.(2分)如图,已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有()A.1个B.2个C.3个D.4个8.(2分)同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6.下列事件中是必然事件的是()A.两枚骰子朝上一面的点数和为6B.两枚骰子朝上一面的点数和不小于2C.两枚骰子朝上一面的点数均为偶数D.两枚骰子朝上一面的点数均为奇数9.(2分)如图,正方形ABCD的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD的顶点上,且它们的各边与正方形ABCD各边平行或垂直.若小正方形的边长为x,且0<x≤10,阴影部分的面积为y,则能反映y与x之间函数关系的大致图象是()A.B.C.D.10.(2分)有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90°,则完成一次变换.图2,图3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是()A.上B.下C.左D.右二、填空题(共8小题,每小题3分,满分24分)11.(3分)如图,直线a∥b,直线c与a,b相交.若∠1=70°,则∠2=度.12.(3分)当x=时,分式无意义.13.(3分)若m、n互为相反数,则5m+5n﹣5=.14.(3分)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC.若∠A=36°,则∠C=度.15.(3分)某班学生理化生实验操作测试成绩的统计结果如下表.则这些学生成绩的众数为.成绩/分 3 4 5 6 7 8 9 10人数 1 1 2 2 8 9 15 1216.(3分)如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是g.17.(3分)点P(2m﹣3,1)在反比例函数的图象上,则m=.18.(3分)如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是.三、解答题(共8小题,满分76分)19.(7分)已知x=﹣2,求的值.20.(8分)某种子培育基地用A,B,C,D四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C型号种子的发芽率为95%,根据实验数据绘制了图1和图2两幅尚不完整的统计图.(1)D型号种子的粒数是;(2)请你将图2的统计图补充完整;(3)通过计算说明,应选哪一个型号的种子进行推广;(4)若将所有已发芽的种子放到一起,从中随机取出一粒,求取到B型号发芽种子的概率.21.(8分)如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.22.(9分)气象台发布的卫星云图显示,代号为W的台风在某海岛(设为点O)的南偏东45°方向的B点生成,测得OB=100km.台风中心从点B以40km/h的速度向正北方向移动,经5h后到达海面上的点C处.因受气旋影响,台风中心从点C开始以30km/h 的速度向北偏西60°方向继续移动.以O为原点建立如图所示的直角坐标系.(1)台风中心生成点B的坐标为,台风中心转折点C的坐标为;(结果保留根号)(2)已知距台风中心20km的范围内均会受到台风的侵袭.如果某城市(设为点A)位于点O的正北方向且处于台风中心的移动路线上,那么台风从生成到最初侵袭该城要经过多长时间?23.(10分)在一平直河岸l同侧有A,B两个村庄,A,B到l的距离分别是3km和2km,AB=akm(a>1).现计划在河岸l上建一抽水站P,用输水管向两个村庄供水.方案设计:某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的示意图,设该方案中管道长度为d1,且d1=PB+BA(km)(其中BP⊥l于点p);图2是方案二的示意图,设该方案中管道长度为d2,且d2=P A+PB(km)(其中点A'与点A关于I对称,A′B与l交于点P.观察计算:(1)在方案一中,d1=km(用含a的式子表示);(2)在方案二中,组长小宇为了计算d2的长,作了如图3所示的辅助线,请你按小宇同学的思路计算,d2=km(用含a的式子表示).探索归纳(1)①当a=4时,比较大小:d1()d2(填“>”、“=”或“<”);②当a=6时,比较大小:d1()d2(填“>”、“=”或“<”);(2)请你参考右边方框中的方法指导,就a(当a>1时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?24.(10分)如图1,△ABC的边BC在直线l上,AC⊥BC,且AC=BC;△EFP的边FP 也在直线l上,边EF与边AC重合,且EF=FP.(1)将△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系,请证明你的猜想;(2)将△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为(1)中所猜想的BQ与AP的数量关系还成立吗?若成立,给出证明;若不成立,请说明理由;(3)若AC=BC=4,设△EFP平移的距离为x,当0≤x≤8时,△EFP与△ABC重叠部分的面积为S,请写出S与x之间的函数关系式,并求出最大值.25.(12分)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x(吨)时,所需的全部费用y(万元)与x满足关系式y x2+5x+90,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p甲,p乙(万元)均与x满足一次函数关系.(注:年利润=年销售额﹣全部费用)(1)成果表明,在甲地生产并销售x吨时,P甲x+14,请你用含x的代数式表示甲地当年的年销售额,并求年利润W甲(万元)与x之间的函数关系式;(2)成果表明,在乙地生产并销售x吨时,P乙n(n为常数),且在乙地当年的最大年利润为35万元.试确定n的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是.26.(12分)如图,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F分别是AC,AB,BC的中点.点P从点D出发沿折线DE﹣EF﹣FC﹣CD以每秒7个单位长的速度匀速运动;点Q从点B出发沿BA方向以每秒4个单位长的速度匀速运动,过点Q作射线QK⊥AB,交折线BC﹣CA于点G.点P,Q同时出发,当点P绕行一周回到点D时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).(1)D,F两点间的距离是;(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值;若不能,说明理由;(3)当点P运动到折线EF﹣FC上,且点P又恰好落在射线QK上时,求t的值;(4)连接PG,当PG∥AB时,请直接写出t的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年河北省初中毕业生升学文化课考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共20分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效. 一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.8-的倒数是( ) A .8B .8-C .18D .18-2.计算223a a +的结果是( ) A .23aB .24aC .43aD .44a3.把某不等式组中两个不等式的解集表示在数轴上,如图1所示, 则这个不等式组可能是( )A .41x x >⎧⎨-⎩,≤B .41x x <⎧⎨-⎩,≥C .41x x >⎧⎨>-⎩,D .41x x ⎧⎨>-⎩≤,4.据河北电视台报道,截止到2008年5月21日,河北慈善总会已接受支援汶川地震灾区的捐款15 510 000元.将15 510 000用科学记数法表示为(A .80.155110⨯B .4155110⨯C .71.55110⨯D .615.5110⨯5.图2中的两个三角形是位似图形,它们的位似中心是( )A .点PB .点OC .点MD .点N6.某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( ) A .23000(1)5000x += B .230005000x =C .23000(1)5000x +=%D .23000(1)3000(1)5000x x +++=7.如图3,已知O 的半径为5,点O 到弦AB 的距离为3,则O 上到弦AB 所在直线的距离为2的点有( )A .1个B .2个C .3个D .4个 8.同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6).下图1图2 图3列事件中是必然事件的是( ) A .两枚骰子朝上一面的点数和为6 B .两枚骰子朝上一面的点数和不小于2 C .两枚骰子朝上一面的点数均为偶数 D .两枚骰子朝上一面的点数均为奇数 9.如图4,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且010x <≤,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( )10.有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图5-1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90,则完成一次变换.图5-2,图5-3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是( )A .上B .下C .左D .右2008年河北省初中毕业生升学文化课考试数学试卷卷Ⅱ(非选择题,共100分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上) 11.如图6,直线a b ∥,直线c 与a b ,相交.若170∠=, 则2_____∠=. 12.当x = 时,分式31x -无意义.图4 x A .x B .x C .D . 图5-1图5-2图5-3 …1 2 ba 图6c13.若m n ,互为相反数,则555m n +-= .14.如图7,AB 与O 相切于点B ,AO 的延长线交O 于点C , 连结BC .若36A ∠=,则______C ∠=.15.某班学生理化生实验操作测试成绩的统计结果如下表: 则这些学生成绩的众数为 . 16.图8所示的两架天平保持平衡,且每块巧克力的质量相等, 每个果冻的质量也相等,则一块巧克力的质量是 g .17.点(231)P m -,在反比例函数1y x=的图象上,则m = .18.图9-1是我国古代著名的“赵爽弦图”的示意图,它是由四个 全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图9-2所示的“数学风车”,则这个风车的外围周长是 .三、解答题(本大题共8个小题;共76分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分7分)已知2x =-,求21211x x x x -+⎛⎫-÷ ⎪⎝⎭的值.ABC图9-1 图9-2图7图8某种子培育基地用A ,B ,C ,D 四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C 型号种子的发芽率为95%,根据实验数据绘制了图10-1和图10-2两幅尚不完整的统计图. (1)D 型号种子的粒数是 ; (2)请你将图10-2的统计图补充完整;(3)通过计算说明,应选哪一个型号的种子进行推广;(4)若将所有已发芽的种子放到一起,从中随机取出一粒,求取到B 型号发芽种子的概率.21.(本小题满分8分)如图11,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .(1)求点D 的坐标; (2)求直线2l 的解析表达式; (3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得 ADP △与ADC △的面积相等,请直接..写出点P 的坐标.A35% B20% C 20% D 各型号种子数的百分比 图10-1 图10-2图11气象台发布的卫星云图显示,代号为W的台风在某海岛(设为点O)的南偏东45方向的B点生成,测得OB .台风中心从点B以40km/h的速度向正北方向移动,经5h后到达海面上的点C处.因受气旋影响,台风中心从点C开始以30km/h的速度向北偏西60方向继续移动.以O为原点建立如图12所示的直角坐标系.(1)台风中心生成点B的坐标为,台风中心转折点C的坐标为;(结果保留根号)(2)已知距台风中心20km的范围内均会受到台风的侵袭.如果某城市(设为点A)位于点O的正北方向且处于台风中心的移动路线上,那么台风从生成到最初..侵袭该城要经过多长时间?C6045在一平直河岸l 同侧有A B ,两个村庄,A B ,到l 的距离分别是3km 和2km ,km AB a =(1)a >.现计划在河岸l 上建一抽水站P ,用输水管向两个村庄供水.方案设计某班数学兴趣小组设计了两种铺设管道方案:图13-1是方案一的示意图,设该方案中管道长度为1d ,且1(km)d PB BA =+(其中BP l ⊥于点P );图13-2是方案二的示意图,设该方案中管道长度为2d ,且2(k m)d P A P B =+(其中点A '与点A 关于l 对称,A B '与l 交于点P ).观察计算(1)在方案一中,1d = km (用含a 的式子表示);(2)在方案二中,组长小宇为了计算2d 的长,作了如图13-3所示的辅助线,请你按小宇同学的思路计算,2d = km (用含a 的式子表示).探索归纳(1)①当4a =时,比较大小:12_______d d (填“>”、“=”或“<”);②当6a =时,比较大小:12_______d d (填“>”、“=”或“<”);(2就a (当1a >时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?图13-1 图13-2图13-3可以对它们的平方进行比较:2m n 2-=22()m n ∴-当22m n -当22m n -如图14-1,ABC △的边BC 在直线l 上,AC BC ⊥,且A C B C =;EFP △的边FP 也在直线l 上,边EF 与边AC 重合,且EF FP =.(1)在图14-1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的数量关系和位置关系;(2)将EFP △沿直线l 向左平移到图14-2的位置时,EP 交AC 于点Q ,连结AP ,BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想;(3)将EFP △沿直线l 向左平移到图14-3的位置时,EP 的延长线交AC 的延长线于点Q ,连结AP ,BQ .你认为(2)中所猜想的BQ 与AP 的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.A (E ) BC (F ) PlllB FC 图14-1图14-2图14-3研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式2159010y x x =++,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p 甲,p 乙(万元)均与x 满足一次函数关系.(注:年利润=年销售额-全部费用) (1)成果表明,在甲地生产并销售x 吨时,11420p x =-+甲,请你用含x 的代数式表示甲地当年的年销售额,并求年利润w 甲(万元)与x 之间的函数关系式; (2)成果表明,在乙地生产并销售x 吨时,110p x n =-+乙(n 为常数),且在乙地当年的最大年利润为35万元.试确定n 的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是2424b ac b a a ⎛⎫-- ⎪⎝⎭,.26.(本小题满分12分)如图15,在Rt ABC △中,90C ∠=,50AB =,30AC =,D E F ,,分别是AC AB BC ,,的中点.点P 从点D 出发沿折线DE EF FC CD ---以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC CA -于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒(0t >). (1)D F ,两点间的距离是 ;(2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出t 的值.若不能,说明理由;(3)当点P 运动到折线EF FC -上,且点P 又恰好落在射线QK 上时,求t 的值; (4)连结PG ,当PG AB ∥时,请直接..写出t 的值.图15参考答案一、选择题二、选择题 11.70; 12,1; 13.5-; 14.27;15.9分(或9);16.20; 17.2; 18.76. 三、解答题 19.解:原式21(1)x xx x -=⨯- 11x =-. 当2x =-时,原式13=-.20.解:(1)500; (2)如图1;(3)A 型号发芽率为90%,B 型号发芽率为92.5%, D 型号发芽率为94%,C 型号发芽率为95%. ∴应选C 型号的种子进行推广. (4)3701(B )6303703804705P ==+++取到型号发芽种子. 21.解:(1)由33y x =-+,令0y =,得330x -+=.1x ∴=.(10)D ∴,. (2)设直线2l 的解析表达式为y kx b =+,由图象知:4x =,0y =;3x =,32y =-. 4033.2k b k b +=⎧⎪∴⎨+=-⎪⎩,326.k b ⎧=⎪∴⎨⎪=-⎩,∴直线2l 的解析表达式为362y x =-. (3)由333 6.2y x y x =-+⎧⎪⎨=-⎪⎩,解得23.x y =⎧⎨=-⎩,(23)C ∴-,. 3AD =,193322ADC S ∴=⨯⨯-=△.(4)(63)P ,. 22.解:(1)B -,C -; (2)过点C 作CD OA ⊥于点D ,如图2,则CD =.图1在Rt ACD △中,30ACD ∠=,CD =,3cos30CD CA ∴==200CA ∴=. 20020630-=,5611+=, ∴台风从生成到最初侵袭该城要经过11小时.23.观察计算 (1)2a +;(2. 探索归纳(1)①<;②>;(2)222212(2)420d d a a -=+-=-.①当4200a ->,即5a >时,22120d d ->,120d d ∴->.12d d ∴>; ②当4200a -=,即5a =时,22120d d -=,120d d ∴-=.12d d ∴=; ③当4200a -<,即5a <时,22120d d -<,120d d ∴-<.12d d ∴<.综上可知:当5a >时,选方案二; 当5a =时,选方案一或方案二;当15a <<(缺1a >不扣分)时,选方案一. 24.解:(1)AB AP =;AB AP ⊥. (2)BQ AP =;BQ AP ⊥.证明:①由已知,得EF FP =,EF FP ⊥,45EPF ∴∠=. 又AC BC ⊥,45CQP CPQ ∴∠=∠=.CQ CP ∴=.在Rt BCQ △和Rt ACP △中,BC AC =,90BCQ ACP ∠=∠=,CQ CP =,Rt Rt BCQ ACP ∴△≌△,BQ AP ∴=.②如图3,延长BQ 交AP 于点M .Rt Rt BCQ ACP △≌△,12∴∠=∠.在Rt BCQ △中,1390∠+∠=,又34∠=∠,/kmC6045lAB FC Q 图3M12 34 EP241390∴∠+∠=∠+∠=. 90QMA ∴∠=.BQ AP ∴⊥.(3)成立. 证明:①如图4,45EPF ∠=,45CPQ ∴∠=.又AC BC ⊥,45CQP CPQ ∴∠=∠=.CQ CP ∴=.在Rt BCQ △和Rt ACP △中,BC AC =,90BCQ ACP ∠=∠=,CQ CP =,Rt Rt BCQ ACP ∴△≌△.BQ AP ∴=.②如图4,延长QB 交AP 于点N ,则PBN CBQ ∠=∠.Rt Rt BCQ ACP △≌△,BQC APC ∴∠=∠.在Rt BCQ △中,90BQC CBQ ∠+∠=,90APC PBN ∴∠+∠=.90PNB ∴∠=. QB AP ∴⊥.25.解:(1)甲地当年的年销售额为211420x x ⎛⎫-+ ⎪⎝⎭万元; 2399020w x x =-+-甲. (2)在乙地区生产并销售时, 年利润222111590(5)9010105w x nx x x x n x ⎛⎫=-+-++=-+-- ⎪⎝⎭乙. 由214(90)(5)535145n ⎛⎫⨯-⨯--- ⎪⎝⎭=⎛⎫⨯- ⎪⎝⎭,解得15n =或5-. 经检验,5n =-不合题意,舍去,15n ∴=. (3)在乙地区生产并销售时,年利润2110905w x x =-+-乙, 将18x =代入上式,得25.2w =乙(万元);将18x =代入2399020w x x =-+-甲, lABQP EF图4N C得23.4w =甲(万元).w w >乙甲,∴应选乙地.26.解:(1)25. (2)能.如图5,连结DF ,过点F 作FH AB ⊥于点H , 由四边形CDEF 为矩形,可知QK 过DF 的中点O 时,QK 把矩形CDEF 分为面积相等的两部分(注:可利用全等三角形借助割补法或用中心对称等方法说明),此时12.5QH OF ==.由20BF =,HBF CBA △∽△,得16HB =. 故12.5161748t +==. (3)①当点P 在EF 上6(25)7t ≤≤时,如图6.4QB t =,7DE EP t +=,由PQE BCA △∽△,得7202545030t t--=. 21441t ∴=. ②当点P 在FC 上6(57)7t ≤≤时,如图7. 已知4QB t =,从而5PB t =,由735PF t =-,20BF =,得573520t t =-+. 解得172t =. (4)如图8,213t =;如图9,39743t =. (注:判断PG AB ∥可分为以下几种情形:当6027t <≤时,点P 下行,点G 上行,可知其中存在PG AB ∥的时刻,如图8;此后,点G 继续上行到点F 时,4t =,而点P 却在下行到点E 再沿EF 上行,发现点P 在EF 上运动时不存在PG AB ∥;当6577t ≤≤时,点P G ,均在FC 上,也不存在PG AB ∥;由于点P 比点G 先到达点C 并继续沿CD 下行,所以在6787t <<中存在PG AB ∥的时刻,如图9;当810t ≤≤时,点P G ,均在CD 上,不存在PG AB ∥)E B图5B图6E B图7B图8B图9。