蜗杆传动知识
蜗杆传动设计

14
3.34
15
3.22
16
3.07
17
2.96
18
2.89
19
2.82
20
2.76
22
2.66
24
2.57
26
2.51
Z2 YF2
28 2.48
30 2.44
35 2.36
40 2.32
45 2.27
50 2.24
60 2.20
70 2.17
80 2.14
90 2.12
100 2.10
150 2.07
Fnc = K Fn
载荷系数K=l~1.4
3、蜗轮齿面的接触强度计算
校核公式: 设计公式:
H 500
KT2 KT 500 2 2 2 [ H ] d1d2 2 m d1 z2
2
500 2 m d1 KT2 z2 [ H ]
4、蜗轮轮齿齿根弯曲强度计算
1.53KT2 cos YF 2 F 校核公式: F d1d 2 m 1.53KT2 cos 设计公式: m2 d1 YF 2 z2 F
表2-9-6 蜗轮的齿形系数YF2(α=20°,ha*=1)
Z2
YF2
10
4.55
11
4.14
12
3.70
13
3.55
(a)圆柱蜗杆传动
(b)圆环面蜗杆传动
(c)锥面蜗杆传动
阿基米德蜗杆
渐开线蜗杆
法向直廓蜗杆 圆弧圆柱蜗杆
(2)按蜗杆旋向不同来分类,蜗杆传动可以分成左旋和右旋蜗杆 传动两种类型 。 (3)按工作条件不同分类蜗杆传动可以分为闭式蜗杆传动和开式 蜗杆传动两种类型。 2、蜗杆传动的特点 (1)蜗杆传动的最大特点是结构紧凑、传动比大。i=10~40,最 大可达80。若只传递运动(分度运动),其传动比可达1000。 (2)传动平稳、噪声小 (3)可制成具有自锁性的蜗杆 (4)传动效率低 (5)制造成本高 二、蜗杆传动的主要参数和几何尺寸 中间平面:通过蜗杆轴线并垂直于蜗轮轴线的平面称为中间平面。 在中间平面上蜗轮与蜗杆的啮合相当于渐开线齿轮与齿条的啮合。 因此蜗杆传动的设计计算都以中间平面上的参数和几何关系为准。
蜗轮蜗杆乐高知识点

蜗轮蜗杆乐高知识点蜗轮蜗杆是乐高机械学习中的一个重要知识点,它是一种常见的传动机构。
蜗轮蜗杆传动具有传动比大、减速比稳定、传动效率高等特点,在各种机械设备中得到广泛应用。
本文将介绍蜗轮蜗杆的基本原理、结构特点、应用领域等相关知识点。
一、蜗轮蜗杆的基本原理蜗轮蜗杆传动是一种通过蜗杆带动蜗轮旋转的传动方式。
它由蜗轮和蜗杆两个部分组成,其中蜗轮是一个齿轮,齿数较少,一般为1至4个;蜗杆是一种螺旋线形的轴,它与蜗轮啮合,通过旋转带动蜗轮转动。
蜗轮蜗杆传动的原理是利用蜗杆的螺旋线形与蜗轮的齿轮啮合,实现转速减小、扭矩增大的效果。
蜗杆的螺旋线斜度很小,因此每转动一周,蜗轮只能转动少数齿数。
这使得蜗轮蜗杆传动具有较大的传动比,在工程中常用于减速装置。
二、蜗轮蜗杆的结构特点1. 轴向布局:蜗轮蜗杆传动的蜗杆与蜗轮呈轴向布局,占用空间小,结构紧凑。
2. 传动比稳定:蜗轮蜗杆传动的传动比只取决于蜗轮的齿数,与输入转速无关,因此传动比稳定。
3. 传动效率高:蜗轮蜗杆传动的传动效率通常较高,一般在80%以上,可以达到90%左右。
三、蜗轮蜗杆的应用领域蜗轮蜗杆传动由于其特殊的结构特点,在各个领域得到广泛应用。
1. 工业机械:蜗轮蜗杆传动常用于工业机械的减速装置,例如工厂中的输送机、搅拌机、切割机等。
2. 交通运输:蜗轮蜗杆传动常用于汽车、船舶等交通工具中的行驶装置,实现转速减小和扭矩增大。
3. 机器人:蜗轮蜗杆传动在机器人领域也有广泛应用,用于机器人的关节传动,实现机械臂的运动控制。
4. 家用电器:蜗轮蜗杆传动常用于家用电器中的马达减速装置,例如洗衣机、搅拌机等。
四、蜗轮蜗杆乐高的学习与应用乐高机械学习是一种通过乐高积木搭建各种机械结构,并通过学习乐高机械原理来实现运动的过程。
蜗轮蜗杆乐高是其中的一个重要知识点,通过搭建蜗轮蜗杆传动的乐高模型,可以更好地理解蜗轮蜗杆传动的原理和特点。
在乐高机械学习中,蜗轮蜗杆乐高模型的搭建需要注意以下几点:1. 确定传动比:根据实际需求确定蜗轮和蜗杆的齿数,以达到所需的传动比。
蜗杆基础知识培训资料

蜗杆基础知识一、蜗杆的分类圆柱蜗杆阿基米德圆柱蜗杆(ZA)法向直廓圆柱蜗杆(ZN)渐开线圆柱蜗杆(ZI)锥面包络圆柱蜗杆(ZK)圆弧圆柱蜗杆(ZC)直廓环面蜗杆(球面蜗平面包络环面蜗杆一次包络二次包络蜗杆环面蜗杆一次包络渐开线包络环面蜗杆二次包络锥面包络环面蜗杆锥蜗杆二、蜗杆传动的特点1传动平稳,振动、冲击和噪声均很小。
2能以单级传动获得较大的传动比,结构紧凑。
3蜗杆螺牙与蜗轮齿面间啮合摩擦损耗较大,因此传动效率要比齿轮传动低,且容易导致发热和出现温升过高现象。
蜗轮也较容易磨损。
4失效形式:蜗杆传动的失效形式和齿轮传动类似,也有齿面点蚀、磨损、胶合,以及轮齿的弯曲折断。
其中尤以点蚀和磨损最易发生,胶合现象也常出现。
这是由于蜗杆传动啮合效率低,滑动速度较大,而当润滑不良时容易发热等原因引起,蜗轮轮齿的弯曲折断也偶有所见,这往往是由于齿面磨损过大齿厚减薄过多或是安装不良造成严重偏载所致。
5由于蜗杆传动啮合摩擦较大,且由于蜗轮滚刀的形状尺寸不可能做得和蜗杆绝对相同,被加工出的蜗轮齿形难以和蜗杆齿精确共轭,必需依靠运转跑合才渐趋理想;因此蜗轮副的组合必需具有良好的减磨和跑合性能以及抗胶合性能。
所以蜗轮通常采用青铜或铸铁做齿圈,并尽可能与淬硬并经磨削的钢制蜗杆相配。
也正因如此,蜗轮轮齿的强度和硬度远不如蜗杆,且蜗杆螺牙成螺旋状,强度较大,因此蜗轮轮齿是两者中的薄弱环节。
如果在设计中能合理地选择齿形和传动参数,采用良好的润滑方式和散热措施,选用抗磨和抗胶合地润滑油,选配适当的材料组合以及提高加工和安装精度,则上述地失效情况可以得到改善和避免。
三、普通圆柱蜗杆普通圆柱蜗杆的齿形多用成形线为直线的刀具加工而成。
由于刀具安装的方位不同,生成的螺旋面在不同截面中的齿廓曲线形状也不同。
按蜗杆齿廓曲线的形状,普通圆柱蜗杆可以分为以下几种:1.ZA――阿基米德圆柱蜗杆蜗杆齿面为阿基米德螺旋面,端面齿廓为阿基米德螺旋线,轴向齿廓为直线,法向齿廓为凸廓曲线。
机械设计第七章 蜗轮蜗杆

是考虑强度。变位时,蜗杆相当于齿条刀具,为了保持刀
具尺寸不变,蜗杆尺寸是不能变的,因此,只能对蜗轮变
位。方法是切削时刀具移位。变位与否的几种情况有如下
关系:
六点半机械考研培训
变位的目的(填空、简答): ①为了配凑中心距; ②改变传动比; ③为了提高承载能力及传动效率。 蜗杆传动变位特点(填空、简答): ①只对蜗轮变位,蜗杆不能变位;
ma1 mt2 m a1 t 2 1 2 正确啮合条件
2. 蜗杆的分度圆直径d1和直径系数q 为了限制蜗轮滚刀的数目便于蜗轮刀具标准化,国家
标准对每一标准模数规定了一定数目的蜗杆分度圆直径 d1
d1定为标准值,并与m 有一定的搭配关系
直径系数 q d1 m
3.蜗杆导程角
式是齿面胶合,进行齿面接触疲劳强度计算是条件性的,是通过限
制齿面接触应力 H 的大小来防止发生齿面胶合,因此要根据抗胶合
条件来选择许用接触应力,即根据蜗杆副材料组合及相对滑动速度Vs 的大小来确定。
蜗杆传动的效率、润滑和热平衡计算 六点半机械考研培训
一. 蜗杆传动的效率 啮合损耗 tg
蜗杆
20Cr渗碳淬 40Cr、45表
火
面淬火
蜗轮(按齿 Vs>6m/s Vs≤6m/s
面间的相对 锡青铜
铝青铜
滑动速度Vs 大小来选择)
耐磨性、抗 胶合性好 ,
强度较高, 抗胶合性差
强度差
45调质
Vs≤2m/s 灰铸铁 经济、低速
一、受力分析 普通圆柱蜗杆传动的强度计算和刚六度计点算 半机械考研培训
蜗杆头数 z1通常取为1,2,4,6: z1
加工困难
z1
2、4、或6 :当传动比较小,为了避免根切, 或为了传递较大功率
《机械设计手册》之蜗杆锥齿轮

αx1 = αt2 = α β1 + β 2 = 90° (γ1 = β 2 ) 旋向相同 °
结束
§ 10-8 蜗杆传动
四、主要参数和几何尺寸 (一) 主要参数
1、 齿数 、 蜗杆齿数 z1 亦称为头数 一般 z1=1 ~ 10 要求自锁时,取z1=1 z1 → γ1 2、 模数 m 、 推荐 z1=1、2、4、6
R=
d mz = 2 sin δ 2 sin δ
结束
§ 10 - 9 圆锥齿轮传动
三、几何参数和尺寸计算
1、几何尺寸 、 大端的参数为标准值,计算大端的尺寸
d = mz
d a = d + 2 ha cos δ
d f = d − 2 h f cos δ
δ f = δ −θ f
⇐ tan θ f = h f / R
6. 成本 → 蜗轮材料贵重
结束
§ 10-8 蜗杆传动
一、蜗杆传动的类型介绍 圆柱蜗杆 蜗杆的形状 环面蜗杆 圆锥蜗杆
圆柱蜗杆— 设计、制造简单
常用
环面蜗杆、圆锥蜗杆— 啮合性能好,承载能力、效率高, 但设计、制造复杂
少用
结束
§ 10-8 蜗杆传动
一、蜗杆传动的类型介绍
按照蜗杆齿廓形状不同
阿基米德蜗杆 蜗杆 渐开线蜗杆 圆弧齿蜗杆
m m a = r1 + r2 = (q + z 2 ) ≠ ( z1 + z 2 ) 2 2
结束
§ 10-8 蜗杆传动
五、蜗杆传动的运动学参数
1. 传动比 啮合传动 2. 转向的判定
i=
ω1 n1 z 2 d 2 = = ≠ ω 2 n2 z1 d1
P
v 2 = v 1 + v 21
机械设计基础讲义第八章蜗杆传动

(a )圆柱蜗杆传动 (b )环面蜗杆传动 (c )锥面蜗杆传动图8.2 蜗杆传动的类型机械设计基础讲义第八章蜗杆传动具体内容 蜗杆传动特点与类型;蜗杆传动的基本参数与几何尺寸计算;蜗杆传动的效率、热平衡计算及润滑;蜗杆传动受力分析与计算载荷;蜗杆传动失效形式与设计准则;蜗杆传动材料与许用应力;蜗杆强度计算;蜗杆刚度计算;蜗杆传动的结构设计。
重点 蜗杆传动的基本参数与几何尺寸计算;蜗杆传动受力分析;蜗杆强度计算;蜗杆刚度计算。
难点 蜗杆传动受力分析。
第一节 蜗杆传动的特点与类型蜗杆传动由蜗杆与蜗轮构成(图8.1),用于传递交错轴之间的运动与动力,通常两轴间的交错角︒=∑90。
通常蜗杆1为主动件,蜗轮2为从动件。
一、蜗杆传动的特点1、优点传动比大;工作平稳,噪声低,结构紧凑;在一定条件下可实现自锁。
2、缺点发热大,磨损严重,传动效率低(通常为0.7~0.9);蜗轮齿圈常使用铜合金制造,成本高。
二、蜗杆传动的类型根据蜗杆形状的不一致,蜗杆传动可分为圆杆蜗杆传动、环面蜗杆传动与锥面蜗杆传动三种类型,如图8.2所示。
图8.1 蜗杆传动 1-蜗杆,2-蜗轮根据加工方法不一致,圆柱蜗杆传动又分为阿基米德蜗杆传动(ZA型)、法向直廓蜗杆传动(ZN型)、渐开线蜗杆传动(ZI型)与圆弧圆柱蜗杆传动(ZC型)等。
前三种称之普通圆柱蜗杆传动,见图8.3所示。
(a)阿基米德蜗杆(b)法向直廓蜗杆(c)渐开线蜗杆图8.3 普通蜗杆的类型第二节圆柱蜗杆传动的基本参数与几何尺寸计算在普通圆柱蜗杆传动中,阿基米德蜗杆传动制造简单,在机械传动中应用广泛,而且也是认识其他类型蜗杆传动的基础,故本节将以阿基米德蜗杆传动为例,介绍蜗杆传动的一些基本知识与设计计算问题。
一、蜗杆传动的基本参数通过蜗杆轴线并垂直于蜗杆轴线的平面称之中间平面,见图6.4。
在中间平面内,蜗杆与蜗轮的啮合相当于齿条与齿轮的啮合。
因此,设计圆柱蜗杆传动时,均取中间平面上的参数与几何尺寸作为基准。
蜗轮蜗杆知识PPT

§8-2普通蜗杆传动的参数与尺寸 -16-
z1与z2的荐用值表
i=z2/z1
§8-1蜗杆传动的特点及类型 -4-
二、蜗杆传动的类型
按蜗杆的 形状分为
圆柱蜗杆传动 环面蜗杆传动 锥蜗杆传动
蜗杆传动的类型
§8-1蜗杆传动的特点及类型 -5-
1. 圆柱蜗杆传动
蜗杆传动的类型
普通圆柱蜗杆传动
圆柱蜗杆传动 圆弧圆柱蜗杆(ZC)
1)普通圆柱蜗杆传动
普通圆柱蜗杆其齿面一般是在车床上用直线刀刃
材料
热处理
合金钢
调质蜗杆:缺少磨削设备时选用。
§8-3普通圆柱蜗杆传动的承载能力计算 -27-
三、蜗杆传动的受力分析及计算载荷 普通蜗杆传动的承载能力计算2
1、蜗杆传动的受力分析 蜗杆传动的受力分析与斜齿圆柱齿轮的受力
分析相同,轮齿在受到法向载荷Fn的情况下,可 分解出径向力Fr、圆周力Ft、轴向力Fa。
h3─溅油损耗的效率;
vs v1
§8-3普通圆柱蜗杆传动的承载能力计算
-24-
h1是对h总1 效 t率an影t(a响n最v大) 的(因蜗素杆普 平,通衡蜗1 杆为可传动的主效由率润动滑下与热件式)确定:
式中: -蜗杆的导程角;
v-当量摩擦角,其值根据滑动速度vs由表8-4查取;p157
tan z1m
蜗轮咽喉母圆半径 b2——蜗轮齿宽 B2——蜗轮宽度
1 rg2 a 2 da2
蜗轮齿宽角90~110°
蜗轮蜗杆模数表

蜗轮蜗杆模数表一、蜗轮蜗杆传动的基本知识1.1 传动原理蜗轮蜗杆传动是一种常见的传动机构,由一个蜗轮和一个蜗杆组成。
蜗轮是呈蜗牛壳形的圆盘,在其周边有螺旋状的齿轮,称为蜗牙;蜗杆是一种纽带状的齿轮。
传动时,当蜗杆旋转时,蜗牙将蜗杆转动,实现传动功能。
1.2 优点和应用领域蜗轮蜗杆传动具有传动比大、传动精度高、输运平稳、结构简单等优点,因此在很多领域有着广泛的应用,如机械加工、食品包装、仓储物流等。
二、蜗轮蜗杆模数表的作用蜗轮蜗杆模数表是蜗轮蜗杆传动设计中的重要工具,它将蜗轮蜗杆传动的主要参数整理成表格形式,方便工程师在设计中参考使用。
模数表中包含了蜗轮蜗杆的模数、齿数、蜗杆减速比等信息。
2.1 模数的定义模数是蜗轮蜗杆传动中的一个重要参数,它表示蜗轮齿轮齿数与直径的比值。
模数越大,蜗轮齿轮越大,传动比越小,传动效果越大。
模数表中列出了常见的模数值,方便设计者根据实际需求选择合适的模数。
2.2 齿数的选择蜗轮蜗杆传动中,齿数的选择直接影响到传动的效果。
齿数的选取要满足传动比要求,同时还要考虑到蜗轮蜗杆的结构尺寸、齿轮数和传动精度等因素。
模数表中一般会给出不同齿数对应的传动比和减速比,设计者可以根据需求选择合适的齿数。
2.3 蜗杆减速比的计算蜗轮蜗杆传动的减速比是指蜗轮每转一圈,蜗杆转动的圈数。
减速比可以通过蜗轮齿数与蜗杆齿数的比值来计算。
模数表中一般会给出不同蜗杆减速比对应的齿轮数,方便设计者根据需要进行计算和选择。
三、蜗轮蜗杆模数表的使用方法3.1 确定传动需求在使用蜗轮蜗杆模数表之前,首先需要确定传动的需求,包括传动比、最大扭矩、转速、传动效率等。
这些参数将直接影响到蜗轮蜗杆传动的设计和选择。
3.2 查找模数表根据确定的传动需求,通过查找蜗轮蜗杆模数表,找到合适的模数和齿数范围。
模数表中通常按照模数从小到大的顺序列出了齿数和传动比等信息,设计者可以根据自己的需求快速找到合适的参数。
3.3 进行计算和选择根据找到的模数和齿数范围,设计者可以通过计算和比较不同参数的传动效果,选择最合适的蜗轮蜗杆传动方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 蜗杆传动 第一节 蜗杆传动的类型和特点蜗杆传动由蜗杆、蜗轮和机架组成,用来传递空间两交错轴的运动和动力。
如图7-1所示。
通常两轴交错角为90°,蜗杆为主动件。
一、蜗杆传动的类型如图7-2所示,根据蜗杆的形状,蜗杆传动可分为圆柱蜗杆传动(图a ),环面蜗杆传动(图b ),和锥面蜗杆传动(图c )。
圆柱蜗杆传动,按蜗杆轴面齿型又可分为普通蜗杆传动和圆弧齿圆柱蜗杆传动。
普通蜗杆传动多用直母线刀刃的车刀在车床上切制,可分为阿基米德蜗杆(ZA 型)、渐开蜗杆(ZI 型)和法面直齿廓蜗杆(ZH 型)等几种。
如图7-3所示,车制阿基米德蜗杆时刀刃顶平面通过蜗杆轴线。
该蜗杆轴向齿廓为直线,端面齿廓为阿基米德螺旋线。
阿基米德蜗杆易车削难磨削,通常在无需磨削加工情况下被采用,广泛用于转速较低的场合。
图7-1蜗杆传动如图7-4所示,车制渐开线蜗杆时,刀刃顶平面与基圆柱相切,两把刀具分别切出左、右侧螺旋面。
该蜗杆轴向齿廓为外凸曲线,端面齿廓为渐开线。
渐开线蜗杆可在专用机床上磨削,制造精度较高,可用于转速较高功率较大的传动。
蜗杆传动类型很多,本章仅讨论目前应用最为广泛的阿基米德蜗杆传动。
二、蜗杆传动的特点(1)传动比大,结构紧凑。
单级传动比一般为10~40(<80),只传动运动时(如分度机构),传动比可达1000。
(2)传动平稳,噪声小。
由于蜗杆上的齿是连续的螺旋齿,蜗轮轮齿和蜗杆是逐渐进入啮合又逐渐退出啮合的,故传动平稳,噪声小。
(3)有自锁性。
当蜗杆导程角小于当量摩擦角时,蜗轮不能带动蜗杆转动,呈自锁a) b) c) 图7-2蜗杆传动的类型状态。
手动葫芦和浇铸机械常采用蜗杆传动满足自锁要求。
(4)传动效率低。
蜗杆蜗轮啮合处有较大的相对滑动,摩擦剧烈、发热量大,故效率低。
一般η=0.7~0.9,具有自锁性能的蜗杆效率仅0.4。
(5)蜗轮造价较高。
为了减摩和耐磨,蜗轮常用青铜制造,材料成本较高。
由上述特点可知:蜗杆传动适用于传动比大,传递功率不大,两轴空间交错的场合。
图7-3 阿基米德蜗杆图7-4渐开线蜗杆第二节蜗杆传动的基本参数和几何尺寸计算图7-5所示阿基米德蜗杆传动,通过蜗杆轴线并垂直于蜗轮轴线的平面称为主平面(中间平面)。
在主平面上蜗轮与蜗杆的啮合相当于渐开线齿轮与齿条的啮合。
为了加工方便,规定主平面的几何参数为标准值。
一、蜗杆传动的基本参数1.蜗杆头数z1、蜗轮齿数z2和传动比i蜗杆头数z1,即为蜗杆螺旋线的数目。
蜗杆的头数一般取z1=1~6。
当传动比大于40图7-5 阿基米德蜗杆传动的几何尺寸或要求自锁时取z 1=1;当传动功率较大时,为提高传动效率取较大值,但蜗杆头数过多,加工精度难于保证。
蜗轮的齿数一般取z 2=27~80。
z 2过少将产生根切;z 2过大,蜗轮直径增大,与之相应的蜗杆长度增加,刚度减小。
蜗杆传动的传动比i 等于蜗杆与蜗轮转速之比。
当蜗杆回转一周时,蜗轮被蜗杆推动转过z 1个齿(或z 1/z 2周),因此传动比为:1221z z n n i ==(7-1)式中:n 1、n 2分别为蜗杆和蜗轮的转速(r/min )。
在蜗杆传动设计中,传动比的公称值按下列数值选取:5、7.5、10、12.5、15、20、25、30、40、50、60、70、80。
其中10、20、40、80为基本传动比应优先选用。
z 1、z 2可根据传动比i 按表7-1选取。
表7-1 和的推荐值由于蜗杆传动在主平面内相当于渐开线齿轮与齿条的啮合,而主平面是蜗杆的轴向平面又是蜗轮的端面(见图7-5),与齿轮传动相同,为保证轮齿的正确啮合,蜗杆的轴向模数m a 1应等于蜗轮的端面模数m t 2;蜗杆的轴向压力角1a α应等于蜗轮的端面压力角2t α;蜗杆分度圆导程角γ应等于蜗轮分度圆螺旋角β,且两者螺旋方向相同。
即:βγααα=====2121t a t a mm m3.蜗杆的分度圆直径d 1和导程角β如图7-6所示,将蜗杆分度圆柱展开,其螺旋线与端平面的夹角γ称为蜗杆的导程角。
可得:11111γd mz d p z tg a =π=(7-2) 式中:p a 1为蜗杆轴向齿距(mm);d 1为蜗杆分度圆直径(mm )。
蜗杆的螺旋线与螺纹相似也分左旋和右旋,一般多为右旋。
对动力传动为提高效率应采用较大的γ值,即采用多头蜗杆;对要求具有自锁性能的传动,应采用γ<033''︒的蜗杆传动,此时蜗杆的头数为1。
由式7-2得:mq tg z md =γ=11 (7-3) 式中:γ=tg z q 1称为蜗杆的直径系数,当m 一定时,q 值增大,则蜗杆直径d 1增大,蜗杆的刚度提高。
小模数蜗杆一般有较大的q 值,以使蜗杆有足够的刚度。
蜗杆与蜗轮正确啮合,加工蜗轮的滚刀直径和齿形参数必须与相应的蜗杆相同,为限制蜗轮滚刀的数量,d1亦标准化。
d1与m有一定的匹配如表7-2所示。
图7-6 分度圆柱展开图表7-2蜗杆基本参数(Σ= 90º)(摘自GB/T10085-88)4.中心距a蜗杆传动中,当蜗杆节圆与蜗轮分度圆重合时称为标准传动,其中心距为: )(21a 21d d +=(7-4) 规定标准中心距为40、50、63、80、100、125、160、(180)、200、(225)、250、(280)、315、(355)、400、(450)、500。
在蜗杆传动设计时中心距应按上述标准圆整。
二、蜗杆传动的几何尺寸计算标准阿基米德蜗杆传动主要几何尺寸计算公式如表7-3所示。
表7-3 阿基米德蜗杆传动的几何尺寸计算第三节 蜗杆传动的失效形式、设计准则、材料和结构一、蜗杆传动的失效形式和设计准则 1.齿面相对滑动速度v s蜗杆传动中蜗杆的螺旋面和蜗轮齿面之间有较大的相对滑动。
滑动速度v s 沿蜗杆螺旋线的切线方向。
如图7-7所示,v 1为蜗杆的圆周速度,v 2为蜗轮的圆周速度,作速度三角形得:γcos 12221v v v v s =+= (7-5) 较大的滑动速度v s ,对齿面的润滑情况、齿面的失效形式及传动效率都有很大的影响,其概略值如图7-8所示。
2.轮齿的失效形式和设计准则蜗杆传动的失效形式与齿轮传动相似,有轮齿折断、齿面点蚀、齿面磨损和胶合等,但由于蜗杆、蜗轮的齿廓间相对滑动速度较大、发热量大而效率低,因此传动的主要失效形式为胶合、磨损和点蚀。
由于蜗杆的齿是连续的螺旋线,且蜗杆的强度高于蜗轮,因而失效多发生在蜗轮轮齿上。
在闭式传动中,蜗轮的主要失效形式是胶合与点蚀;在开式传动中,主要失效形式是磨损。
综上所述,蜗杆传动的设计准则为:闭式蜗杆传动按齿面接触疲劳强度设计,并校核齿根弯曲疲劳强度,为避免发生胶合失效还必须作热平衡计算;对开式蜗杆传动通常只需按齿根弯曲疲劳强度设计。
实践证明,闭式蜗杆传动,当载荷平稳无冲击时,蜗轮轮齿因弯曲强度不足而失效的情况多发生于齿数z 2 >80~100时,所以在齿数少于以上数值时,弯曲强度校核可不考虑。
二、蜗杆、蜗轮的材料和结构 1.蜗杆、蜗轮的材料选择根据蜗杆传动的主要失效形式可知,蜗杆和蜗轮材料不仅要求有足够的强度,更重要的是要具有良好的减摩性、耐磨性和抗胶合能力。
蜗杆一般用碳钢或合金钢制造。
对高速重载传动常用15Cr 、20Cr 、20CrMnTi 等,经渗碳淬火,表面硬度56~62HRC,须经磨削。
对中速中载传动,蜗杆材料可用45、40Cr 、35SiMn 等,表面淬火,表面硬度45~55HRC ,须要磨削。
对速度不高,载荷不大的蜗杆,材料可用45钢调质或正火处理,调质硬度220~270HBS 。
蜗轮材料可参考相对滑动速度v s 来选择。
铸造锡青铜抗胶合性、耐磨性好,易加工,允许的滑动速度v s 高,但强度较低,价格较贵。
一般ZCuSn10P1允许滑动速度可25m/s, ZCuSn5Pb5Zn5常用于v s <12m/s 的场合。
铸造铝青铜,如ZCuAl10Fe3,其减磨性和抗胶合性比锡青铜差,但强度高,价格便宜,一般用于v s ≤4m/s 的传动。
灰铸铁(HT150、HT200),用于v s ≤2m/s 的低速轻载传动中。
2.蜗杆、蜗轮的结构蜗杆常和轴做成一体,称为蜗杆轴,如图7-9所示(只有d f /d ≥1.7时才采用蜗杆齿圈套装在轴上的型式)。
车制蜗杆需有退刀槽,d=d f – (2~4)mm ,故刚性较差(图a );图7-7 蜗杆传动滑动速度图7-8 滑动速度v s 的概略值a )b )图7-9 蜗杆轴结构铣削蜗杆无退刀槽时d可大于d f (图b),刚性较好。
蜗轮结构分为整体式和组合式两种,如图7-10所示。
图a)所示的整体式蜗轮用于铸铁蜗轮及直径小于100mm的青铜蜗轮。
图b)、c)、d)均为组合式结构,其中图b)为齿圈式蜗轮,轮芯用铸铁或铸钢制造,齿圈用青铜材料,两者采用过盈配合(H7/s6或H7/r6),并沿配合面安装4~6个紧定螺钉,该结构用于中等尺寸而且工作温度变化较小的场合。
图c)为螺栓式蜗轮,齿圈和轮芯用普通螺栓或铰制孔螺栓连接,常用于尺寸较大的蜗轮。
图d)为镶铸式蜗轮,将青铜轮缘铸在铸铁轮芯上然后切齿,适用于中等尺寸批量生产的蜗轮。
a) b) c) d)图7-10 蜗轮结构第四节蜗杆传动的强度计算一、蜗杆传动的受力分析蜗杆传动受力分析与斜齿圆柱齿轮的受力分析相似,齿面上的法向力F n可分解为三个相互垂直的分力:圆周力F t 、轴向力F a、径向力F r,如图7-11所示。
蜗杆为主动件,轴向力F a1的方向由左、右手定则确定。
图7-11为右旋蜗杆,用右手四指指向蜗图7-11 蜗杆传动受力分析杆转向,拇指所指方向就是轴向力F a1的方向。
圆周力F t 1与主动蜗杆转向相反;径向力F r 1指向蜗杆中心。
蜗轮受力方向,由F t 1与F a2、F a1与F t 2、F r 1与F r 2的作用力与反作用力关系确定(图7-11)。
各力的大小可按下式计算:112a 12d TF F t == N (7-6)2221a 2d TF F t == N (7-7)αtan 221t r r F F F == N (7-8)ηi T T 12= Nmm (7-9)式中:T 1、T 2分别为作用在蜗杆和蜗轮上的转矩,η为蜗杆传动的总效率。
二、蜗轮齿面接触疲劳强度计算蜗轮齿面接触疲劳强度计算与斜齿轮相似,以赫兹公式为计算基础,按节点处的啮合条件计算齿面接触应力,可推出对钢制蜗杆与青铜蜗轮或铸铁蜗轮校核公式如下:221222212520520z d m kT d d kT H ==σ ≤ []H σ (7-10) 设计公式为: 12d m ≥[]222520⎪⎭⎫ ⎝⎛H z kT σ (7-11)式中:T 2为蜗轮轴的转矩,Nmm ;K 为载荷系数K =1~1.5,当载荷平稳相对滑动速度较小时(v S < 3m/s )取较小值,反之取较大值,严重冲击时取K =1.5;[σH ]— 蜗轮材料的许用接触应力,MPa 。