锂电池生产工艺

合集下载

锂电池制作工艺流程

锂电池制作工艺流程

锂电池制作工艺流程
《锂电池制作工艺流程》
锂电池制作工艺是一项复杂而精密的过程,涉及到多个工序和严格的质量控制。

以下是一般的锂电池制作工艺流程:
1. 材料准备:首先需要准备正极材料、负极材料、电解液、隔膜等原材料。

正极材料通常是氧化物或磷酸盐,而负极材料则可以是石墨或硅等材料。

2. 涂布:将正极和负极活性物质涂布到铝箔和铜箔上,然后通过烘烤和压延等工艺处理使其成型。

3. 组装:将正负极片与隔膜和电解液一起放入电池壳体中,然后密封好。

4. 充电:在一定的温度条件下进行初次充电,以激活锂离子电池。

5. 测试:对成品电池进行严格的性能测试,包括放电电流、循环寿命、安全性等指标。

6. 包装:将测试合格的电池进行包装,并在包装上标注相关信息。

这是一个简化的锂电池制作工艺流程,实际上还包括了更多的
工序和细节处理。

随着科技的进步,锂电池制作工艺也在不断改进,以提高电池性能和安全性。

锂电池生产工艺及参数

锂电池生产工艺及参数

锂电池生产工艺及参数锂电池是一种高能量密度、长寿命、环保的电池,被广泛应用于移动设备、电动汽车、储能系统等领域。

下面将介绍锂电池的生产工艺及参数。

一、正极材料制备工艺1. 混合材料:将锂铁磷酸、碳酸锂、氧化镍、氧化钴等按一定比例混合,加入适量的粘合剂和溶剂,搅拌均匀。

2. 涂布:将混合材料涂布在铝箔或铜箔上,形成正极片。

3. 干燥:将正极片放入烘箱中,进行干燥处理。

4. 压片:将干燥后的正极片放入压片机中,进行压片处理。

5. 切割:将压片后的正极片切割成适当大小。

二、负极材料制备工艺1. 混合材料:将石墨、聚丙烯、碳黑等按一定比例混合,加入适量的粘合剂和溶剂,搅拌均匀。

2. 涂布:将混合材料涂布在铜箔上,形成负极片。

3. 干燥:将负极片放入烘箱中,进行干燥处理。

4. 压片:将干燥后的负极片放入压片机中,进行压片处理。

5. 切割:将压片后的负极片切割成适当大小。

三、电解液制备工艺1. 配制电解液:将碳酸二甲酯、乙二醇、丙二醇、氟化锂等按一定比例混合,搅拌均匀。

2. 过滤:将配制好的电解液过滤,去除杂质。

四、电池组装工艺1. 组装:将正极片、负极片和隔膜按一定顺序叠放,形成电池芯。

2. 注液:将电解液注入电池芯中。

3. 封口:将电池芯封口,形成成品电池。

五、电池参数1. 电压:锂电池的电压一般为3.6V或3.7V。

2. 容量:锂电池的容量一般以毫安时(mAh)为单位,表示电池能够供应的电流量。

3. 充放电倍率:锂电池的充放电倍率表示电池能够承受的最大充放电电流。

4. 循环寿命:锂电池的循环寿命表示电池能够进行多少次充放电循环。

以上是锂电池的生产工艺及参数,锂电池的制备工艺和参数不断改进和提高,以满足不同领域的需求。

锂电池生产工艺

锂电池生产工艺

锂离子电池工艺流程正极混料●原料的掺和:(1)粘合剂的溶解(按标准浓度)及热处理。

(2)钴酸锂和导电剂球磨:使粉料初步混合,钴酸锂和导电剂粘合在一起,提高团聚作用和的导电性。

配成浆料后不会单独分布于粘合剂中,球磨时间一般为2小时左右;为避免混入杂质,通常使用玛瑙球作为球磨介子。

●干粉的分散、浸湿:(1)原理:固体粉末放置在空气中,随着时间的推移,将会吸附部分空气在固体的表面上,液体粘合剂加入后,液体与气体开始争夺固体表面;如果固体与气体吸附力比与液体的吸附力强,液体不能浸湿固体;如果固体与液体吸附力比与气体的吸附力强,液体可以浸湿固体,将气体挤出。

当润湿角≤90度,固体浸湿。

当润湿角>90度,固体不浸湿。

正极材料中的所有组员都能被粘合剂溶液浸湿,所以正极粉料分散相对容易。

(2)分散方法对分散的影响:A、静置法(时间长,效果差,但不损伤材料的原有结构);B、搅拌法;自转或自转加公转(时间短,效果佳,但有可能损伤个别材料的自身结构)。

1、搅拌桨对分散速度的影响。

搅拌桨大致包括蛇形、蝶形、球形、桨形、齿轮形等。

一般蛇形、蝶形、桨型搅拌桨用来对付分散难度大的材料或配料的初始阶段;球形、齿轮形用于分散难度较低的状态,效果佳。

2、搅拌速度对分散速度的影响。

一般说来搅拌速度越高,分散速度越快,但对材料自身结构和对设备的损伤就越大。

3、浓度对分散速度的影响。

通常情况下浆料浓度越小,分散速度越快,但太稀将导致材料的浪费和浆料沉淀的加重。

4、浓度对粘结强度的影响。

浓度越大,柔制强度越大,粘接强度越大;浓度越低,粘接强度越小。

5、真空度对分散速度的影响。

高真空度有利于材料缝隙和表面的气体排出,降低液体吸附难度;材料在完全失重或重力减小的情况下分散均匀的难度将大大降低。

6、温度对分散速度的影响。

适宜的温度下,浆料流动性好、易分散。

太热浆料容易结皮,太冷浆料的流动性将大打折扣。

●稀释。

将浆料调整为合适的浓度,便于涂布。

1.1原料的预处理(1)钴酸锂:脱水。

锂电池车间工艺流程

锂电池车间工艺流程

锂电池车间工艺流程锂电池是一种高性能、高能量密度的新型蓄电池,广泛应用于电动汽车、储能设备等领域。

锂电池车间工艺流程是指锂电池生产过程中各个工序的顺序和步骤。

下面是一个典型的锂电池车间工艺流程:1.正极材料的制备:首先,将正极材料(如锰酸锂、钴酸锂等)与导电剂和粘结剂混合均匀,形成正极浆料。

然后,将正极浆料涂覆在铝箔上,并通过烘干和轧压等工艺步骤制备成正极片。

2.负极材料的制备:类似于正极材料的制备过程,负极材料(如石墨)与导电剂和粘结剂混合,形成负极浆料。

然后,将负极浆料涂覆在铜箔上,并通过烘干和轧压等工艺步骤制备成负极片。

3.电解液准备:在锂电池电解液中,一般包含锂盐(如氟化锂、磷酸锂等)、有机溶剂和添加剂。

精确配比和混合不同成分的工艺步骤,确保电解液的质量和性能。

4.电池组装:将正极片、负极片和隔膜按照一定的顺序堆叠在一起,形成电池芯。

同时,将电解液注入电池芯中,保证正、负极之间能够进行离子传输。

然后,将电池芯封装在金属壳体中,形成完整的电池。

5.充放电测试:对生产出来的锂电池进行充放电测试,以验证其性能和可靠性。

充放电测试过程中,需要测试电池的容量、内阻、循环寿命等参数,保证电池符合规定的标准。

6.补电、恒温处理:对测试合格的锂电池进行补充充电、恒温处理等工艺步骤,以进一步改善电池的性能和稳定性。

8.成品入库和出库:将包装后的成品电池进行入库管理,并按照客户的订单要求进行出库。

上述是一个锂电池车间工艺流程的一个概述,不同厂家和不同产品可能会有一些差异。

在实际生产过程中,每个工序都需要严格控制质量,以确保产品的性能和安全性。

同时,还需要关注环保和资源回收等问题,确保生产过程的可持续发展。

锂电池生产工艺流程

锂电池生产工艺流程

锂电池生产工艺流程
锂电池是一种采用锂金属或锂化合物作为活性物质的化学电源,具有高能量密度、轻量化、长寿命等优点,在移动电源、电动汽车、储能等领域广泛应用。

锂电池的生产工艺流程主要包括原料处理、电池组装和包装三个环节。

原料处理是锂电池生产的第一步。

首先,对锂原料进行粉碎和混合,以便获取理想的活性物质。

然后,进行溶剂抽提、干燥等步骤,将活性物质与电解质进行混合,形成正极材料和负极材料。

电池组装是锂电池生产的核心环节。

首先,将正极材料和负极材料经过涂布、压片等工艺进行加工,形成正负极片。

然后,将正负极片与隔膜层进行层压组装,同时添加电解质溶液,形成电池芯。

接下来,进行电池芯的成型和成组,形成锂电池单体。

包装是锂电池生产的最后一步。

首先,对锂电池单体进行充电和放电测试,确保电池的质量符合要求。

然后,将单体与保护板和连接器进行组装,形成电池组。

最后,对电池组进行外壳封装和贴标签等工艺,形成成品。

在整个生产工艺流程中,需要注意以下几个关键环节。

首先,要保证原料的纯度和质量,以确保电池性能的稳定性和安全性。

其次,要控制好每个环节的工艺参数,如涂布厚度、成型温度等,以确保电池性能的一致性。

此外,还要进行严格的质量把关,对每个工序进行检测和测试,及时发现和解决问题。

总的来说,锂电池的生产工艺流程是一个复杂的系统工程,需要合理安排每个环节,并严格控制质量,以确保最终产品的性能和安全性。

随着科技的进步和需求的不断增加,锂电池的生产工艺也在不断发展和改进,以适应新的应用场景和市场需求。

锂电池生产工艺流程全

锂电池生产工艺流程全
预化流程:
0.02C CC 210min to 3.4V; 0.1C CC 420min to 3.95V
第二十一页,共42页。
叠片工艺的主要工艺流程 --- Forming
Forming(成型)
工序功能:将电芯外型作最后加工
Baking
高温老化
Degassing
释放化成产生的气体
切边
切去气袋和多余的侧 边
活性物质
导电剂
粘接剂
搅拌罐
溶剂
Mixing示意图
浆料控制点: 1.Viscosity粘度 2.Particle size颗粒度 3.Solid content固含量
工序控制点: 1.搅拌速度 2.搅拌温度 3.搅拌时间 4.搅拌次序
第八页,共42页。
叠片工艺的主要工艺流程
---Mixing
第九页,共42页。
头压合)使两层包装铝箔粘合在一起,达到封装的目的
第十七页,共42页。
叠片工艺的主要工艺流程 --- Top sealing
第十八页,共42页。
叠片工艺的主要工艺流程 --- Inject
Inject(注液)
工序功能:将电解液加入到电芯中,并将电芯完全封住
环境要求:电芯注液前要进行除水,关注过程要求低湿度
卷绕工艺的主要工艺流程 ---Cutting
Cutting(裁片、分条)
工序功能:将冷压后的极片卷,先裁成大片,然后分成所需要 的小条正负极极片
第三十三页,共42页。
卷绕工艺的主要工艺流程 ---Cutting
第三十四页,共42页。
卷绕工艺的主要工艺流程 ---Winding
Winding(卷绕)
原理:水作为电解液中一种痕量组分,对锂离子电池SEI膜的形成和电池性能有非常大的 影响,满充状态的负极与锂金属性质相近,可以直接与水发生反应。因此,在锂离子电池 的制作过程中必须严格控制环境的湿度和正负极材料、电解液的含水量。

锂电池生产工艺流程及参考设备项目

锂电池生产工艺流程及参考设备项目

锂电池生产工艺流程及参考设备项目一、引言:锂电池是一种通过将锂离子在正负极之间进行移动来储存和释放电能的装置。

随着电动汽车、智能手机等电子产品的普及,锂电池的需求量迅速增长,因此锂电池的生产工艺流程和相应的设备项目也越来越受到关注。

本文将介绍锂电池的生产工艺流程以及一些参考的设备项目。

二、锂电池生产工艺流程:1.材料准备:锂电池的主要材料包括锂合金、电解质、正负极材料等。

在制造锂电池之前,需要对这些材料进行处理和准备,确保其符合生产要求。

2.电池槽装配:将正负极板等材料按照一定的层次码放在电池槽里。

正负极板之间需要使用隔膜进行隔离,以防止短路。

3.浸渍和封装:将电池槽通过浸渍设备浸入电解液中,使电解液能够充分渗透到正负极材料之间。

然后,将浸渍后的电池槽进行封装,防止电解液的外泄。

4.真空充注:将封装好的电池槽通过真空充注设备进行充注。

真空充注可以确保电解液完全充满正负极之间的空隙,并排除其中的气泡。

5.焊接和连接:通过焊接设备将电池槽内的正负极板与电池盖连接起来,为电池提供电流通道。

6.容量测试:对焊接好的电池进行容量测试,以确保其符合相关标准和要求。

7.外壳组装:将容量测试合格的电池装入外壳,并进行外壳组装,包括密封、连接和固定等工作。

8.包装和检验:对组装好的锂电池进行包装和检验,确保产品的质量和安全性。

三、参考设备项目:1.浸渍设备:用于将电池槽浸入电解液中,确保电解液能够充分渗透到正负极材料之间。

常见的浸渍设备有浸液槽、浸渍机等。

2.真空充注设备:用于将封装好的电池槽进行充注,确保电解液完全充满正负极之间的空隙,并排除其中的气泡。

常见的真空充注设备有真空充注机、真空充注罐等。

3.焊接设备:用于将电池槽内的正负极板与电池盖连接起来,为电池提供电流通道。

常见的焊接设备有点焊机、搪焊机等。

4.容量测试设备:用于对焊接好的电池进行容量测试,以确保其符合相关标准和要求。

常见的容量测试设备有容量测试仪器、电池充放电测试系统等。

锂电池的制造过程及工艺原理

锂电池的制造过程及工艺原理

锂电池的制造过程及工艺原理锂电池是目前应用广泛的一种电池,其具有高能量密度、长循环寿命、体积小、重量轻等优点,被广泛应用于手机、电脑、电动汽车等领域。

下面我们来介绍一下锂电池的制造过程及工艺原理。

一、原材料准备锂电池制造的原材料包括正极材料、负极材料、电解液和隔膜。

其中,正极材料常用的有锂铁氧化物(LiFePO4)、钴酸锂(LiCoO2)等;负极材料常用的有石墨、硅等;电解液一般由碳酸二甲酯(DMC)、碳酸乙烯酯(EC)、乙二醇二甲基醚(DME)等有机溶剂和氟化锂(LiPF6)等盐类混合而成;隔膜一般采用聚乙烯或聚丙烯等。

二、电极制备电极是锂电池中的重要组成部分,其制备工艺包括:混合、浆料制备、涂布、加热干燥等步骤。

首先将正负极材料和导电剂按照一定比例混合,再添加粘合剂和溶剂,制成浆料。

然后将浆料涂布在铜箔或铝箔上,形成电极片。

最后,将电极片加热干燥,使其失去残余溶剂和水分,得到成熟的电极。

三、电池组装电池组装包括电解液注入、粘合、卷绕、负极壳体安装、封口等步骤。

首先,将正负极电极与隔膜卷成片状,然后把电解液注入其中,使之充分浸润,形成“三明治”式的结构。

接着,将电池放入对应的负极壳体中,并且用胶水粘合。

最后,对接口进行封口处理,形成完整的锂电池。

四、性能测试制造完成的锂电池需要经过性能测试,以确保其符合要求。

测试内容包括电池容量、放电时性能、内阻、功率等指标,以便评估其性能和安全性。

总之,锂电池的制造过程涉及多个步骤,且每个环节都非常重要。

当前,随着新技术的应用,锂电池将进一步优化其性能和安全性,实现更广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锂离子电池工艺流程正极混料●原料的掺和:(1)粘合剂的溶解(按标准浓度)及热处理。

(2)钴酸锂和导电剂球磨:使粉料初步混合,钴酸锂和导电剂粘合在一起,提高团聚作用和的导电性。

配成浆料后不会单独分布于粘合剂中,球磨时间一般为2小时左右;为避免混入杂质,通常使用玛瑙球作为球磨介子。

●干粉的分散、浸湿:(1)原理:固体粉末放置在空气中,随着时间的推移,将会吸附部分空气在固体的表面上,液体粘合剂加入后,液体与气体开始争夺固体表面;如果固体与气体吸附力比与液体的吸附力强,液体不能浸湿固体;如果固体与液体吸附力比与气体的吸附力强,液体可以浸湿固体,将气体挤出。

当润湿角≤90度,固体浸湿。

当润湿角>90度,固体不浸湿。

正极材料中的所有组员都能被粘合剂溶液浸湿,所以正极粉料分散相对容易。

(2)分散方法对分散的影响:A、静置法(时间长,效果差,但不损伤材料的原有结构);B、搅拌法;自转或自转加公转(时间短,效果佳,但有可能损伤个别材料的自身结构)。

1、搅拌桨对分散速度的影响。

搅拌桨大致包括蛇形、蝶形、球形、桨形、齿轮形等。

一般蛇形、蝶形、桨型搅拌桨用来对付分散难度大的材料或配料的初始阶段;球形、齿轮形用于分散难度较低的状态,效果佳。

2、搅拌速度对分散速度的影响。

一般说来搅拌速度越高,分散速度越快,但对材料自身结构和对设备的损伤就越大。

3、浓度对分散速度的影响。

通常情况下浆料浓度越小,分散速度越快,但太稀将导致材料的浪费和浆料沉淀的加重。

4、浓度对粘结强度的影响。

浓度越大,柔制强度越大,粘接强度越大;浓度越低,粘接强度越小。

5、真空度对分散速度的影响。

高真空度有利于材料缝隙和表面的气体排出,降低液体吸附难度;材料在完全失重或重力减小的情况下分散均匀的难度将大大降低。

6、温度对分散速度的影响。

适宜的温度下,浆料流动性好、易分散。

太热浆料容易结皮,太冷浆料的流动性将大打折扣。

●稀释。

将浆料调整为合适的浓度,便于涂布。

1.1原料的预处理(1)钴酸锂:脱水。

一般用120 oC常压烘烤2小时左右。

(2)导电剂:脱水。

一般用200 oC常压烘烤2小时左右。

(3)粘合剂:脱水。

一般用120-140 oC常压烘烤2小时左右,烘烤温度视分子量的大小决定。

(4) NMP:脱水。

使用干燥分子筛脱水或采用特殊取料设施,直接使用。

2.1.2物料球磨Super-P倒入料桶,同时加入磨球(干料:磨球=1:1),在滚瓶及a)将LiCoO2b)4小时结束,过筛分离出球磨;1.3操作步骤a) 将NMP倒入动力混合机(100L)至80℃,称取PVDF加入其中,开机;参数设置:转速25±2转/分,搅拌115-125分钟;b) 接通冷却系统,将已经磨号的正极干料平均分四次加入,每次间隔28-32分钟,第三次加料视材料需要添加NMP,第四次加料后加入NMP;动力混合机参数设置:转速为20±2转/分c) 第四次加料30±2分钟后进行高速搅拌,时间为480±10分钟;动力混合机参数设置:公转为30±2转/分,自转为25±2转/分;a)真空混合:将动力混合机接上真空,保持真空度为-0.09Mpa,搅拌30±2分钟;动力混合机参数设置:公转为10±2分钟,自转为8±2转/分b)取250-300毫升浆料,使用黏度计测量黏度;测试条件:转子号5,转速12或30rpm,温度范围25℃;c)将正极料从动力混合机中取出进行胶体磨、过筛,同时在不锈钢盆上贴上标识,与拉浆设备操作员交接后可流入拉浆作业工序。

1.4注意事项a) 完成,清理机器设备及工作环境;b) 操作机器时,需注意安全,避免砸伤头部。

2负极混料2.1原料的预处理:(1)石墨:A、混合,使原料均匀化,提高一致性。

B、300~400℃常压烘烤,除去表面油性物质,提高与水性粘合剂的相容能力,修圆石墨表面棱角(有些材料为保持表面特性,不允许烘烤,否则效能降低)。

(2)水性粘合剂:适当稀释,提高分散能力。

★掺和、浸湿和分散:(1)石墨与粘合剂溶液极性不同,不易分散。

(2)可先用醇水溶液将石墨初步润湿,再与粘合剂溶液混合。

(3)应适当降低搅拌浓度,提高分散性。

(4)分散过程为减少极性物与非极性物距离,提高势能或表面能,所以为吸热反应,搅拌时总体温度有所下降。

如条件允许应该适当升高搅拌温度,使吸热变得容易,同时提高流动性,降低分散难度。

(5)搅拌过程如加入真空脱气过程,排除气体,促进固-液吸附,效果更佳。

(6)分散原理、分散方法同正极配料中的相关内容★稀释:将浆料调整为合适的浓度,便于涂布。

2.2物料球磨a)将负极和Super-P倒入料桶同时加入球磨(干料:磨球=1:1.2)在滚瓶及上b)4小时结束,过筛分离出球磨;2.3操作步骤a) 纯净水加热至至80℃倒入动力混合机(2L)b)加CMC,搅拌60±2分钟;动力混合机参数设置:公转为25±2分钟,自转为15±2转/分;c) 加入SBR和去离子水,搅拌60±2分钟;动力混合机参数设置:公转为30±2分钟,自转为20±2转/分;d) 负极干料分四次平均顺序加入,加料的同时加入纯净水,每次间隔28-32分钟;动力混合机参数设置:公转为20±2转/分,自转为15±2转/分;e) 第四次加料30±2分钟后进行高速搅拌,时间为480±10分钟;动力混合机参数设置:公转为30±2转/分,自转为25±2转/分;f)真空混合:将动力混合机接上真空,保持真空度为-0.09到0.10Mpa,搅拌30±2分钟;动力混合机参数设置:公转为10±2分钟,自转为8±2转/分g)取500毫升浆料,使用黏度计测量黏度;测试条件:转子号5,转速30rpm,温度范围25℃;h)将负极料从动力混合机中取出进行磨料、过筛,同时在不锈钢盆上贴上标识,与拉浆设备操作员交接后可流入拉浆作业工序。

2.4注意事项a) 完成,清理机器设备及工作环境;b) 操作机器时,需注意安全,避免砸伤头部。

★配料注意事项:1、防止混入其它杂质;2、防止浆料飞溅;3、浆料的浓度(固含量)应从高往低逐渐调整,以免增加麻烦;4、在搅拌的间歇过程中要注意刮边和刮底,确保分散均匀;5、浆料不宜长时间搁置,以免沉淀或均匀性降低;6、需烘烤的物料必须密封冷却之后方可以加入,以免组分材料性质变化;7、搅拌时间的长短以设备性能、材料加入量为主;搅拌桨的使用以浆料分散难度进行更换,无法更换的可将转速由慢到快进行调整,以免损伤设备;8、出料前对浆料进行过筛,除去大颗粒以防涂布时造成断带;9、对配料人员要加强培训,确保其掌握专业知识,以免酿成大祸;10、配料的关键在于分散均匀,掌握该中心,其它方式可自行调整。

3.电池的制作3.1极片尺寸3.2拉浆工艺a)集流体尺寸正极(铝箔),间歇涂布负极(铜箔),间歇涂布b)拉浆重量要求电极第一面双面重量(g)面密度(mg/cm2)重量(g)面密度(mg/cm2)…3.3裁片a)正极拉浆后进行以下工序:裁大片裁小片称片(配片)烘烤轧片极耳焊接b)负极拉浆后进行以下工序:裁大片裁小片称片(配片)烘烤轧片极耳焊接保护气为高纯氮气,气体气压大于0.5Mpa3.7极耳制作正极极耳上盖组合超声波焊接铝条边缘与极片边缘平齐负极镍条直接用点焊机点焊,要求点焊数为8个点镍条右侧与负极片右侧对齐,镍条末端与极片边缘平齐3.8隔膜尺寸3.9卷针宽度3.10压芯电池卷绕后,先在电芯底部贴上24mm的通明胶带,再用压平机冷压2次;3.11电芯入壳前要求胶纸镍条。

3.12装壳3.13负极极耳焊接负极镍条与钢壳用点焊机焊接,要保证焊接强度,禁止虚焊3.14激光焊接仔细上号夹具,电池壳与上盖配合良好后才能进行焊接,注意避免出现焊偏a)真空系统的真空度为-0.095~0.10Mpab)保护气为高纯氮气,气体气压大于0.5Mpac)每小时抽一次真空注一次氮气;3.16注液量:2.9±0.1g注液房相对湿度:小于30%温度:20±5℃封口胶布:宽红色胶布。

粘胶布时注意擦净注液口的电解液用2道橡皮筋将棉花固定在注液口处3.17化成制度3.17.1开口化成工艺a)恒流充电:40mA*4h 80mA*6h电压限制:4.00Vb)全检电压,电压大于3.90V的电池进行封口,电压小于3.90V的电池接着用60mA恒流至3.90-4.00后封口,再打钢珠;c)电池清洗,清洗剂为醋酸+酒精3.17.2续化成制度a)恒流充电(400mA,4.20V,10min)b)休眠(2min)c)恒流充电(400mA,4.20V,100min)d)恒压充电(4.20V,20mA,150min)e)休眠(30min)f)恒流放电(750mA,2.75V,80min)g)休眠(30min)h)恒流充电(750mA,3.80V,90min)i)恒压充电(3.80V,20mA,150min)当从LiCoO2拿走XLi后,其结构可能发生变化,但是否发生变化取决于X的大小。

通过研究发现当X>0.5时Li1-XCoO2的结构表现为极其不稳定,会发生晶型瘫塌,其外部表现为电芯的压倒终结。

所以电芯在使用过程中应通过限制充电电压来控制Li1-XCoO2中的X值,一般充电电压不大于4.2V那么X小于0.5 ,这时Li1-XCoO2的晶型仍是稳定的。

负极C6其本身有自己的特点,当第一次化成后,正极LiCoO2中的Li被充到负极C6中,当放电时Li回到正极LiCoO2中,但化成之后必须有一部分Li留在负极C6中,心以保证下次充放电Li的正常嵌入,否则电芯的压倒很短,为了保证有一部分Li留在负极C6中,一般通过限制放电下限电压来实现:安全充电上限电压≤4 .2V,放电下限电压≥2.5V。

4.包装与储存在北京的展示会上,看到有两家展示电池管理系统,也上去大致问了一下均衡方面的信息,都是做被动均衡的,而且电流也是小于50mA的。

在此就这个话题进行一下展开:由于出了一点意外,MathcadV15一直没有用起来,不过目前正在重新装V1 4。

现在开始更新均衡面临的最大的问题,是实际的容量的下降,容量的下降是与使用次数(c ycle)和放电的深度有关的,这两者应该是一个比较复杂的函数关系,在此使用一定的简单的函数进行描述。

这里首先根据某张数据图,等效出容量和Cycle的关系关于每次放电深度与之的关系,我需要找一些数据进行支持待补充单体电池电压与SOC的函数拟合关系(数据和拟合图形)被动均衡策略:1.在充电阶段,对率先充满的电池进行放电功能分析:这种策略,是将容量低的电池充电钳制在某个范围内,在这个过程中尽量使其他的电池充满。

相关文档
最新文档