正弦函数和和余弦函数的定义与诱导公式题目与答案
三角函数习题及答案

2 fcot 2 (B) tan 2 p cot 2 (C) sin 2 f cos 2 (D) sin 2 p cos 4.若 sin θ + cos θ = - ,则θ只可能是( )6.已知 α 是第二象限角且 s in α =41. sin (π - 2)- cos - 2 ⎪ 化简结果是()2.若 sin α + cos α = ,且 0 p α p π ,则 tan α 的值为(3. 已知 sin α cos α = ,且 p α p ,则 cos α - sin α 的值为()第四章 三角函数§4-1 任意角的三角函数一、选择题:1.使得函数 y = lg(sin θ cos θ ) 有意义的角在()(A)第一,四象限 (B)第一,三象限 (C)第一、二象限 (D)第二、四象限 2.角 α、β 的终边关于 У 轴对称,(κ∈Ζ)。
则(A)α+β=2κπ (B)α-β=2κπ (C)α+β=2κπ-π (D)α-β=2κπ-π3.设θ为第三象限的角,则必有()(A) tanθθ θ θ θ θ θ θ 24 3(A)第一象限角 (B)第二象限角 (C )第三象限角 (D)第四象限角 5.若 tan θ sin θ p 0 且 0 p sin θ + cos θ p 1 ,则θ的终边在( ) (A)第一象限 (B )第二象限(C )第三象限(D )第四象限二、填空题:α则 2α 是第▁▁▁▁象限角,是第▁▁▁象限角。
527.已知锐角 α 终边上一点 A 的坐标为(2sina3,-2cos3),则 α 角弧度数为▁▁▁▁。
8.设 y = sin x +1,( x ≠ k π , k ∈ Z ) 则 Y 的取值范围是▁▁▁▁▁▁▁。
sin x9.已知 cosx-sinx<-1,则 x 是第▁▁▁象限角。
三、解答题:10.已知角 α 的终边在直线 y = 3x 上,求 sin α 及 cot α 的值。
三角函数诱导公式练习题

三角函数诱导公式练习题一、基础知识回顾在解决三角函数相关题目之前,我们首先来回顾一下三角函数的基本知识。
1. 正弦函数(sin):在直角三角形中,对于一个锐角x,定义正弦值为对边与斜边的比值,即sin(x) = 对边 / 斜边。
2. 余弦函数(cos):在直角三角形中,对于一个锐角x,定义余弦值为邻边与斜边的比值,即cos(x) = 邻边 / 斜边。
3. 正切函数(tan):在直角三角形中,对于一个锐角x,定义正切值为对边与邻边的比值,即tan(x) = 对边 / 邻边。
4. 三角函数诱导公式:根据三角函数的定义和关系,我们可以得到一系列三角函数诱导公式,包括:- sin(x+y) = sin(x)cos(y) + cos(x)sin(y)- cos(x+y) = cos(x)cos(y) - sin(x)sin(y)- tan(x+y) = (tan(x) + tan(y)) / (1 - tan(x)tan(y))二、练习题1. 求解下列方程:a) sin(2x) = cos(x)b) cos(3x) = sin(2x)c) tan(x) + cos(x) = 12. 计算下列三角函数的值:a) sin(30°) + cos(45°)b) tan(60°) - cos(30°)c) sin(45°)cos(60°) - cos(45°)sin(60°)3. 求解下列方程组:a) sin(x) + cos(x) = 1sin(2x) + cos(2x) = 0b) sin(x) - cos(x) = 0sin(2x) + cos(2x) = 14. 求解下列方程:a) sin(2x) - sin(x) = 0b) cos(2x) - cos(x) = 0c) tan(2x) - tan(x) = 0三、解题方法与思路1. 对于方程sin(x) = cos(x),我们可以将其转化为tan(x) = 1的形式,然后利用tan(x)的诱导公式求解。
高一数学 知识点 三角函数 诱导公式 常考题 经典题 50道 含答案和解析

高一数学三角函数诱导公式50道常考题经典题一、单选题1.若角的终边上有一点(-4,a),则a的值是()A. B. C. D.【答案】A【考点】任意角的三角函数的定义,诱导公式一【解析】【解答】由三角函数的定义知:,所以,因为角的终边在第三象限,所以<0,所以的值是。
【分析】三角函数是用终边上一点的坐标来定义的,和点的位置没有关系。
属于基础题型。
================================================================================2.若,则的值是( )A. B. C. D.【答案】C【解析】【解答】即,所以,,=,故选C。
【分析】简单题,此类题解的思路是:先化简已知条件,再将所求用已知表示。
================================================================================3.若,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系【解析】【解答】,故选C.================================================================================4.函数图像的一条对称轴方程是()A. B. C. D.【答案】A【考点】诱导公式一,余弦函数的图象,余弦函数的对称性【解析】【分析】,由y=cosx的对称轴可知,所求函数图像的对称轴满足即,当k=-1时,,故选A.================================================================================5.已知,则()A. B. C. D.【答案】C【考点】诱导公式一,同角三角函数间的基本关系,弦切互化【解析】【解答】因为,所以,可得,故C符合题意.故答案为:C .【分析】利用诱导公式将已知条件化简可求出tan,将中分子分母同时除以cos.================================================================================6.函数()A. 是奇函数B. 是偶函数C. 既是奇函数,又是偶函数D. 是非奇非偶函数【答案】A【考点】奇函数,诱导公式一【解析】【解答】∵,∴,∴是奇函数.故答案为:A【分析】首先利用诱导公式整理化简f(x) 的解析式,再根据奇函数的定义即可得证出结果。
正弦和余弦的诱导公式

①sin(180°+α)=sinαcos(180°+α)=cosα②sin(-α) = -sinα cos(-α) = cosα1,利用单位圆表示任意角α的正弦值和余弦值xyoP(x,y)(1,0).α的终边.yxoP(x,y)(1,0).α的终边.xyoP(x,y)(1,0).α的终边.xyoP(x,y)(1,0).α的终边.如左图,由定义,都有:sinα= y cosα= x1,利用单位圆表示任意角α的正弦值和余弦值xyoP(x,y)(1,0).α的终边.yxoP(x,y)(1,0).α的终边.如左图,由定义,都有:sinα= y cosα= x2,诱导公式一及其用途sin(α+k·360°) = sinαcos(α+k·360°) = cosαtan(α+k·360°) = tanα 其中k ∈Z任意角的三角函数值公式一的用途0 °~ 360 °角的三角函数值本单元的内容0 °~ 90 °角的三角函数值(1)0 °~ 90 °角的正弦值、余弦值用何法可求得?(2)90 °~ 360 °的角β能否与锐角α相联系?设0°≤α≤90 °,那么,对于90°~ 180 °间的角,可表示成:180 °-α;180°~ 270 °间的角,可表示成:180 °+α;270°~ 360 °间的角,可表示成:360 °-α;(1)锐角α的终边与180 °+α角的终边,位置关系如何?(2)任意角α与180 °+α呢?yxoP(x,y)(1,0).α的终边.xyoP(x,y)(1,0).α的终边.α180 °+α的终边180 °+α的终边.P’.P’由分析可得:角α180 °+α终边关系关于原点对称点的关系P(x,y)P’(-x,-y)函数关系sinα= ycosα= xsin(180 °+α)= -ycos(180 °+α)= -x因此,可得:sin(180 °+α) = -sinαcos(180 °+α) = -cosα公式二2,同理可研究-α与α的三角函数值的关系yxoP(x,y)(1,0).α的终边.-α的终边.P’角α-α终边关系关于X 轴对称点的关系P(x,y)P’(x,-y)函数关系sinα= y cosα= xsin(-α) = -y cos(-α) = x因此,可得:sin(-α) = -sinαcos(-α) = cosα公式三sin(180 °+α) = -sinαcos(180 °+α) = -cosα公式二:公式二与公式三的成立条件,以及它们的特点,用途。
正弦余弦正切的诱导公式 三角函数

正弦、余弦、正切的诱导公式【知识点精析】1. 三角函数的诱导公式 诱导公式(一): sin()sin 2k παα+= cos()cos 2k παα+= tan()tan 2k παα+=cot()cot 2k παα+=公式含义:终边相同的角的正弦、余弦、正切、余切值相等。
公式作用:把任意角的三角函数化为0°~360°(或0~2π)内的三角函数。
其方法是:先在0°~360°(或0~2π)内找出与角α终边相同的角,再将它分成诱导公式(一)的形式,然后得出结果。
如coscos()cos 25646632ππππ=+==诱导公式(二): sin()sin παα+=- cos()cos παα+=- tan()tan παα+=cot()cot παα+=公式结构特征:①同名函数关系②符号规律:右边符号是将α看作锐角时,πα+是第三象限角的原函数值符号。
即:“函数名不变,符号看象限”。
公式作用:可以把180°~270°(或ππ~32)内的角的三角函数转化为锐角三角函数。
例:sin210°=sin (180°+30°)=-sin30°=-12cos cos()cos 433312ππππ=+=-=- 诱导公式(三): sin()sin -=-ααcos()cos -=αα tan()tan -=-ααcot()cot -=-αα公式结构特征:①同名函数关系②符号规律:右边符号是将α看作锐角时,-α是第四象限角原函数值的符号。
即:“函数名不变,符号看象限”。
公式的作用:可以把负角的三角函数转化为正角三角函数。
例:sin()sin-=-=-ππ4422cos()cos -==606012诱导公式(四): sin()sin παα-= cos()cos παα-=-tan()tan παα-=-cot()cot παα-=-公式结构特征: ①同名函数关系②符号规律:右边符号是将α看作锐角时,πα-是第二象限角的原函数值的符号。
三角函数的诱导公式解析与应用

三角函数的诱导公式解析与应用三角函数是数学中常见且重要的函数之一,在解决几何问题以及物理、工程等实际应用中扮演着重要的角色。
在三角函数的学习过程中,诱导公式是我们必须要掌握和应用的一部分内容。
本文将对三角函数的诱导公式进行解析,并探讨其在数学和实际应用中的具体应用。
一、三角函数的诱导公式解析1. 正弦函数的诱导公式正弦函数是三角函数中最为常见的函数之一,其诱导公式为:sin(x ± π) = sin(x)cos(π) ± cos(x)sin(π)根据诱导公式,我们可以得出几个重要的结论:- sin(x + π) = -sin(x)- sin(x - π) = -sin(x)- sin(x + 2π) = sin(x)- sin(x - 2π) = sin(x)这些结论表明,通过加减π或2π,正弦函数的值可以保持不变或者取负值。
2. 余弦函数的诱导公式余弦函数是三角函数中与正弦函数密切相关的函数,其诱导公式为:cos(x ± π) = cos(x)cos(π) ∓ sin(x)sin(π)同样地,根据诱导公式,我们可以得出以下结论:- cos(x + π) = -cos(x)- cos(x - π) = -cos(x)- cos(x + 2π) = cos(x)- cos(x - 2π) = cos(x)3. 正切函数的诱导公式正切函数是三角函数中较为特殊的函数,其诱导公式为:tan(x ± π) = (tan(x) ± tan(π)) / (1 ∓ tan(x)tan(π))其中,tan(π) = 0,因此可以得到以下结论:- tan(x + π) = tan(x)- tan(x - π) = tan(x)- tan(x + 2π) = tan(x)- tan(x - 2π) = tan(x)二、三角函数的诱导公式应用1. 几何问题中的应用三角函数的诱导公式在解决几何问题中有着广泛的应用。
1.2.1 任意角的三角函数重难点题型(举一反三)(解析版)

1.2.1任意角的三角函数重难点题型【举一反三系列】【知识点1 三角函数的定义】1.任意角的三角函数定义2.三角函数的定义域:【知识点2 三角函数值的符号】第一象限角的各三角函数值都为正;第二象限角的正弦值为正,其余均为负;第三象限角的正切值为正,其余均为负;第四象限角的余弦值为正,其余均为负.注:一全正,二正弦,三正切,四余弦.【知识点3 诱导公式一】由三角函数的定义,可以知道:终边相同的角的同一三角函数的值相等,由此得到诱导公式一:【知识点4 单位圆的三角函数线定义】如图(1)PM表示α角的正弦值,叫做正弦线.OM表示α角的余弦值,叫做余弦线.如图(2)AT表示α角的正切值,叫做正切线.注:线段长度表示三角函数值大小,线段方向表示三角函数值正负.【考点1 三角函数的定义】【分析】根据三角函数的定义,列方程求出m的值.【答案】解:角α的终边上一点(1,)P m,所以0m>,故选:B.【点睛】本题考查了三角函数的定义与应用问题,是基础题.A .4B .4±C .3D .3±【分析】由题意利用任意角的三角函数的定义,求得m 的值.故选:D .【点睛】本题主要考查任意角的三角函数的定义,属于基础题.)【分析】由题意利用任意角的三角函数的定义,求得tan α的值.【答案】解:角故选:C .【点睛】本题主要考查任意角的三角函数的定义,属于基础题.【变式1-3】(2019春•牡丹江期末)角α的终边上一点(P a ,2)(0)a a ≠,则2sin cos (αα-= )【分析】由题意利用任意角的三角函数的定义,分类讨论求得结果. 【答案】解:α的终边上一点(P a ,2)(0)a a ≠, 555a a =,22555a a =,555a a=-,2555a a=-故选:D .【点睛】本题主要考查任意角的三角函数的定义,属于基础题. 【考点2 利用象限角判断三角函数的符号】【例2】(2019春•湖北期中)下列命题成立的是( ) A .若θ是第二象限角,则cos tan 0θθ< B .若θ是第三象限角,则cos tan 0θθ> C .若θ是第四象限角,则sin tan 0θθ< D .若θ是第三象限角,则sin cos 0θθ>【分析】根据角所在的象限判断三角函数值的符号进行判断即可.【答案】解:若θ是第二象限角,则cos 0θ<,tan 0θ<,则cos tan 0θθ>,故A 错误, 若θ是第三象限角,则cos 0θ<,tan 0θ>,则cos tan 0θθ<,故B 错误, 若θ是第四象限角,则sin 0θ<,tan 0θ<,则sin tan 0θθ>,故C 错误, 若θ是第三象限角,则sin 0θ<,cos 0θ<,则sin cos 0θθ>,故D 正确, 故选:D .【点睛】本题主要考查三角函数值符号的判断,结合角的象限与三角函数值符号的关系是解决本题的关键. 【变式2-1】(2019春•珠海期末)已知点(sin ,tan )M θθ在第三象限,则角θ在( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】由题意可得sin 0θ<且tan 0θ<,分别求得θ的范围,取交集得答案. 【答案】解:由题意,00sin tan θθ<⎧⎨<⎩①②,由①知,θ为第三、第四或y 轴负半轴上的角; 由②知,θ为第二或第四象限角. 则角θ在第四象限. 故选:D .【点睛】本题考查三角函数的象限符号,是基础题.【变式2-2】(2019春•玉山县校级月考)若sin cos 0θθ<,则θ在( ) A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限【分析】判断三角函数的符号,然后判断角所在象限即可.【答案】解:sin cos 0θθ<,可知sin θ与cos θ异号,说明θ在第或第四象限. 故选:D .【点睛】本题考查三角函数的符号的判断,角所在象限,是基本知识的考查. 【变式2-3】(2018秋•安庆期末)式子sin1cos2tan4的符号为( )A.正B.负C.零D.不能确定【分析】由1,2,4分别表示第一、二、三象限的角,由此可得答案.【答案】解:1,2,4分别表示第一、二、三象限的角,<,tan40>.∴>,cos20sin10故选:B.【点睛】本题考查三角函数值的符号,是基础题.【考点3 利用诱导公式一判断三角函数的符号】【例3】(2019秋•武邑县校级期中)下列三角函数值的符号判断正确的是()【分析】根据角所在的象限、诱导公式、三角函数值的符号逐项判断即可.【答案】解:A、因为156︒在第二象限,所以sin1560︒>,故A错误;︒=︒+︒=︒,且196︒在第三象限,D、因为tan556tan(360196)tan196所以tan5560︒>,故D错误;故选:C.【点睛】本题考查了三角函数的诱导公式,及三角函数在各象限的符号的应用,属于基础题.【变式3-1】(2019秋•西陵区校级期末)下列三角函数值的符号判断错误的是() A.sin1650︒<︒>D.tan3100︒>B.cos2800︒>C.tan1700【分析】直接利用诱导公式化简,判断符号即可.【答案】解:sin1650︒=︒>,正确;︒>,正确;cos280cos800tan1700︒=-︒<,正确;︒>,错误;tan310tan500故选:C.【点睛】本题考查诱导公式的应用,三角函数值的符号的判断,是基础题.【变式3-2】(2019春•武功县期中)下列值①sin(1000)-︒;④sin2是负值-︒;②cos(2200)-︒;③tan(10)的为()A.①B.②C.③D.④【分析】根据终边相同的角的三角函数值相同,利用三角函数符号判断方法,即可得出结论.【答案】解:①sin(1000)sin1000sin 2800-︒=-︒=-︒>; ②cos(2200)cos2200cos400-︒=︒=︒>; ③tan(10)tan100-︒=-︒<;综上,是负值的序号为③. 故选:C .【点睛】本题考查了终边相同的角与三角函数符号判断问题,是基础题.【变式3-3】(2019秋•夷陵区校级月考)给出下列各函数值:①sin(1- 000)︒;②cos(2- 200)︒;③tan(10)-;A .①④B .②③C .③⑤D .④⑤【分析】利用诱导公式分别对五个选项进行化简整理,进而根据三角函数的性质判断正负. 【答案】解:①,sin(1000)sin(2360280)sin 280cos100-︒=-⨯︒-︒=-︒=︒>; ②,cos(2200)cos(636040)cos400-︒=-⨯︒-︒=︒>; ③,tan(10)tan(30.58)tan(0.58)0π-=-+=-<;,πsin2cos3tan40∴<.∴其中符号为负的是:③⑤.故选:C .【点睛】本题主要考查了运用诱导公式化简求值,解题时应正确把握好函数值正负号的判定,是基础题. 【考点4 三角函数定义域】【分析】列出使函数有意义的不等式组,即由被开方数不小于零,得三角不等式组,分别利用正弦函数和余弦函数图象解三角不等式组即可【答案】解:要使函数有意义,需解得: (k ∈Z )即2k π+≤x ≤2k π+π (k ∈Z )故答案为Z )【点睛】本题考查了函数定义域的求法,三角函数的图象和性质,解简单的三角不等式的方法 可.【答案】解:函数【点睛】本题考查了函数的概念,三角函数的定义域,解三角函数的不等式,属于中档题. 【分析】由绝对值的特点得到sin α-和0的关系,由正弦曲线和角的正弦值可以得到角的范围,写出角的范围后注意加上k 的取值. 【答案】解:|sin |sin αα=-,sin 0α∴-, sin 0α∴,由正弦曲线可以得到[2k αππ∈-,2]k π,k Z ∈, 故答案为:[2k ππ-,2]k π,k Z ∈【点睛】本题主要考查三角函数不等式,解题时最关键的是要掌握三角函数的图象,通过数形结合得到要求的角的范围,这个知识点应用非常广泛,可以和其他知识结合来考查.【变式4-3】求下列函数的定义域:(2)(2sin1)=-;y lg x【分析】利用函数的定义域以及三角函数线化简求解即可.【答案】解:(1)要使y=有意义,可得cos x≥0,解得{x|﹣,k∈Z};(2)要使y=lg(2sin x﹣1)有意义,可得2sin x﹣1>0,即:sin x,解得{x|,k∈Z};(3)要使y=有意义,可得sin x≠﹣1.所以函数的定义域为:{x|x=﹣+2kπ,k∈Z}.【点睛】本题考查三角函数的定义域的求法,三角函数线的应用,考查计算能力.【考点5 利用诱导公式一化简求值】【例5】(2019春•娄星区期中)求下列各式的值:(2)sin1170cos1440tan1845︒+︒-︒【分析】(1)利用诱导公式进行恒等变形,再利用特殊角的三角函数值计算即可求出值;(1)利用诱导公式进行恒等变形,再利用特殊角的三角函数值计算即可求出值;【答案】(本题满分10分)(2)sin1170cos1440tan1845︒+︒-︒sin(336090)cos(43600)tan(536045)=⨯︒+︒+⨯︒+︒-⨯︒+︒ sin90cos0tan45=︒+︒-︒1=.【点睛】此题考查了运用诱导公式化简求值,以及特殊角的三角函数值,熟练掌握诱导公式是解本题的关键.【变式5-1】求下列各式的值(2)9cos2708cos03tan011sin180︒+︒+︒+︒.【分析】由特殊角的三角函数值即可计算得解.1(1)(1)=+-+-1=-.(2)9cos2708cos03tan011sin180︒+︒+︒+︒ 08100=+⨯++ 8=.【点睛】本题主要考查了特殊角的三角函数值在三角函数化简求值中的应用,属于基础题. 【变式5-2】(2019春•船营区校级月考)计算下列各式的值: (1)sin(1395)cos1140cos(1020)sin750-︒︒+-︒︒; tan 4ππ; 【分析】(1)原式中的角度变形后,利用诱导公式化简,再利用特殊角的三角函数值计算即可得到结果. (2)利用诱导公式即可计算得解.【答案】解:(1)原式sin(144045)cos(108060)cos(108060)sin(72030)=-︒+︒︒+︒+-︒+︒︒+︒ sin45cos60cos60sin30=︒︒+︒︒tan 4ππ )0【点睛】此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键,属于基础题. 【变式5-3】(2019春•平罗县校级期中)求下列各式的值 )cos(570)cos(1140)tan(210)sin(690)︒-︒-︒-︒-︒【分析】(1)利用诱导公式以及特殊角的三角函数化简求值即可. (2)利用诱导公式以及特殊角的三角函数化简求值即可. )cos(570)cos(1140)tan(210)sin(690)-︒-︒=-︒-︒25)sin cos tan 463πππ=+-【点睛】本题考查诱导公式的应用,三角函数化简求值,考查计算能力. 【考点6 利用三角函数线解不等式】【例6】(2019春•泗县校级月考)利用单位圆,求适合下列条件的角的集合:【分析】在单位圆中画出三角函数线. (1)由[0,2π)内,,结合正弦线得的解集;(2)由[0,2π)内,,结合余弦线得的解集.【答案】解:在单位圆内作三角函数线如图:(1)∵在[0,2π)内,,OA,OB分别为的终边,由正弦线可知,满足的角的终边在劣弧AB内,∴的解集为{α|};(2))∵在[0,2π)内,,OC,OD分别为的终边,由余弦线可知,满足的终边在劣弧CD内,∴的解集为{α|}.【点睛】本题考查了三角函数线,考查了三角不等式的解法,训练了数形结合的解题思想方法,是中低档题.【变式6-1】求下列不等式的解集:【分析】作出单元圆,利用三角函数线进行求解即可.【答案】解:(1)正弦线大于0的角为x轴的上方,对应的角为2kπ<x<2kπ+π,k∈Z,则不等式的解集为(2kπ,2kπ+π),k∈Z.(2)余弦线小于0的角为y轴的左侧,对应的角为2kπ+<x<2kπ+,k∈Z,则不等式的解集为(2kπ+,2kπ+),k∈Z.(3)sin x>对应的区域在阴影部分,对应角的范围为2kπ+<x<2kπ+,k∈Z,则不等式的解集为(2kπ+,2kπ+),k∈Z.(4)cos x≤﹣对应的区域在阴影部分,对应角的范围为2kπ+≤x≤2kπ+,k∈Z,则不等式的解集为[2kπ+,2kπ+],k∈Z.【点睛】本题主要考查三角不等式的求解,利用三角函数的三角函数线是解决本题的关键.【变式6-2】利用三角函数线,写出满足下列条件的角x的集合:(2)tan x≥﹣1.【分析】根据三角函数线分别进行求解即可.【答案】解:(1)作出y=﹣,交单位圆于B,C,则sin x>﹣对应的区域为阴影部分,作出x=,交单位圆于E,D,则cos x>对应的区域为阴影部分OD,OE之间,则sin x>﹣且cos x>对应的区域为OC到OE之间,其中OC对应的角为﹣,OE对应的角为,则阴影部分对应的范围是2kπ﹣<x<2kπ+,k∈Z,即sin x>﹣且cos x>对应的范围是{x|2kπ﹣<x<2kπ+,k∈Z}(2)作出正切函数线AT=﹣1,则tan x≥﹣1对应的区域为阴影部分,OT对应的角为﹣,则阴影部分对应的角的范围是kπ﹣≤x<kπ+,即不等式的解集为{x|kπ﹣≤x<kπ+,k∈Z}【点睛】本题主要考查三角函数对应不等式的求解,利用三角函数线是解决本题的关键.【变式6-3】利用三角函数线,写出满足下列条件的角x的集合.(3)tan x≥﹣1;【分析】作出单位圆,由三角函数值先求出角在[0,2π]内的取值范围,再由终边相同的角的概念加上周期,由此能求出满足条件的角x的集合.【答案】解:(1)由sin x,作出单位圆,如下图,∵sin x,∴,∴满足sin x≥的角x的集合为{x|2kπ+,k∈Z}.(2)由cos x≤,作出单位圆,如下图,∵cos x≤,∴,∴满足cos x≤的角x的集合为{x|2kπ+≤x≤2kπ+,k∈Z}.(3)由tan x≥﹣1,作出单位圆,如下图,∵tan x ≥﹣1,∴﹣≤x <, ∴满足tan x ≥﹣1的角x 的集合为{x |k π﹣,k ∈Z }. (4)由sin x >且cos x >,作出单位圆,如下图,∵sin x >且cos x >,∴,∴满足sin x >且cos x >x 的集合为{x |2k π+,k ∈Z }. 【点睛】本题考查角的取值范围的求法,是基础题,解题时要注意单位圆和三角函数线的合理运用.【考点7 利用三角函数线比较大小】【例7】比较下列各组数的大小:【分析】(1)根据余弦函数单调性的大小进行比较(2)利用三角函数的诱导公式以及作差法进行比较即可.704π<-cos(π∴-02πα<<则0sin(cos <cos(sin )α222ππ-<【点睛】本题主要考查三角函数值的大小比较,结合三角函数的诱导公式以及三角函数的单调性是解决本题的关键.【变式7-1】利用三角函数线比较下列各组三角函数值的大小:【分析】根据题意,依次作出各个角的三角函数值对应的三角函数线,进而比较大小即可得答案.【点睛】本题考查的知识点是三角函数线,三角函数值的大小比较,关键是掌握三角函数线的定义.【变式7-2】比较大小:可知:21AT AT >,可知:BD BC >,【点睛】本题考察了诱导公式的化简运用,正切线的画法,属于三角函数线的基础题目.【变式7-3】比较下列各组数的大小:【分析】根据三角函数线进行比较即可.)5 cos7π=在单位圆中作出对应的三角函数线如图,则余弦线为OM,正弦线为MP,(2)在单位圆中作出对应的三角函数线如图,则正切线为AT,正弦线为MP,则AT MP>,【点睛】本题主要考查三角函数值的大小比较,根据三角函数线是解决本题的关键.。
三角函数的概念(基础知识+基本题型)(含解析)

5.2.1 三角函数的概念(基础知识+基本题型)知识点一 任意角的三角函数 1、单位圆的概念在直角坐标系中,以原点O 为圆心,以单位长度为半径的圆叫单位圆. 2、任意角的三角函数的定义如图,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么:y 叫做α的正弦,记作sin α,即sin y α=;②x 叫做α的余弦,记作cos α,即cos x α=; ③y x 叫做α的正切,记作tan α,即()tan 0yx xα=≠. 正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数。
拓展:(1)任意角的三角函数的定义一般地,设角α的终边上任意一点的坐标为(,)x y ,它与原点的距离为r =,则sin ,cos ,tan (0)y x yx r r xααα===≠ (2)在任意角的三角函数的定义中,应该明确:α是一个任意角,其范围是使函数有意义的实数集. (3)三角函数值是比值,是一个实数,这个实数的大小和(,)P x y 所在中边上的位置无关,而由角α的终边位置决定.(4)要明确sin α是一个整体,不是sin 与α的乘积,它是“正弦函数”的一个记号,就如()f x 表示自变量为x 的函数一样,离开自变量的“sin α”“cos α”“tan α”等式没有意义的.知识点二 三角函数的定义域和函数值的符号1. 正弦函数、余弦函数、正切函数的定义域如下∶2.在各个象限内的符号,如图所示.【拓展】为了便于记忆,我们把三角函数值在各象限内的符号规律概括为下面口诀:“一全正、二正弦、三正切、四余弦”,意思为:第一象限各三角函数值均为正;第二象限只有正弦值为正,其余均为负;第三象限只有正切值为正,其余均为负;第四象限只有余弦值为正,其余均为负.由于从原点到角的终边上任意一点的距离r 是正值,根据三角函数的定义,知 (1)正弦函数的符号取决于纵坐标y 的符号; (2)余弦函数的符号取决于横坐标x 的符号;(3)正切函数的符号是由,x y 的符号共同决定的,即,x y 同号为正,异号为负. 知识点三 诱导公式一公式一:()sin 2sin k παα+⋅= , ()cos 2cos k παα+⋅=, ()tan 2tan k παα+⋅=, 【提示】(1)诱导公式一说明终边相同的角的同一三角函数值相等.(2)任意给定一个角,它的三角函数值是唯一确定的;若给定一个三角函数值,则有无数个角与之对应. (3)利用诱导公式一,可以把求任意角的三角函数值,转化为求0到2π内的角 的三角 函数值.其中 k Z ∈ . 知识点四 三角函数线 1.有向线段带有方向的线段叫做有向线段. 2.三角函数线的定义如图 1.2-4,设任意角α的顶点在原点o (单位圆的圆心),始边与x 轴的非负半轴重合,终边与单位圆相交于点,()P x y ,过点p 作x 轴的垂线,垂足为点M ;过点(1,0)A 作单位圆的切线,设它与角α 的终边(当α位于第一、四象限时)或其反向延长线(当α位于第二、三象限时)相交于点T (因为过切点的半径垂直于圆的切线,所以AT 平行于y 轴 ).于是sin ,cos ,tan y MP AT y MP x OM AT x OM OAααα======== . 我们规定与坐标轴 同向时 ,方向为正向,与坐标轴反向时,方向为负向,则有向线段MP ,OM ,AT 分别叫做角α 的正弦线、余弦线、正切线,它们统称为三角函数线.【提示】(1)三角函数线的意义是可以表示三角函数的值,其长度等于三角函数的绝对值,方向表示三角函数值的正负.(2)因为三角函数线是与单位圆有关的有向线段,所以作角的三角函数线时,一定要先作出单位圆. (3)有向线段的书写:有向线段的起点字母写在前面,终点字母写在后面.考点一 三角函数的定义及函数值符号 【例1】 有下列说法:①终边相同的角的同名三角函数值相等; ②终边不同的角的同名三角函数值不等; ③若sin20α> ,则α 是第一象限角;④若α 是第二象限角,且(,)P x y 是其终边上一点,则cos α= .其中正确说法的个数是 ( ) A.1B.2C.3D.4解析: 对于此类三角函数的题目,需要逐个判断.充分利用三角函数的定义求解是关键.总结: (1)解决此类问题的关键是准确理解任意角的三角函数的定义.(2)注意问题:①对于不同象限的角,求其三角函数值时,要分象限进行讨论;②终边在坐标轴上的角不属于任何象限.考点二 求三角函数的定义域 【例2】 求下列函数的定义域: (1)sin tan y x x =+ ;(2)sin cos tan x xy x+=.解: (1)要使函数有意义, 必须使sin x 与tan x 都有意义, 所以,().2R x k k Z x ππ∈≠+∈⎧⎪⎨⎪⎩ 所以函数sin tan y x x =+的定义域为 2,k x Z x k ππ∈⎧⎫≠+⎨⎬⎩⎭.(2)要使函数有意义,必须使tan x 有意义,且tan 0x ≠ ,所以,2()Z k x k x k πππ⎧⎪⎨⎪⎩≠+∈≠所以函数sin cos tan x xy x +=的定义域为,2k x x k Z π≠∈⎧⎫⎨⎬⎩⎭. (1)解题时要注意函数本身的隐含条件.(2)求三角函数的定义域,应 熟悉各三角函数在各象限内的符号,并要注意各三角函数的定义域 ,一 般用弧度制表示.考点三 诱导公式一的应用 【例3 】计算下列各式的值:(1) ()()sin 1395cos111cos 1020sin7500︒︒︒︒-+-;(2)1112sin cos tan 465πππ⎛⎫-+ ⎪⎝⎭. 解: (1)原式()()()()sin 454360cos 303360cos 603360sin 302360︒︒︒︒︒︒︒︒=-⨯+⨯+-⨯+⨯ cos30cos60sin30sin 45︒︒︒︒+=1122=⨯14=+=(2)原式()2sin 2cos 2tan 0465πππππ⎛⎫⎛⎫=-+++ ⎪⎪⎝⎭⎝⎭21sincos0652ππ=+⨯= . 利用诱导公式一可把负角的三角函数转化为0~2π 内的角的三角函数,也可把大于2π 的角的三角函数转化为0~2π 内的角的三角函数, 即实现了“负化正 ,大化小”. 要注意记 忆特殊角的三角 函数值.考点四 三角函数线的应用【例4】 利用单位圆中的工角函数线 ,分别确定角θ的取值范围.(1)sin θ(2)1co s 2-≤< .分析: 先作出三角函数在边界时的三角函数线,观察角在什么范围内变化, 再根据范围区域写出θ 的取值范围.解: (1)图①中阴影部分就是满足条件的角θ 的范围, 即,32223k k k Z πππθπ+≤≤∈+ .(2)图②中阴影部分就是满足条件的角θ 的范围,即22362k k πππθπ<--+≤+ 或22,326k k Z k ππθππ<≤+∈+ .解形如()f m α≤ 或()()1f m m α≥< 的式子时,在直角坐标及单位圆中标出满足()f m α= 的两个角的终边(若为正弦函数,则角的终边是直线y m = 与单位圆的两个交点 与原点的连线;若为余弦函数,则角的终边是直线x m = 与单位圆的两个交点与原点的连 线 ;若为正切函数,则角的终边与角的终边的反向延长线表示的正切值相同). 根据三角函数值的大小,先找出α 在0~2π (或 ~ππ- )内 的取值 ,再加上2()k k Z π∈ 即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦函数和余弦函数的定义与诱导公式正弦函数和余弦函数的定义【要点链接】1.单位圆的定义:注意两点:以原点为圆心,以单位长为半径. 2.任意角的正弦函数和余弦函数的定义:对于任意角α,使角α的顶点与原点重合,始边与x 轴正半轴重合: ①终边与单位圆交于点),(v u P ,过P 作PM 与x 轴垂直,垂足为M ,那么v =αsin ,u =αcos ;线段MP 为角α的正弦线,线段OM 为角α的余弦线. ②可设终边上不同于原点的任意一点为),(y x P ,r OP =, 那么r y =αsin ,rx =αcos . 注意②是正弦函数和余弦函数的定义的推广,可直接应用.3.周期与最小正周期:记住正弦函数和余弦函数的最小正周期都为π2,可直接用. 会判断一个数是否是一个函数的周期. 【随堂练习】 一、选择题1.单位圆是指( )A .半径为1的圆B .圆心为坐标原点且半径为1的圆C .半径为整数的圆D .圆心为坐标原点且半径为整数的圆 2.若sin cos 0αα>且cos 0α<,则α的终边所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 3.已知角α的终边过点(1,2)P -,则cos α的值为( )A .25B .C .552D .5-4.设0a <,角α的终边经过点(3,4)P a a -,那么sin 2cos αα+的值等于( )A .52B .-52C .51D .-51二、填空题5.0sin(60)-=_______.6.若角α的终边在直线2y x =上,且sin 0α<,那么cos α=_______. 7.角α的终边上有一点(,5)P m ,且)0(,13cos ≠=m mα,则m =______.三、解答题8.已知单位圆上一点()P a ,设以射线OP 为终边的角(02)θθπ<<,求角θ 的正弦值,并作出角θ的正弦线.9.已知角α终边上一点P 与x 轴的距离和与y 轴的距离之比为3∶4(且均不为零), 求2sin cos αα+的值.答案1.B 由单位圆的定义可知.2.C 知cos 0α<且sin 0α>,那么α在第三象限.3.D知OP =,设角α的终边与单位圆的交点为(,)x y ,由相似比知1cos x OP α-===. 4.A 知射线OP 方程为4(0)3y x x =-≥,它与单位圆的交点为34(,)55-,则4sin 5α=-,3cos 5α=,所以2sin 2cos 5αα+=.5.-画出060-角的终边,它与单位圆的交点为1(,2,则0sin(60)-=.6.5-直线2y x =与单位圆的交点为或(,而sin 0α<,则cos 5α=-. 7.12±由相似比知cos 13m α==12m =±.8.解:因为点P在单位圆上,则22(1a +=,解得12a =±当12a =时,点P 坐标为1()22-,则1sin 2θ=; 当12a =-时,点P 坐标为1()2-,则1sin 2θ=-. 角θ的正弦线即为图中的MP 与MP '.9.解:设0a >,点P 的情况有四种:(4,3)a a 、(4,3)a a -、(4,3)a a --、(4,3)a a -.若角α终边过点(4,3)P a a ,则254532cos sin 2=+⋅=+αα;若角α终边过点(4,3)P a a -,则5254532cos sin 2=-+⋅=+αα;若角α终边过点(4,3)P a a --,则254532cos sin 2-=-+-⋅=+αα;若角α终边过点(4,3)P a a -,则5254532cos sin 2-=+-⋅=+αα.备选题1.若(sin )sin 2f x x =,则0(sin 30)f 的值等于( )A .21 B .-21 C .-23 D .23 1.D 0(sin 30)sin(230)sin 602f =⨯==.2.已知角θ的终边在直线3y x =上,则sin θ= . 2.12±直线3y x =与单位圆的交点为1,)22、1(,)22--,则1sin 2θ=±.正弦函数和余弦函数的诱导公式【要点链接】1.会通过单位圆中的正弦线和余弦线得出角α与角α-,角α与角πα±, 角α与角απ-,角α与角απ+2的正弦值与余弦值之间的关系;2.会记住以上公式并灵活运用;3.诱导公式的一个统一的记法:奇变偶不变,符号看象限.介绍如下:比如对))(2sin(Z k k∈±απ,首先把α看作第一象限的角,当k 为奇数时, 名称sin 要变成cos ,当k 为偶数时,名称sin 不变;正负号要由απ±2k的象限而确定.要熟练掌握上述方法,可以不必再去记忆那么多公式,而且可以很快很准确去做出. 【随堂练习】 一、选择题1.化简5cos()2πα+为( ) A .cos α B .cos α- C .sin α D .sin α-2.已知1cos 2α=,且322παπ<<,则sin(2)πα-等于( )A.- BC .12D.3.下列各式不正确的是( )A .0sin(180)sin αα+=- B .cos()cos()αβαβ-+=-- C .0sin(360)sin αα--=- D .cos()cos()αβαβ--=+ 4.222sin 150sin 1352sin 210sin 225+++的值是( )A .41 B .43 C .411 D .49二、填空题5.若3cos()5απ+=,则7sin()2απ--=_______. 6.已知sin y x =的最小正周期为2π,请写出()sin 2f x x =的比2π小的一个周期为_______.7.设角356απ=-,则2232sin()sin()cos()21sin sin()cos ()παπαπααπαπα+--+=++--+_______.三、解答题8.已知sin()2cos(2)απαπ-=-,求sin()5cos(2)33sin()cos()22παπαππαα++---+的值.9.若2cos 3α=,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.答案1.D 5cos()cos()sin 22ππααα+=+=-.2.B 由1cos 2α=,且322παπ<<,则53απ=,则sin(2)sin 3ππα-==.3.B cos()cos[()]cos()αβαβαβ-+=--=-,则选B .4.A原式222111()2()(224=++⨯-+=. 5.35- 3cos()cos 5απα+=-=,则3cos 5α=-,则7sin()sin()22παπα--=-3cos 5α==-.6.π sin y x =的最小正周期为2π,则sin(2)sin x x π+=,则()sin 2()f x x ππ+=+ sin(22)sin 2()x x f x π=+==,说明π是()sin 2f x x =的一个周期.7.3 35666παππ=-=-+,则1sin 2α=,cos 2α=,所求式222sin cos cos 1sin sin cos αααααα+==++-8.解:由已知得sin 2cos αα-=,设角α的终边与单位圆的交点为(,)x y ,则2y x -=,则2yx=-.则原式5sin 5cos 573cos sin 353y y x x y x y xαααα-+-+-+====--+-+-+.9.解:2cos 3α=,α是第四象限角,则知角α的终边与单位圆的交点为2(,)(0)3m m <,那么222()13m +=,则m =,所以sin α=.sin(2)sin(3)cos(3)sin sin(3)cos(3)cos()cos()cos cos cos()cos απαπαπαπαπαπαπαααπαα-+----+-------+=22sin sin cos 33342cos cos 293ααααα-+⨯-===--.备选题1.已知sin()42πα+=,则3sin()4πα-=___________. 1.233sin()sin[()]sin()4442πππαπαα-=-+=+=.2.已知α为第三象限角,且31cos()25απ-=,则cos α=_________. 2. 331cos()cos()cos()sin 2225παππααα-=-=--=-=,则1sin 5α=-,则可设α的终边上一点为(1,)y -,得222(1)5y -+=,又0y <,则y =-,则cos 5α=-.同步测试题A 组一、选择题1.设α为第二象限角,且coscos22αα=-,则2α角属于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.设3sin 5α=-,4cos 5α=,那么下列各点在角α终边上的是( ) A .(4,3)- B .(4,3)- C .(3,4)- D .(3,4)-3.若θ是第三象限角,且02cos <θ,则2θ是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角4.角(02)ααπ<<的正、余弦线的长度相等,且正、余弦符号相异,那么α的值为( )A .4πB .34πC .74πD .34π或74π5.已知角α的终边在函数||x y -=的图像上,则sin α的值为( )A .-22 B .22 C .22或-22 D .216.设α角的终边上一点P 的坐标是)5sin ,5(cos ππ,则α等于( )A .5πB .310πC .32()10k k Z ππ+∈D .2()5k k Z ππ+∈二、填空题7.已知2()2k k Z παβπ+=+∈,cos 0β≠,则sin cos αβ= . 8.cos y x =的最小正周期为 .9.已知定义在R 上的函数()f x 满足(2)()f x f x +=-,写出()f x 的一个周期 为_______.三、解答题10.判断函数()sin()f x x x π=+的奇偶性.11.若k ∈Z ,求])1cos[(])1sin[()cos()sin(απαπαπαπ-++++-k k k k 的值.12.已知第三象限的角α终边上一点()P m ,且m 42sin =α,求sin α的值.B 组一、选择题1.若θ为第二象限角,那么sin(sin )θ的值为( ) A .正值 B .负值 C .零 D .不能确定 2.已知函数()sin 1f x a x x =++,满足(5)7f =,则)5(-f 的值为( )A .5B .-5C .6D .-63.设α角的终边上一点P 的坐标是)5sin ,5(cos ππ,则α等于( )A .5πB .310πC .32()10k k Z ππ+∈D .2()5k k Z ππ+∈4.若α是第一象限角,则αααα2cos ,2cos ,2sin ,2sin 中能确定为正值的有( )A .0个B .1个C .2个D .2个以上二、填空题5.已知sin 2cos 53sin 5cos αααα-=-+,那么sin cos αα的值为 . 6.已知cos 23x a =-,x 是第二、三象限的角,则a 的取值范围_____________.三、解答题7.利用三角函数线,写出满足下列条件的角x 的集合.(1)sin 2x ≥; (2)1sin 22x -<≤.8.已知角α的终边在直线3y x =-上,求αααcos sin sin 10+的值.答 案A 组1.C α为第二象限角,则2α在一三象限,而cos cos 22αα=-,则cos 02α≤, 则2α角属于第三象限. 2.A 角α终边过(4,3)-时,则34sin ,cos 55αα=-=,其它不满足,选A . 3.B θ是第三象限角,则2θ是第二、四象限的角,又02cos <θ,则2θ是第二象限角.4.D 角(02)ααπ<<的正、余弦线的长度相等,则可为4π、34π、54π、74π,4π的正、余弦符号相同,54π的正、余弦符号相同,另两个是相异的.5.A 知角α的终边在第三或第四象限,值为负,只有A 满足.6.D 知点P 在第一象限内,且5πθ=的终边上有一点的坐标为)5sin ,5(cosππ, 则α角的终边与5πθ=的终边相同,则2()5k k Z παπ=+∈7.1 22k παπβ=+-,则sin sin(2)sin()cos 22k ππαπβββ=+-=-=.8.π cos()cos x x π+=,则最小正周期为π.9.4 因为(2)()f x f x +=-,则(4)(2)f x f x +=-+,可得(4)()f x f x +=, 知4为()f x 的一个周期. 10.解: ()sin()sin f x x x x x π=+=-,()sin()sin ()f x x x x x f x π-=--=-=,所以()f x 为偶函数.11.解:法一:若k 为偶数,则原式=)cos )(sin (cos sin )cos()sin(cos )sin(αααααπαπαα---=-+-=-1, 若k 为奇数,则原式=αααααααπαπcos sin )cos (sin )cos(sin )cos()sin(-=-+-=-1.法二:()()2k k k παπαπ-++=,[(1)][(1)]2(1)k k k παπαπ++++-=+,原式=])1cos[(])1sin[()cos()sin(απαπαπαπ-+-+---k k k k =sin()cos()sin()[cos()]k k k k παπαπαπα-----=-1.12.解:角α是第三象限的角,则0m <,射线OP方程为y x =, 它与单位圆221x y +=,则sin α=m 42sin =α4m =,则25m =,则m =sin 4α==.B 组1.A θ为第二象限角,则0sin 12πθ<<<,则sin(sin )0θ>.2.B (5)sin5517f a =++=,则sin51a =,那么(5)sin(5)51sin5515f a a -=--+=--+=-3.D 知点P 在第一象限内,且5πθ=的终边上有一点的坐标为)5sin ,5(cosππ, 则α角的终边与5πθ=的终边相同,则2()5k k Z παπ=+∈.4.B α是第一象限角,则2α在一或三象限,2α的终边在x 轴的上方,则sin 2α一定为正. 5.2316- 设角α的终边与单位圆的交点为(,)P x y ,则221x y +=,sin y α=,cos x α=,可得2535y x y x-=-+,则2535y x y x-=-⨯+,则2316y x =-,那么sin 23cos 16αα=-. 6.3(1,)2x 是第二、三象限的角,则1cos 0x -<<,则1230a-<-<,则312a <<. 7.解:(1)作单位圆如图,再作y =与单位圆有两不同的交点, 这两点与圆心连线把圆分成了两部分,当角x 的终边落在如图的阴影部分(含边界)时,满足sin 2x ≥,则满足条件的x的集合为0000{36045360135,x k x k k ⋅+≤≤⋅+∈(2)作单位圆如图,再作12y =-、2y = 当角x 的终边落在如图的阴影部分(不含虚线边界)时,满足1sin 2x -<≤,则满足条件的x 的集合为 0000000{360120360210,36030360x k x k k x k ⋅+≤<⋅+⋅-<≤⋅+或8.解:当角α的终边在第二象限时,取终边上一点(1,3)A -,则r OA =, 则sin α=101cos -=α,那么0cos sin sin 10=+ααα.当角α的终边在第四象限时,取终边上一点(1,3)B -,则r OB ==,则sin α=101cos =α,那么6cos sin sin 10-=+ααα.备选题1.下列等式中成立的是( )A .00cos370cos(350)=-B .cos(3)cos44πππ+=C .000sin(236040)sin 40⨯-= D .2519cos cos()66ππ=-1.A 0000cos370cos(720350)cos(350)=-=-.2.若sin()sin()m παα++-=-,则sin(3)2sin(2)παπα++-=_______.2.32m -由sin()sin()m παα++-=-,得sin 2m α=, 则3sin(3)2sin(2)3sin 2m παπαα++-=-=-.3.已知sin α是方程25760x x --=的根,求2sin()sin(2)sin (3)sin()[2sin()sin()]αππαπαπαπαα--⋅-⋅--⋅++-的值.3.解:25760x x --=的两根为35-或2,则3sin 5α=-,22sin()sin(2)sin (3)sin (sin )sin sin()[2sin()sin()]sin (3sin )αππαπααααπαπαααα--⋅-⋅-⋅-⋅=-⋅++-⋅-22sin 133()33525α==⨯-=.。