第二节 正弦函数和余弦函数的定义及诱导公式
正弦余弦的诱导公式

正弦余弦的诱导公式正弦和余弦的诱导公式是三角函数中非常重要的两个公式,它们描述了两个角的正弦和余弦之间的关系。
通过这些公式,我们可以使用已知角的正弦或余弦来求解其他角度的正弦和余弦值,从而在三角函数中起到了非常关键的作用。
首先,我们先来看正弦的诱导公式。
对于一个角度为θ的三角形,假设角θ的对边长度为b,斜边长度为c。
根据三角形的定义可以知道:sin(θ) = b/c接下来我们使用勾股定理,即c²=a²+b²,其中a表示角度为θ的三角形的邻边长度。
将c²=a²+b²代入上式,可以得到:sin(θ)= b/√(a² + b²)我们知道,正弦函数是一个周期性函数,且满足-sin(θ) = sin(180° + θ)。
因此,对于角度大于90°的情况,可以通过此公式来计算正弦值。
根据逆三角函数的定义,我们还可以推导出:sin(180° - θ) = sin(θ)这就是正弦的诱导公式,它描述了正弦函数的周期性和对称性。
接下来,我们来看余弦的诱导公式。
同样考虑一个角度为θ的三角形,对于角度大于90°的情况,我们可以使用余弦函数来表示。
余弦函数定义为:cos(θ) = a/c假设角θ的邻边长度为a,斜边长度为c。
利用勾股定理可以得到:cos(θ) = a/√(a² + b²)由余弦函数的周期性和对称性,我们可以推导出:cos(-θ) = cos(θ)cos(180° - θ) = -cos(θ)cos(180° + θ) = -cos(θ)这些公式描述了余弦函数的周期性和对称性。
通过正弦和余弦的诱导公式,我们可以求解其他角度的正弦和余弦值。
例如,对于sin(30°),我们可以使用sin(90° - 30°) = sin(60°) = √3/2来求解。
三角函数高中数学诱导公式大全

三角函数高中数学诱导公式大全三角函数是高中数学中的重要内容,它与三角形的关系密切,广泛应用于各个学科中。
掌握三角函数的诱导公式对于解决各种问题是非常有帮助的。
下面我们就来详细介绍一些三角函数的诱导公式。
1.正弦函数的诱导公式:sin(A + B) = sinAcosB + cosAsinBsin(A - B) = sinAcosB - cosAsinBsin2A = 2sinAcosAsinA + sinB = 2sin((A + B)/2)cos((A - B)/2)sinA - sinB = 2cos((A + B)/2)sin((A - B)/2)2.余弦函数的诱导公式:cos(A + B) = cosAcosB - sinAsinBcos(A - B) = cosAcosB + sinAsinBcos2A = 2cos^2A - 1 = 1 - 2sin^2AcosA + cosB = 2cos((A + B)/2)cos((A - B)/2)cosA - cosB = -2sin((A + B)/2)sin((A - B)/2)3.正切函数的诱导公式:tan(A + B) = (tanA + tanB) / (1 - tanAtanB)tan(A - B) = (tanA - tanB) / (1 + tanAtanB)tan2A = 2tanA / (1 - tan^2A)tanA + tanB = sin(A + B) / (cosAcosB)tanA - tanB = sin(A - B) / (cosAcosB)4.余切函数的诱导公式:cot(A + B) = (cotAcotB - 1) / (cotB + cotA)cot(A - B) = (cotAcotB + 1) / (cotB - cotA)cot2A = cot^2A - 2cotA / (cot^2A - 1)cotA + cotB = cotAcotB - 1 / (cotA + cotB)cotA - cotB = cotAcotB + 1 / (cotB - cotA)这些诱导公式可以帮助我们在计算三角函数的复杂表达式时,将其化简为更简洁的形式。
正弦函数和余弦函数的图像与性质

例2.求下列函数的最大值与最小值,及取到最值 时的自变量 x 的值. (2) y 3sin x cos x (1) y sin(2 x )
4 解:(1)视为 y sin u , u 2 x 4
8 3 当 u 2k ,即 x k , k Z 时, 2 8 ymin 1 2
二、正弦函数与余弦函数的周期
对于任意 x R 都有
sin( x 2k ) sin x, k Z cos( x 2k ) cos x, k Z
正弦函数是周期函数, k , k Z , k 0 都是它的 2
周期,最小正周期是 2 余弦函数是周期函数, k , k Z , k 0 都是它的 2 周期,最小正周期是 2
注:一般三角函数的周期都是指最小正周期
1 (1) f ( x) cos 2 x (2) f ( x) sin( x ) 2 6 解: (1)设 f ( x)的周期为 T f ( x T ) f ( x)
即 cos[2( x T )] cos 2 x 即 cos(2 x 2T ) cos 2 x 即 对任意 u 都成立:cos(u 2T ) cos u 因此 2T 2 ,从而 T 解毕
第六章 三角函数
5.6.4 正弦定理、余弦定理和解斜三角形
6.1.1 正弦函数和余弦函数的图像与性质
一、正弦函数和余弦函数的概念 实数集与角的集合可以建立一一对应的关系, 每一个确定的角都对应唯一的正弦(余弦)值. 因此,任意给定一个实数 x ,有唯一确定的值
sin x(cos x) 与之对应.
函数 y sin x 叫做正弦函数 函数 y cos x 叫做余弦函数 正弦函数和余弦函数的定义域是 R 正弦函数和余弦函数的值域是[1,1]
三角函数的诱导公式和和差公式

三角函数的诱导公式和和差公式三角函数是数学中常用的一类函数,其中最为基础和重要的有正弦函数、余弦函数和正切函数。
在解决三角函数运算和计算问题时,经常会用到诱导公式和和差公式,它们是将一个角的三角函数表达式化简为另外一个角的三角函数表达式的重要工具。
本文将介绍三角函数的诱导公式和和差公式的定义和使用方法,并通过实例加以说明。
一、诱导公式1. 正弦函数和余弦函数的诱导公式对于任意角θ,根据单位圆的定义可知,在单位圆上有一点P(x,y)对应着角θ的弧度值,其中x和y分别为点P的横坐标和纵坐标。
根据正弦函数sinθ的定义可得sinθ = y同样,根据余弦函数cosθ的定义可得cosθ = x考虑到单位圆上的对称性,对于角θ而言,将角θ绕原点旋转π/2(即90°)可以得到一个新角θ + π/2。
根据单位圆的性质,新角对应的点Q(x',y')的坐标为(-y,x)。
由此可以得到,对于角θ而言,正弦函数sin(θ + π/2)和余弦函数cos(θ + π/2)有如下关系:si n(θ + π/2) = y' = -xcos(θ + π/2) = x' = y这就是正弦函数和余弦函数的诱导公式。
2. 正切函数的诱导公式正切函数tanθ的定义为tanθ = sinθ / cosθ根据正弦函数和余弦函数的诱导公式,可以得到:tan(θ + π/2) = sin(θ + π/2) / cos(θ + π/2)= -x / y由此可以推导出正切函数的诱导公式。
二、和差公式1. 正弦函数的和差公式对于两个角α和β,正弦函数sin(α ± β)的和差公式可以表示为:sin(α ± β) = sinα × cosβ ± cosα × sinβ2. 余弦函数的和差公式对于两个角α和β,余弦函数cos(α ± β)的和差公式可以表示为:cos(α ± β) = cosα × cosβ ∓ sinα × sinβ3. 正切函数的和差公式对于两个角α和β,正切函数tan(α ± β)的和差公式可以表示为:tan(α ± β) = (tanα ± tanβ) / (1 ∓ tanα × tanβ)三、实例应用下面通过具体的实例应用来说明诱导公式和和差公式的使用。
三角函数的诱导公式与恒等变换

三角函数的诱导公式与恒等变换三角函数是数学中重要的概念之一,广泛应用于数学、物理、工程等领域。
在学习三角函数时,了解三角函数的诱导公式和恒等变换可以帮助我们简化计算过程,提高解题效率。
本文将介绍三角函数的诱导公式和恒等变换,并探讨其在解题中的应用。
一、诱导公式1. 正弦函数的诱导公式我们知道,正弦函数的定义是:在直角三角形中,对于一个锐角θ,正弦函数的值等于对边与斜边的比值,即sinθ = opposite/hypotenuse。
利用三角恒等式sin²θ + cos²θ = 1,我们可以将正弦函数表示为cosine的形式,即sinθ = √(1 - cos²θ)。
进一步地,我们可以应用勾股定理将正弦函数表示为另外两个三角函数的形式。
勾股定理指出,在直角三角形中,两条直角边的平方和等于斜边的平方,即a² + b² = c²。
假设直角边a是对边,直角边b是邻边,斜边c是hypotenuse。
则a/hypotenuse = sinθ,b/hypotenuse = cosθ。
根据勾股定理的关系,我们可以得到诱导公式sinθ = cos(90° - θ)。
2. 余弦函数的诱导公式余弦函数的定义是:在直角三角形中,对于一个锐角θ,余弦函数的值等于邻边与斜边的比值,即cosθ = adjacent/hypotenuse。
利用三角恒等式sin²θ + cos²θ = 1,我们可以将余弦函数表示为sine 的形式,即cosθ = √(1 - sin²θ)。
同样地,根据勾股定理的关系,我们可以得到诱导公式cosθ =sin(90° - θ)。
3. 正切函数的诱导公式正切函数的定义是:在直角三角形中,对于一个锐角θ,正切函数的值等于对边与邻边的比值,即tanθ = opposite/adjacent。
利用正弦函数和余弦函数的定义,我们可以得到正切函数的诱导公式tanθ = sinθ/cosθ。
三角函数诱导公式课件

tan( - ) - tan
总结:
2k (k Z ), - , 的三角函数, 等于的 同名函数值, 前面加上一个把看成锐角时 原函数值的符号。
三、应用
例 1 求下列各角的三角函数值。
7 (1) sin(- ) 4 31 (3)cos() 6
2 (2) cos 3
7 7 2 - sin(2 - ) -(- sin ) sin 解 : (1) sin(- ) - sin 4 4 4 4 4 2
1 2 (2) cos cos( - ) - cos 3 2 3 3
31 31 (3) cos() cos cos(4 ) 6 6 6 cos( ) - cos - 3 6 6 2
3.化简 (1) sin( 180 0 ) cos(- ) sin(- - 180 0 )
(- sin ) cos (- sin(180 0 ) (- sin ) cos (-(- sin ))
- sin 2 cos
(2) sin3 (- ) cos(2 ) tan(- - ) (- sin )3 cos (- tan( ))
②
公式四:
sin( - ) sin
cos( - ) - cos
tan( - ) - tan
公式一
(k z )
sin( ) - sin
sin(2k ) sin
公式二 cos( ) - cos tan( ) tan cos(2k ) cos cos(- ) cos tan(2k ) tan 公式三 sin(- ) - sin 补: tan(- ) - tan sin(2k - ) - sin sin( - ) sin cos(2k - ) cos 公式四 cos( - ) - cos tan(2k - ) - tan
三角函数的诱导公式知识点

三角函数的诱导公式知识点三角函数的诱导公式是数学中关于三角函数之间的一组等式,通过这组等式可以在不依赖计算器或表格的情况下直接计算出一些角度的三角函数值,从而简化计算。
诱导公式的基本思想是通过将一个角度的三角函数转化为另一个角度的三角函数来求解。
一、正弦和余弦的诱导公式:根据正弦函数和余弦函数的定义,对于任意角度θ,有:sin θ = y/rcos θ = x/r其中,x,y,r代表直角三角形中的边长。
利用勾股定理可以得到x²+y²=r²。
现在考虑角度θ+90°,即sin(θ+90°)和cos(θ+90°)的值。
根据正弦函数和余弦函数的定义,有:sin(θ+90°) = y’/rcos(θ+90°) = x’/r其中,x’,y’,r由右边角相等可知。
然后考虑直角三角形中的边长关系:y’=xx’=-y(由右边角相等,即90°+(-θ))代入sin(θ+90°)和cos(θ+90°),得到:sin(θ+90°) = x/r,即sin(θ+90°) = cosθcos(θ+90°) = -y/r,即cos(θ+90°) = -si nθ得到正弦的诱导公式:sin(θ+90°) = cosθ;得到余弦的诱导公式:cos(θ+90°) = -sinθ。
利用这两个诱导公式,我们可以在计算中互相转化正弦和余弦的值。
二、正切和余切的诱导公式:正切和余切的定义是:tan θ = sin θ / cos θcot θ = cos θ / sin θ。
根据正弦和余弦的诱导公式,我们可以得到:sin(θ+90°) = cosθcos(θ+90°) = -sinθ。
将这两个式子带入正切和余切的定义,有:tan(θ+90°) = sin(θ+90°) / cos(θ+90°) = cosθ / (-sinθ) = -cotθcot(θ+90°) = cos(θ+90°) / sin(θ+90°) = (-sinθ) /cosθ = -tanθ。
正弦余弦正切的诱导公式 三角函数

正弦、余弦、正切的诱导公式【知识点精析】1. 三角函数的诱导公式 诱导公式(一): sin()sin 2k παα+= cos()cos 2k παα+= tan()tan 2k παα+=cot()cot 2k παα+=公式含义:终边相同的角的正弦、余弦、正切、余切值相等。
公式作用:把任意角的三角函数化为0°~360°(或0~2π)内的三角函数。
其方法是:先在0°~360°(或0~2π)内找出与角α终边相同的角,再将它分成诱导公式(一)的形式,然后得出结果。
如coscos()cos 25646632ππππ=+==诱导公式(二): sin()sin παα+=- cos()cos παα+=- tan()tan παα+=cot()cot παα+=公式结构特征:①同名函数关系②符号规律:右边符号是将α看作锐角时,πα+是第三象限角的原函数值符号。
即:“函数名不变,符号看象限”。
公式作用:可以把180°~270°(或ππ~32)内的角的三角函数转化为锐角三角函数。
例:sin210°=sin (180°+30°)=-sin30°=-12cos cos()cos 433312ππππ=+=-=- 诱导公式(三): sin()sin -=-ααcos()cos -=αα tan()tan -=-ααcot()cot -=-αα公式结构特征:①同名函数关系②符号规律:右边符号是将α看作锐角时,-α是第四象限角原函数值的符号。
即:“函数名不变,符号看象限”。
公式的作用:可以把负角的三角函数转化为正角三角函数。
例:sin()sin-=-=-ππ4422cos()cos -==606012诱导公式(四): sin()sin παα-= cos()cos παα-=-tan()tan παα-=-cot()cot παα-=-公式结构特征: ①同名函数关系②符号规律:右边符号是将α看作锐角时,πα-是第二象限角的原函数值的符号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节 正弦函数和余弦函数的定义及诱导公式
A 组
1.若cos α=-35,α∈(π2
,π),则tan α=________. 解析:cos α=-35,α∈(π2,π),所以sin α=45,∴tan α=sinαcosα=-43
. 答案:-43
2.(2009年高考北京卷)若sin θ=-45
,tan θ>0,则cos θ=________. 解析:由sin θ=-45<0,tan θ>0知,θ是第三象限角,故cos θ=-35
. 答案:-35
3.若sin(π6+α)=35,则cos(π3
-α)=________. 解析:cos(π3-α)=cos[π2-(π6+α)]=sin(π6+α)=35.答案:35
4.(2010年合肥质检)已知sin x =2cos x ,则5sinx -cosx 2sinx +cosx
=______. 解析:∵sin x =2cos x ,∴tan x =2,∴5sinx -cosx 2sinx +cosx =5tanx -12tanx +1=95
. 答案:95
5.(原创题)若cos2θ+cos θ=0,则sin2θ+sin θ=________.
解析:由cos2θ+cos θ=0,得2cos 2θ-1+cos θ=0,所以cos θ=-1或cos θ=12
,当cos θ=-1时,有sin θ=0,当cos θ=12时,有sin θ=±32
.于是sin2θ+sin θ=sin θ(2cos θ+1)=0或3或- 3.答案:0或3或- 3 6.已知sin(π-α)cos(-8π-α)=60169,且α∈(π4,π2
),求cos α,sin α的值. 解:由题意,得2sin αcos α=120169
.①又∵sin 2α+cos 2α=1,② ①+②得:(sin α+cos α)2=289169,②-①得:(sin α-cos α)2=49169
. 又∵α∈(π4,π2
),∴sin α>cos α>0,即sin α+cos α>0,sin α-cos α>0, ∴sin α+cos α=1713.③sin α-cos α=713
,④ ③+④得:sin α=1213.③-④得:cos α=513
. B 组
1.已知sin x =2cos x ,则sin 2x +1=________.
解析:由已知,得tan x =2,所以sin 2x +1=2sin 2x +cos 2x =2sin2x +cos2x sin2x +cos2x =2tan2x +1tan2x +1=95
.答案:95 2.(2010年南京调研)cos 10π3
=________. 解析:cos 10π3=cos 4π3=-cos π3=-12.答案:-12
3.(2010年西安调研)已知sin α=35,且α∈(π2,π),那么sin2αcos2α
的值等于________.
解析:cos α=-1-sin2α=-45, sin2αcos2α=2sinαcosαcos2α=2sinαcosα=2×35-45
=-32. 答案:-32
4.(2010年南昌质检)若tan α=2,则sinα+cosαsinα-cosα
+cos 2α=_________________. 解析:sinα+cosαsinα-cosα+cos 2α=sinα+cosαsinα-cosα+cos2αsin2α+cos2α=tanα+1tanα-1+1tan2α+1=165
.答案:165 5.(2010年苏州调研)已知tan x =sin(x +π2
),则sin x =___________________. 解析:∵tan x =sin(x +π2)=cos x ,∴sin x =cos 2x ,∴sin 2x +sin x -1=0,解得sin x =5-12.答案:5-12
6.若θ∈[0,π),且cos θ(sin θ+cos θ)=1,则θ=________.
解析:由cos θ(sin θ+cos θ)=1⇒sin θ·cos θ=1-cos 2θ=sin 2θ⇒sin θ(sin θ-cos θ)=0⇒sin θ=0或sin θ-cos θ
=0,又∵θ∈[0,π),∴θ=0或π4.答案:0或π4
7.已知sin(α+π12)=13,则cos(α+7π12
)的值等于________. 解析:由已知,得cos(α+7π12)=cos[(α+π12)+π2]=-sin(α+π12)=-13. 答案:-13
8.(2008年高考浙江卷改编)若cos α+2sin α=-5,则tan α=________.
解析:由⎩⎨⎧
cosα+2sinα=-5, ①sin2α+cos2α=1, ②
将①代入②得(5sin α+2)2=0,∴sin α=-255,cos α=-55,∴tan α=2. 答案:2
9.已知f (α)=sin(π-α)cos(2π-α)tan(-α+3π2)cos(-π-α),则f (-31π3
)的值为________. 解析:∵f (α)=sinα·cosα·cotα-cosα=-cos α,∴f (-313π)=-cos π3=-12.答案:-12 10.求sin(2n π+2π3)·cos(n π+4π3
)(n ∈Z )的值. 解:(1)当n 为奇数时,sin(2n π+2π3)·cos(n π+4π3)=sin 2π3·cos[(n +1)π+π3
] =sin(π-π3)·cos π3=sin π3·cos π3=32×12=34
. (2)当n 为偶数时,sin(2n π+2π3)·cos(n π+4π3)=sin 2π3·cos 4π3=sin(π-π3)·cos(π+π3)=sin π3·(-cos π3)=32
×(-12)=-34
. 11.在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos(π-B ),求△ABC 的三内角. 解:由已知,得⎩⎨⎧
sinA =2sinB , ①3cosA =2cosB , ②
①2+②2得:2cos 2A =1,即cos A =±22.
(1)当cos A=
2
2时,cos B=
3
2,又A、B是三角形内角,∴A=
π
4,B=
π
6,∴C=π-(A+B)=
7
12
π.(2)当
cos A=-
2
2时,cos B=-
3
2.又A、B是三角形内角,∴A=
3
4
π,B=
5
6
π,不合题意.综上知,A=
π
4,B=
π
6,
C=7
12
π.
12.已知向量a=(3,1),向量b=(sinα-m,cosα).
(1)若a∥b,且α∈[0,2π),将m表示为α的函数,并求m的最小值及相应的α值;(2)若a⊥b,且m=0,
求cos(
π
2-α)·sin(π+2α)
cos(π-α)的值.
解:(1)∵a∥b,∴3cosα-1·(sinα-m)=0,∴m=sinα-3cosα=2sin(α-
π
3).又∵α∈[0,2π),∴当sin(α-
π
3)=-1时,m min=-2.
此时α-
π
3=
3
2
π,即α=
11
6
π.
(2)∵a⊥b,且m=0,∴3sinα+cosα=0.∴tanα=-
3
3.
∴
cos(
π
2-α)·sin(π+2α)
cos(π-α)
=
sinα·(-sin2α)
-cosα
=tanα·2sinα·cosα
=tanα·
2sinα·cosα
sin2α+cos2α
=tanα·
2tanα
1+tan2α
=
1
2
.。