led路灯智能控制系统设计
路灯控制方案

在节假日和特殊时段,提高路灯亮度,保障市民出行安全。
5.故障检测与报警
实时监测路灯运行状态,发现故障及时报警,提高路灯运维效率。
6.大数据分析
收集路灯运行数据,通过大数据分析,优化照明策略,降低运维成本。
五、实施步骤
1.对现有路灯设备进行调研,确定改造范围和设备清单。
2.设计路灯智能控制系统,制定详细的技术方案。
3.照明策略优化
根据不同路段的行人、车流量以及天气状况,制定相应的照明策略,实现按需照明。
四、具体措施
1.远程监控
建立路灯远程监控系统,实现对路灯的实时监控,发现异常情况及时处理。
2.自动调节
路灯控制器可根据环境光照度、行人车流量等信息,自动调节路灯亮度,实现节能减排。
3.分时段控制
设置多个照明时段,根据不同时段的照明需求,自动调整路灯亮度。
-技术培训:对运维人员进行技术培训,提升维护能力。
六、法律法规遵循
本方案遵循以下法律法规:
-《城市道路照明设计规范》
-《城市道路照明设施管理规定》
-《中华人民共和国节约能源法》
-《城市照明节能管理规定》
七、预期效益
-节能降耗:通过智能控制,预计可降低路灯系统整体能耗20%以上。
-提升安全:智能照明系统将提高夜间道路照明质量,增强市民出行安全感。
五、实施细节
1.系统部署
-前期调研:评估现有路灯设施,确定改造范围和设备需求。
-设备采购:按照标准与要求,采购符合国家规定的智能路灯设备。
-安装调试:在专业人员的指导下,进行设备的安装与调试。
2.运行维护
-定期检查:制定定期检查计划,确保系统稳定运行。
-故障处理:建立快速响应机制,及时处理路灯故障。
智能路灯系统设计与实现

智能路灯系统设计与实现第一章概述随着科技的不断发展,人们对周围环境的需求也越来越高。
智能路灯系统是一种能够自动感知周围环境并根据需要灯光亮度自动调节的路灯系统。
本文旨在介绍智能路灯系统的设计与实现,探讨其在城市照明中的应用。
第二章系统架构智能路灯系统的架构主要由三部分组成:传感器模块、控制模块和灯光控制模块。
传感器模块用于感知周围环境,包括光线、温度、湿度、人流等信息,传输给控制模块。
控制模块通过分析传感器模块的数据来判断当前环境状况以及根据需求制定相应策略,然后传输控制信号给灯光控制模块。
灯光控制模块根据控制信号来控制路灯亮度,实现智能路灯的自动调节。
第三章传感器模块光线传感器通过反射手段采集周围环境光照度,将采集到的信息传输给控制模块。
温度传感器和湿度传感器用于感知周围气温和湿度,为智能路灯系统的能耗控制和省电提供依据。
人流传感器能够检测周围行人流量,为城市照明运营管理部门提供精准的数据支持。
第四章控制模块控制模块采用嵌入式处理器,具有数据处理和通信功能。
控制模块通过处理传感器模块采集到的数据,实现基于环境和实时需求的路灯亮度控制,同时能够自适应地调整路灯的亮度。
在更高级的智能路灯系统中,控制模块还可以添加机器学习模块,利用深度学习算法来分析传感器模块的数据,学习环境和需求,同时优化路灯控制策略。
这样可以使智能路灯系统更加高效和实用。
第五章灯光控制模块灯光控制模块是整个系统中最核心的部分。
它通过接受控制信号,控制整个路灯系统的亮度选择和亮度变化效果。
在智能路灯系统中,灯光控制模块通常使用LED灯。
这些灯不仅耗电少,而且灵活,使得灯光亮度的调节更加精确。
第六章应用场景智能路灯系统在城市照明领域的应用非常广泛。
举几个例子:1. 道路照明:通过智能路灯系统,道路照明可以根据车流量和天气等因素自动调节亮度,优化能源使用和路灯的寿命。
2. 公园和广场照明:智能路灯系统允许公园、广场和其他城市绿地在夜间保持足够的照明亮度,同时消耗更少的能源。
路灯控制器的设计

路灯控制器的设计路灯控制器的设计是为了实现对路灯的自动化控制,能够根据不同的场景需求和时间要求,自动调节路灯的亮度和开关状态,从而达到节约能源和提高路灯使用寿命的目的。
本文将从硬件设计和软件设计两个方面进行路灯控制器的详细设计。
1.硬件设计1.1.功能模块设计感应模块主要用于感应周边环境的亮度和车辆行驶情况,可以通过光敏传感器感应周围环境的亮度,通过雷达传感器感应车辆行驶情况。
亮度调节模块可以根据感应模块获取的亮度信息,通过PWM技术来控制路灯的亮度,实现智能调光功能。
时间控制模块用于设置和控制路灯的开关时间,可以根据需求设置每天的开关时间段。
通信模块可以通过无线通信技术,实现与云端或地面设备的远程通信,实现集中管理和监控。
1.2.硬件电路设计根据上述功能模块的需求,硬件电路设计需要包括微控制器、传感器、PWM模块、时钟模块、无线通信模块等。
微控制器是整个电路的核心,负责控制各个模块的工作,可以选择具有较高计算能力和丰富接口资源的单片机。
传感器需要选择适合于感应模块的光敏传感器和雷达传感器,以及其他可能需要的传感器。
PWM模块需要根据路灯亮度调节的需求,选择合适的PWM芯片或芯片组,用于控制路灯的亮度。
时钟模块可以选择实时时钟芯片,用于控制路灯的开关时间。
无线通信模块可以选择Wi-Fi模块、蓝牙模块或其他具有远程通信功能的无线模块。
2.软件设计2.1.系统架构设计软件设计需要考虑系统的可扩展性和实时性。
可以采用多任务调度的方式,将每个模块的功能放在不同的任务中实现。
系统架构设计可以分为感应任务、控制任务和通信任务。
感应任务负责采集传感器数据,如环境亮度和车辆行驶情况等。
控制任务根据感应任务获取的数据,并根据设定的算法进行开关控制和亮度调节。
通信任务负责与云端或地面设备进行通信,将路灯的状态和数据传输到远程端。
2.2.算法设计控制任务中的算法设计主要包括开关控制算法和亮度调节算法。
开关控制算法可以根据感应任务获取的车辆行驶情况和开关时间进行判断,从而决定路灯的开关状态。
智能路灯系统的设计与实现

智能路灯系统的设计与实现智能路灯系统是一种结合了智能化技术和照明技术的新型路灯系统,通过引入各种先进的传感器、通信技术以及智能控制算法,实现对路灯的自动控制和管理。
它不仅能够实现节能减排的目标,还能够提高路灯的使用寿命、提升道路安全性和智能化管理水平。
一、智能路灯系统的设计原理智能路灯系统的设计可以分为硬件和软件两个方面。
在硬件方面,需要考虑路灯的照明效果、节能性能以及系统的可靠性。
在软件方面,需要设计智能控制算法、建立数据传输和处理模块,并且实现对路灯的远程监控和管理。
在智能路灯系统的设计中,首先需要选择适合的传感器来感知环境的变化,如光照传感器、温湿度传感器、噪声传感器等。
这些传感器可以实时监测环境参数的变化,并利用数据传输模块将数据传输至后台服务器进行处理。
同时,系统还需考虑使用节能的LED灯作为照明光源,通过对光照强度、光色等参数的调节,实现智能控制,从而提高能源利用效率。
其次,智能路灯系统需要具备远程监控和管理功能。
通过使用通信模块,可以实现对路灯状态的实时监控和控制。
同时,利用云平台的支持,可以实现对整个路灯系统的集中式管理,如路灯开关、亮度调节、故障检测等操作都可以通过后台系统进行远程控制和管理。
这样一来,不仅能够方便运营管理人员进行实时操作,还能够大大降低维护成本和提高工作效率。
二、智能路灯系统的实现步骤1. 硬件设计与组装首先,需要根据系统需求设计并选购合适的传感器、控制模块以及通信模块。
之后,需要进行硬件组装和安装,包括将传感器固定在路灯中、安装控制和通信模块等。
这一步骤的关键在于确保硬件的稳定性和可靠性,以保证系统正常运行。
2. 软件开发与编程接下来,需要进行软件开发与编程。
包括建立数据传输和处理模块,开发智能控制算法,实现远程监控和管理功能等。
此外,还需要开发用户端App或者Web端界面,方便管理人员对路灯系统进行操作和监控。
3. 网络配置和实验测试在系统开发完成后,需要进行网络配置和实验测试。
太阳能LED路灯控制系统设计

太阳能LED路灯控制系统设计一、设计目标随着人们对环境保护意识的增强和能源消耗的压力,太阳能照明系统作为一种新型照明方式逐渐被广泛应用。
本设计旨在设计一套太阳能LED路灯控制系统,使其能够实现按需调节光照亮度、延长路灯使用寿命、提高能源利用效率和减少能源浪费。
二、系统组成该太阳能LED路灯控制系统主要由三部分组成:太阳能光电转换装置、储能装置和LED路灯控制装置。
1.太阳能光电转换装置:通过太阳能电池板将太阳能转化为电能,并将其充电送到储能装置。
太阳能电池板应根据实际情况选择合适的功率,以满足夜间照明需求。
2.储能装置:由电池组成,用于存储白天由太阳能电池板转化的电能,以供夜晚照明使用。
储能装置应具有较大的容量和高效的充放电特性,以确保路灯能够持续工作数天。
3.LED路灯控制装置:主要由控制器、传感器和LED路灯组成。
控制器采用微处理器控制,能够根据不同的环境条件和光照需求调节路灯的亮度,实现节能调光。
传感器可以负责检测环境亮度和电池电量,以便对路灯的亮度进行调节,并进行充电和放电管理。
LED路灯采用高效节能的LED光源,能够提供优质的照明效果。
三、系统工作原理当太阳能电池板接收到太阳能并转化为电能时,控制器通过传感器来调节LED路灯的亮度。
在光线较暗的时候,控制器会自动提高LED路灯的亮度,以确保良好的照明效果。
当光线足够亮时,控制器会自动降低LED路灯的亮度,以实现节能减排的目的。
储能装置起到了存储电能的作用,当夜晚来临时,路灯可以从储能装置中获取电能来提供照明。
当电池电量较低时,控制器会自动调整LED路灯的亮度,以延长电池的寿命。
同时,控制器也会监测电池电量,当电量过低时,会自动调节LED路灯的亮度或者关停路灯,以充电恢复电量。
四、系统特点1.节能环保:太阳能光电转换装置将太阳能转化为电能,具有非常高的能源利用效率,是一种非常环保的照明方式。
而LED路灯作为光源,比传统的荧光灯和白炽灯更加节能。
节能环保型智能LED路灯控制系统设计

节能环保型智能LED路灯控制系统设计一、引言随着城市化进程的加速,城市路灯数量呈现快速增长的趋势。
传统的路灯采用白炽灯或高压钠灯,能耗高、寿命短、光效低等问题逐渐显现。
为了解决这些问题,设计一种节能环保型智能LED路灯控制系统是非常必要的。
二、设计目标本设计的主要目标是实现对LED路灯的智能控制,以实现节能、环保和提高路灯的效能。
具体来说,设计要求包括:1.路灯智能控制:实现对路灯的开关控制和亮度调节,能够根据天气条件和道路使用情况自动调整亮度。
2.路灯网络化管理:实现对路灯的集中监控和管理,包括开灯状态、功率消耗、故障检测等,方便运维人员及时发现并解决问题。
3.能耗监测与统计:能够记录和统计每个区域的路灯能耗情况,为城市能源管理提供参考。
4.省电节能功能:通过智能调光和定时开关功能,实现路灯的节能功能,减少能耗及环境污染。
5.绿色环保:选用环保材料和能效高的LED灯作为光源,减少对环境的污染。
三、设计方案1.硬件设计(1)控制器:选用嵌入式微处理器作为控制器,具有较高的计算能力和稳定性。
(2)LED光源:采用高效节能的LED光源,并根据实际需求选择适当的功率和色温。
(3)感应器:安装感应器以感知外界环境的亮度和运动情况,根据感应结果智能控制路灯的开关和亮度。
(4)通信模块:安装无线通信模块,实现路灯的远程监控和管理。
2.软件设计(1)控制算法:根据感应器和天气数据,设计智能控制算法,实现路灯的自动调光和定时开关。
(2)管理系统:实现对路灯的集中管理,包括实时监控、故障检测和报警等功能。
(3)能耗统计与分析:通过数据采集和处理,实现对每个区域的路灯能耗的统计和分析。
四、设计实施1.硬件部署(1)安装控制器和感应器:将控制器和感应器安装在每个路灯上,确保能够感知路灯周围的环境变化。
(2)安装LED光源:将高效节能的LED光源更换到每个路灯上,确保路灯的亮度和能效都有所提升。
(3)安装通信模块:为每个路灯安装无线通信模块,确保能够远程监控和管理路灯。
LED智能路灯控制系统设计

LED智能路灯控制系统设计随着城市化进程的不断加快,城市道路越来越多,路灯数量也日益增加。
传统路灯存在能耗高、寿命短、维护管理成本高等问题,而LED路灯以较低的能耗、较长的寿命、较低的维护成本等诸多优点逐渐取代了传统路灯成为主流选择。
在此基础上,智能路灯控制系统的出现不仅能更大程度地发挥LED路灯的优势,提高城市路灯的使用效率,同时可以更好地满足人们在生活中的需求。
本文将介绍LED智能路灯控制系统的设计思路和实现方法。
一、系统设计思路1. 系统架构设计本系统采用集中与分布相结合的系统架构。
通过将LED灯路灯控制器、数据采集中心与互联网技术相结合,把所有的灯控制器连接至一个控制中心,通过分布在各个控制器上的传感器、通信模块等实现灯控器的实时状态采集和控制命令的下发。
2. 控制方式通过对人们对道路照明的需求进行统计分析,本系统采用以下三种控制方式:传感器控制当传感器检测到周围照度低于设置的亮度值时,自动打开路灯;当检测到周围照度高于预设亮度值时,则关闭路灯。
此种方式可以根据环境光线的变化自动进行调节,避免路灯一直开启,浪费能源。
手动控制用户可以通过手机App或者有线手动开启或关闭路灯。
预定时间控制利用时钟芯片,可以通过程序对路灯控制器的开关时间进行预定,定时开启或关闭路灯。
3. 通信方式本系统采用ZigBee协议或LTE/NB-IoT无线通信方式,实现灯控器与数据采集中心之间的通信。
4. 智能算法为提高路灯的使用效率,本系统采用了人工智能算法。
通过累积历史数据,以及路灯自身的状态、环境变量等信息,实现对路灯的智能控制,达到自适应、无需手动干预的控制效果。
例如对于相邻两个路段,当一个路段获得了最大亮度值,而另一个路段获得了最小亮度值时,系统会选择将光源的能量转移到那个最小的路段,以最小的能耗来达到最大的亮度的目标,节省能源、降低成本。
二、系统实现方法本系统是利用单片机进行硬件控制的,同时实现网络通讯,云存储,无线远程控制等功能。
智能型LED太阳能路灯系统的设计

中图分 类号 : M9 35 T 2 .8
文献标 识码 : A
文章 编号 :6 2 9 6 (0 00 — 0 5 0 1 7 — 0 42 1 )6 0 4 — 3
太 阳 能 是 地 球 上 最 直 接 最 普 遍 也 是 最 清 洁 的 能 源 . 阳 太 能 作 为 一 种 巨量 可 再 生 能 源 随 着 传 统 能 源 的 日益 紧 缺 . 太 阳 能 的应 用 将 会 越 来 越 广 泛 . 其 太 阳 能 发 电领 域 在 短 短 的 尤 数 年 时 间 内 已发 展 成 为 成 熟 的朝 阳产 业 目前 . 路 照 明 占 整 个 照 明用 电 量 的 2 %~ 0 . 此 道 道 5 3% 因 路 照 明 节 能 具 有 很 大 的潜 力 和 空 间 目前 道 路 照 明 使 用 最 多
1 太 阳 能 路 灯 系 统 的 组 成
路 灯 系 统 由 以 下 几 个 部 分 组 成 : 阳 能 电 池 板 、 压 电 太 升 路 模 块 、 制 器 模 块 、ibe通 讯 组 件 、 电池 组 、E 光 源 。 控 Zge 蓄 LD 如 图 1 示 所 系 统 的 基 本 工 作 原 理 : 太 阳 能 控 制 器 的 控 制 下 , 天 在 白 太 阳 能 电 池 板 经 过 两 路 升 压 电 路 (2 到 4 V) 蓄 电 池 组 1V 2 向 充 电 . 晚 上 蓄 电 池 组 提 供 电 力 给 L D灯 负 载 在 控 制 模 块 E
3天 津 英 诺 华 微 电子技 术 有 限公 司 天 津
摘要
305 ) 0 4 7
提 出一 种 新 型 的 智 能 化 控 制 的 L D 路 灯 系 统 , 太 阳 能 电 池 板 的 输 出 电 压 经 过 D / C升 压 电路 , 引 入 了 基 于 E 将 CD 并
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LED路灯智能控制系统设计LED路灯智能控制系统设计内容提要:LED路灯在当前已得到越来越多的应用,一些城市甚至已经将传统的高压钠灯全部都更换为LED路灯,不过,在更换为LED路灯后,却沿用了传统光源的控制方式,使得路灯的控制方式单一,不便于管理,且浪费了较多的能源。
本文从智能控制系统的建设目的、系统设计原则、系统架构、后台控制软件的基本功能等几方面加以阐述,以希望读者能从中吸取有益经验。
关键词:LED路灯智能控制设计中图分类号:S611文献标识码: A一、系统建设目的道路照明智能控制系统使用物联网、传感器、自组网、云计算等高新技术,通过单灯控制、单灯监测的方式,相较传统管理模式,应达到以下几项基本功能:①按需照明:基于更加精细化的控制方法,根据天气规律、人车活动规律、重要路段照明等要求,灵活调整路面照度,真正做到保障交通安全与节能减排之间的完美契合。
②主动发现:精细到每盏灯、每个组件的故障由系统主动上报,为建立快速的维修响应机制奠定基础;避免夜间有灯不亮、白天亮灯等百姓最关注的问题。
③高效管理:精细到每盏灯的工作情况一目了然,减少日常大量的巡灯工作,合理规划维修维护路径,使得人力资源能够投入到更具有服务价值的工作中。
④精细监测:精细到每个照明设施组成部分的实时数据监测,对设施寿命、质量进行全程监控,使得设备采购、更换更加科学、准确。
⑤合理规划:基于现代化的专业地理信息系统,所有路灯设施分布一目了然,为整个照明设施建设规划、全面掌控提供详尽的数据化支持。
⑥经济投入:高科技并不意味着高投入,无需布线、维护简单、超长寿命是城市路灯智能管理系统的基本要求。
二、系统基本设计原则智慧城市照明是指将城市中的每一盏路灯、每一处景观亮化通过信息传感设备与互联网连接起来,实现集中、远程、智能控制与管理,需要将物联网、传感器、云计算、互联网等先进技术融合在一起,以实现按需照明和精细化管理的目的。
①路灯照明的公共服务属性原则优先保证路灯的功能性,保障夜间活动安全,提高夜晚环境质量,构建城市夜晚的明暗层次和主次脉络,增强市民夜间活动的意愿。
通过市民活动区域的分析,充分发挥照明之于城市的社会功能,根据城市不同区域(居住、商业、工业等)的功能需要,为各分区的活动和相互间的交通、联系提供区别化的照明时间和照度水平。
实现照明功能性要求和照明节能之间的最佳契合点。
通过采用单灯控制与无级调光,结合地理信息系统,根据每盏路灯所处的环境及交通等因素合理分时选择其照明输出,满足道路照明要求的原则下达到最优的节能效率,实现真正的按需照明。
②海量数据的智能处理与分析原则采用基于单灯管理的LED 道路照明物联网管理系统后,对于每盏灯具均能实现控制与数据采集。
但随着数据点的大量增加,必须从应用出发,对基础数据优先级划分,有区别的实现数据展现及重要信息的优先获得,且定义准确的智能分析策略。
对于大数量的灯具进行控制,同时又能达到每盏灯具均能做到按需照明,则必须采用合理的、快速的控制方法,管理系统不应造成管理人员、使用人员、维护人员的工作负担。
③系统设计及技术选择的原则由于照明功能与地理信息紧密相关,真正的按需照明实现必须紧密结合地理信息系统,根据每盏灯具所处位置、所应该担负的照明职能,结合时间和外部因素变化,合理的实现控制与数据监测。
作为物联网系统的重要基础,单一通信方式很难解决道路中所面临的各种环境,因此系统必须支持多种通信技术,而每种通信技术均应能实现免布线、自组网、自识别、自愈等多项要求。
系统的现场硬件设备必须严格设计与选型,在户外道路环境及供电环境多变的情况下,其环境适应性要求尤其值得重视,包括高低温适应性、防水防尘等级、抗雷击、防浪涌等。
作为管理系统而言,专业并不意味着复杂。
简单易用才能让管理人员能够有效的开展工作,真正能够发挥系统的价值,而不应成为工作的负担。
充分考虑全周期参与人员及部门的技术水平及方便性。
三、系统架构基于单灯管理的LED 道路照明智能控制系统从本质上讲是物联网技术在数字化城市管理中的现实应用和具体实践。
其核心是将每一盏路灯接入网络,以实现精确地理位置定位、远程可调可控、运行状态在线跟踪,从而实现决策支持力度、资产管理力度和透明度的增加。
一个典型的系统包含以下三级设备逻辑层和两级通信层:①智能单灯控制器智能单灯控制器能够上传数据并接收现场智能基站转发的相关数据和命令,负责对灯具运行的监测、控制、调光等管理。
②现场智能基站现场智能基站安装于照明配电柜或控制箱内,根据监控中心下发的运行参数和命令,负责照明配电柜或控制箱内的路灯线路的数据采集、控制和管理,实现安全防护,与智能单灯控制器通过现场短距通信层进行数据交换,与监控中心通过远程通信层进行数据交换。
③监控中心由计算机、数据库服务器、通信设备、显示输出设备、报警设备等硬件和能将计算机集成、监控、通信、专业GIS、工作流等相关技术融合运用的软件组成,对现场智能基站和智能单灯控制器进行管理。
④现场通信层现场短距通信层是指现场智能基站与智能单灯控制器之间的通信信道,一般采用免布线、自组网、低功耗的电力载波通信或微功率无线通信技术。
⑤远程通信层远程通信层是指现场智能基站与监控中心之间的通信信道,包括公用无线数据传输信道和无线专用数据传输信道。
四、应用软件基本功能①基于浏览器的多用户登录系统应具备配管理员、操作员、维修员、参看者四级权限,每用户可根据授权登录系统并进行相应操作或参看相关数据。
②单灯控制功能•用户可对任意一盏灯、任意一组灯、所有灯进行开、关、调光、查询操作;•系统应能将控制命令的执行结果进行同步刷新,开、关、调光状态应能及时反映到客户端,以便用户能快速验证执行结果,单灯具状态刷新时间小于10s。
③单灯监测功能•可监测任意一盏灯的电流、电压、有功功率、功率因数、电量、寿命等数据,可实时召测或选定时间定时采集相关数据;•单次全部灯具完成数据采集周期应小于1 小时;•系统应能自动生成并更新所有灯具的工作状态数据,可全面掌控灯具工作状态、故障状态、寿命状况,为决策提供详尽数据支持;④照明场景管理•可对所有灯具采用场景方式管理,可快速将每盏灯具切换到不同的亮度组合,实现真正、快速的按需照明;•系统应能为快速路、主干道、次干道、支路等不同道路等级分别快速设定有区分的照明控制策略(包括开、关、调光等),并能对其中重要位置(例如弯道、交汇区等)快速设定特殊的照明策略;•可通过定时任务方式按照特定时间执行相应照明场景,或在特殊情况下手动调用并执行任意照明场景。
⑤快速的定时任务设置•应能根据GPS 天文钟实现供电回路的定时开关控制;•可为平日、周末、节日等制定不同的照明定时任务;定时任务下发到集中控制器后,即使与主站失去连接也能按既定策略正常运行;•系统应能支持定时任务设定后的模拟运行,便于操作人员检查定时任务设置的合理性,检查结果确认后再下发到集中控制器进行实际运行。
⑥基于专业地图的管理•所有灯具均直观展现在地图上,并根据灯具状态呈现不同样式,使用者一目了然;•应具有专业的地图引擎,兼容多种地图数据格式,既可使用GOOGLE/BAIDU等第三方地图数据,也可使用ARCGIS/MAPINFO 等专业地图数据;以便于支持更加专业的地图应用,同时满足与其他管理系统的数据对接;•应提供地图放大、缩小、平移、距离测量、设备框选等功能。
⑦维修流程处理•系统在接收到相应故障信息后,可编制维修工单,并委派给相应维修人员,同时自动跟进维修进度并生成相应报表;•系统应支持维修工单逾期告警功能,并对及时修复率进行考核;•系统应能对维修结果进行自动校验,并在维修完成后自动完成状态更新。
⑧报警及预警功能系统在线实时监测灯具运行状态,并提供强大的报警及预警功能;设备报警应包含:灯具故障,误亮灯,未亮灯,通信故障等;智能预警应包含:道路灯具故障超限,灯具批量寿命到期,维修工单处理逾期等。
⑨可定制的报表功能系统提供全面的、自动计算更新的分析报表,包括主要几个组成部分:全面的资产状态评估报表、节能效益评估分析报表、故障及维修分析报表、系统应支持5 年以上历史数据可查、系统应自动生成各类报表,需按月、年生成亮灯率、设施完好率、及时修复率、节能率等统计报表。
⑩基于手机的应用APP为方便用户在系统新建、维护过程中实现快速的处理流程,需提供手持设备在现场进行管理。
通过手机即可进行灯具安装、调试、维修、检查等工作,节省用户的操作时间。
[参考文献]1.钱冬杰,浅谈路灯智能控制[J];科技致富向导;2012年14期2.李健、蒋全胜、任灵芝,智能路灯控制系统设计[J];工业控制计算机;2010年06期3.闫超、倪建成,基于GPRS的智能路灯Web监控系统的设计与实现[J];软件导刊;2012年04期4.王志民、李晟,基于GSM短信通讯的路灯智能监控系统[J];自动化与仪器仪表;2006年05期5.胡开明、李跃忠、卢伟华,智能路灯节能控制器的设计与实现[J];现代电子技术;2009年09期6.贺一鸣、王崇贵、刘进宇,智能路灯控制系统设计与应用研究[J];现代电子技术;2010年01期------------最新【精品】范文。