2集成运放及其基本应用

合集下载

电工技术 第二章 集成运算放大器及其应用

电工技术 第二章 集成运算放大器及其应用

IC
β
U O = U C1 − U C2 = 0
总目录 章目录 返回 上一页 下一页
二. 差动放大电路工作原理 1. 差模信号
+VCC
ui1=-ui2 =ui/2 若ui1 ↑,ui2 ↓ → ib1 ↑,ib2 ↓ →ie1 ↑,ie2 ↓
+
R Rc c
T1 u i1 + ui1
u ++uo ouo1 -uo1 - E IRe
33 MHz
第一节 直接耦合
直接耦合:将前级的输出端直接接后级的输入端。 直接耦合:将前级的输出端直接接后级的输入端。 可用来放大缓慢变化的信号或直流量变化的信号。 可用来放大缓慢变化的信号或直流量变化的信号。 +UCC R1 R2 + ui – T1 RC1 RC2 + T2 RE2 uo –
总目录 章目录 返回 上一页 下一页
Rb1=Rb2= Rb
几个基本概念
差动放大电路一般有两个输入端: 1. 差动放大电路一般有两个输入端: 双端输入——从两输入端同时加信号。 从两输入端同时加信号。 双端输入 从两输入端同时加信号 单端输入——仅从一个输入端对地加信号。 仅从一个输入端对地加信号。 单端输入 仅从一个输入端对地加信号 2. 差动放大电路可 以有两个输出端。 以有两个输出端。 双端输出——从C1 从 双端输出 输出。 和C2输出。 单端输出——从C1或 从 单端输出 C2 对地输出。 对地输出。
I Re − 0.7V − ( −VEE ) = Re
T1 + ui1 -
+ uo
-
uo2 -
+
T2 + ui2 -
EE 1 I C1 =I C2 = I C ≅ I Re 2 U CE1 = U CE2 = U C − U E = VCC − I C R C − ( − 0.7)

集成运算放大器的基本应用实验数据

集成运算放大器的基本应用实验数据

文章标题:深度解析集成运算放大器的基本应用实验数据在电子电路领域中,集成运算放大器(简称运放)是一种非常重要的器件。

它具有高增益、高输入阻抗、低输出阻抗等特点,被广泛应用于信号放大、滤波、比较、积分等电路中。

本文将结合实验数据,深入探讨集成运算放大器的基本应用,并分析其在电子电路中的重要性。

1. 实验数据搜集与整理在进行深度分析之前,我们首先需要收集和整理一些集成运算放大器的基本应用实验数据。

通过搭建不同的电路实验,我们可以得到运放在不同工作条件下的输入输出特性、增益、频率响应等数据。

这些实验数据将为我们进一步的分析提供有力的支持。

2. 电压跟随器实验数据分析我们进行了电压跟随器实验,并记录了不同输入电压条件下的输出电压。

通过分析这些实验数据,我们可以得到电压跟随器的输入输出特性曲线,了解其在不同输入条件下的响应情况。

从实验数据中我们可以发现,电压跟随器在一定范围内能够有效地跟随输入电压变化,从而实现信号放大和跟随的功能。

3. 反相放大器实验数据分析接下来,我们进行了反相放大器的实验,并记录了其在不同输入信号下的输出情况。

通过对实验数据的分析,我们可以得到反相放大器在不同增益下的输出特性曲线,以及其在不同频率下的响应情况。

实验数据表明,反相放大器具有良好的线性放大特性,并且在一定频率范围内能够实现稳定的放大功能。

4. 比较器实验数据分析除了常见的放大功能外,运放还可以被应用于比较器电路中。

我们进行了比较器实验,并记录了不同输入信号下的输出情况。

通过对比实验数据,我们可以得到比较器的阈值电压、输出翻转情况以及在不同工作条件下的响应特性。

实验数据显示,比较器能够快速、准确地对输入信号进行比较,并输出相应的逻辑信号。

5. 总结与个人观点通过对集成运算放大器的基本应用实验数据进行深入分析,我们可以更好地理解其在电子电路中的重要作用。

实验数据的分析为我们提供了直观、具体的数据支持,帮助我们更全面、深入地了解运放的工作特性。

集成运算放大器的应用有哪些

集成运算放大器的应用有哪些

集成运算放大器的应用有哪些集成运算放大器(Operational Amplifier,简称OP-AMP) 是现代电子技术中常用的一种集成电路,广泛应用于信号放大、积分、微分、比较、滤波、波形变换、逻辑运算等电路中。

本文将介绍一些集成运算放大器的应用。

一、信号放大集成运算放大器广泛应用于信号放大电路中,其直接或变压器耦合输入方式具有低输入电阻、高输入阻抗、低噪声、高增益和宽带等特性。

在应用中,可通过精心设计放大器电路,控制反馈,实现高增益稳定运行。

二、积分电路积分电路是信号处理电路中的基本电路,它能将信号输入与时间积分,输出的是输入信号积分后的值。

集成运算放大器常用于积分电路的设计,其放大电压信号,然后通过电容对信号进行积分。

例如,在三角形波发生器电路中,可通过电容积分得到正弦波信号,而集成运算放大器的内部电路通常包含差分放大器,可将输入信号转化为电压差,用于驱动电容,完成积分计算。

三、微分电路微分电路是在信号处理中广泛应用的一种电路,它能够将信号对时间的微分操作,其输出电压是输入信号微分后的值。

集成运算放大器也常用于微分电路的设计中,可通过对输入信号进行微分计算得到输出信号。

例如,在测量热电偶温度时,可将温度信号输入到集成运算放大器中,通过差分放大器将信号转化为电压差,然后用电阻对信号进行微分计算,输出即为最终温度值。

四、比较电路比较电路是一种将两个信号进行比较然后输出比较结果的电路,它广泛应用于数字电路、自动控制、计算机硬件等领域。

集成运算放大器常用于比较电路中,它的输出能够根据电压的大小关系取两个输入信号中的一个。

例如,电压比较器是一种常见的电路,它采用集成运算放大器作为比较电路的核心元件,用于比较两个不同电压的大小关系,以便输出相应的状态。

五、滤波器滤波器是一种通过对输入信号进行滤波操作,抑制或增强特定频率信号的电路。

集成运算放大器广泛应用于滤波电路的设计中,其内部电路包括低通滤波器、高通滤波器、带通滤波器、带阻滤波器等类型。

集成运算放大器的基本应用,波形发生器实验报告

集成运算放大器的基本应用,波形发生器实验报告

集成运算放大器的基本应用,波形发生器实验报告集成运算放大器实验报告集成运算放大器实验报告2.4.1 比例、加减运算电路设计与实验由运放构成的比例、求和电路,实际是利用运放在线性应用时具有“虚短”、“虚断”的特点,通过调节电路的负反馈深度,实现特定的电路功能。

一、实验目的1.掌握常用集成运放组成的比例放大电路的基本设计方法;2.掌握各种求和电路的设计方法;3.熟悉比例放大电路、求和电路的调试及测量方法。

二、实验仪器及备用元器件(1)实验仪器(2)实验备用器件三、电路原理集成运算放大器,配备很小的几个外接电阻,可以构成各种比例运算电路和求和电路。

图 2.4.3(a)示出了典型的反相比例运算电路。

依据负反馈理论和理想运放的“虚短”、“虚断”的概念,不难求出输出输入电压之间的关系为?o?A??i??RfR1i 2.4.1式中的“-”号说明电路具有倒相的功能,即输出输入的相位相反。

当Rf?R1时,?oi,电路成为反相器。

合理选择Rf、R1的比值,可以获得不同比例的放大功能。

反相比例运算电路的共模输入电压很小,带负载能力很强,不足之处是它的输入电阻为Ri?R1,其值不够高。

为了保证电路的运算精度,除了设计时要选择高精度运放外,还要选择稳定性好的电阻器,而且电阻的取值既不能太大、也不能太小,一般在几十千欧到几百千欧。

为了使电路的结构对称,运放的反相等效输入电阻应等于同相等效输入电阻,(a)中,应为RP?R1//Rf,R??R?,图2.4.3电阻称之为平衡电阻。

(a) 反相比例运算电路(b) 同相比例运算电路图2.4.3 典型的比例运算电路图 2.4.3(b)示出了典型的同相比例运算电路。

其输出输入电压之间的关系为?o?A??i?(1?RfR1)?i 2.4.2由该式知,当Rf?0时,?o??i,电路构成了同相电压跟随器。

同相比例运算电路的最大特点是输入电阻很大、输出电阻很小,常被作为系统电路的缓冲级或隔离级。

集成运放的分类及应用

集成运放的分类及应用

集成运放的分类及应用集成运放(Operational Amplifier, OP-AMP)是一种基本的电子元件,具有非常广泛的应用。

根据性能特点和应用功能的不同,可以将集成运放分为以下几类。

1. 低噪声运放:低噪声运放在信号处理、放大和传输等领域中应用广泛。

这些运放通常具有非常低的输入等效噪声、电压噪声和电流噪声,能够保持信号的高精确度。

它们常用于音频放大器、传感器信号放大、音频电平计等高要求的应用上。

2. 高速运放:高速运放具有快速的频率响应和瞬态响应,可以实现高速信号处理。

这些运放主要应用于高速数据转换、通信、视频处理、宽带放大器等领域。

高速运放还常用于模拟环路控制系统、高速采样和保持电路等。

3. 低功耗运放:低功耗运放适用于需要长时间使用,对电源的耗电量要求较低的应用。

它们通常具有低功耗和低供电电压,能够降低系统的能耗。

这种运放广泛应用于便携式设备、传感器网络、能量收集系统等。

4. 高精度运放:高精度运放能够实现精确的信号测量和放大,具有高精度的增益、低偏移电压、低温漂移等特点。

这些运放适用于精密测量、自动控制、医疗仪器等需要高精度信号处理的应用。

5. 低电压运放:低电压运放适用于低电压供电系统,能够在低电源电压下正常工作。

这些运放通常具有低电源电压、低功耗和低电流功耗等特点。

它们广泛应用于便携式设备、电池供电系统、太阳能电池等。

6. 特殊功能运放:这类运放具有特殊的性能或功能,用于特定的应用。

例如,差分放大器用于抑制共模噪声,比较器用于信号比较和触发,自耦变压器用于隔离输入和输出信号等。

这些特殊功能运放能够满足特定应用的需求。

集成运放广泛应用于各种电路和系统中,包括:- 信号放大和处理:可以将微弱的传感器信号放大到合适的范围,如温度传感器、压力传感器等。

- 运算放大器:可以实现加法、减法、乘法、积分、微分等运算,用于信号处理、滤波和控制电路等。

- 比较器:用于信号比较和触发,常用于开关控制、触发器电路、模拟开关等。

集成运算放大器的基本应用模拟运算电路实验报告

集成运算放大器的基本应用模拟运算电路实验报告

集成运算放大器的基本应用模拟运算电路实验报告实验目的:1. 学习集成运算放大器的基本应用;2. 掌握模拟运算电路的基本组成和设计方法;3. 理解反馈电路的作用和实现方法。

实验器材:1. 集成运算放大器OP07;2. 双电源电源供应器;3. 多用途万用表;4. 音频信号发生器;5. 电容、电阻、二极管、晶体管等元器件。

实验原理:集成运算放大器是一种高增益、高输入阻抗、低输出阻抗、具有巨大开环增益的差分放大器。

在应用中,我们通常通过反馈电路来控制放大器的增益、输入输出阻抗等特性,从而使其实现各种模拟运算电路。

常用的反馈电路有正向电压反馈、负向电压反馈和电流反馈等。

各种反馈电路的实现方法有所不同,但基本思想都是引入一个反馈回路来控制电路的传递函数,从而实现对电路特性的控制。

实验内容:1. 非反相比例放大电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

2. 非反相积分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

3. 非反相微分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

4. 反相比例放大电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

5. 反相积分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

6. 反相微分电路按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

7. 增益和带宽测试选择合适的集成运算放大器,按照电路图接线,设置正常的电源电压和输入信号参数,测量输出电压和放大倍数,记录实验数据。

实验数据及分析:根据实验中所得到的数据,可以绘制出放大倍数和频率的曲线图,从中可以看出电路的增益特性和带宽特性。

实验结论:通过本次实验,我们学习了集成运算放大器的基本应用,掌握了模拟运算电路的基本组成和设计方法,理解了反馈电路的作用和实现方法,同时也提高了我们的实验操作能力。

集成运算放大器及应用

集成运算放大器及应用

由此可得:
uo
RC
dui dt
输 出电压与 输入电 压对时 间的微分 成正
比。
若 ui 为恒定电压 U,则在 ui 作用于电路 的 瞬间,微 分电路 输出一个 尖脉冲 电压,波
形如图所示。
2021/4/8
26
2.积分运算电路
由于反相输入端虚地,且 i i , 由图可得:
iR iC
iR
ui R
电路实现了中权减法运算。若取R1=R2=R3=RF时,则 u0=uI2-uI1
2021/4/8
24
例5.2.1 某理想集成运算放大器电路如图所
示。求输出电压u0。
解:由于集成运算放大器A1构成电压跟随器,所以
u01=2 V。集成运算放大器A2构成同相比例运算,由 式(5.2.2)可得
u02
1
2R 2R
, iC
C duC dt
C
duo dt
由此可得:
uo
(t)
1 RC
t
0 u1(t)dt
输 出电压 与输入 电压对 时间的 积分
成正比。
2021/4/8
27
例5.2.2 分析如图所示集成运算放大器应用电路中,
输出电压与输入电压的关系。
解:集成运算放大器A1实现了减法运算,由式
(5.2.8)可得
1.开环电压放大倍数Au0 , 104~107
2.最大A输u0 出 2电0 l压g UUUoiopp
dB
在一定电源电压下,集成运算放大器输出电压和输入
电压保持不失真关系的输出电压的峰-峰值。
3.最大差模输入电压Uid max 反向输入端和同相输入端之间所能承受的最大电压值。
4.最大共模输入电压Uic max 集成运算放大器所能承受的最大共模输入电压

集成运算放大器

集成运算放大器

量精度的影响
在集成电路的输入与输出接入不同的反馈网络,可实现不同用途的电路,例如利用集成运算放大器可
4 非常方便的完成信号放大、信号运算(加、减、乘、除、对数、反对数、平方、开方等)、信号的处理
(滤波、调制)以及波形的产生和变换
集成运算放大器
01.
集成运算放大器的种类非常多,可适用于不同的场合.运算放大器在电路中发挥重要的 作用,其应用已经延伸到汽车电子、通信、消费等各个领域,并将在支持未来技术方面 扮演重要角色
02.
在运算放大器的实际应用中,设计工程师经常遇到诸如选型、供电 电路设计、偏置电路设计、PCB设计等方面的问题
-TLeabharlann ANKS载的电源为可变电压电源,R1负载的电流也是保持固定不变,达到恒流的效果
2 1.9 热电阻测量电路
电路是典型的热电阻 / 电偶的测量电路,其测量思路为:将 1-10mA 的恒流源加于负载,将会在负载
3
上产生一定的电压,将该电压进行有源滤波处理,处理后在进行信号的调整(信号放大或衰减),最后 将信号送入 ADC 接口。该电路应用时,要注意在输入端施加保护,可以并 TVS,但要注意节电容对测
1.6 滤波器
集成运算放大器
由集成运放可以组成一阶滤波器和二阶滤波器,其中一阶滤波器有20dB每倍频的幅频特 性,而二阶滤波器有40dB每倍频的幅频 特性。为了阻挡由于虚地引起的直流电平,在运放的输入端 串入了输入电容Cin,为了不影响电路的幅频特性,要求这个电容是 C1的100倍以上,如果滤波器还 具有放大作用,则这个电容应是C1的1000倍以上,同时,滤波器的输出都包含了Vcc/2的直流偏 置,如果电路是最后一级,那么就必须串入输出电容
1.3 数字信号处理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Rf
(uI3 R3
uI4 R4
uN=uP=0--虚地
在节点N: iF
iR
uI R
1) 电路的输入电阻为多少? 2) R’=?为什么?R’=R∥Rf
_ Au
uO
iFRf
Rf R
uI
保证输入级的对称性
2. 同相输入
uN uP uI
iN
iP
0,
iRf
iR
uI R
uO iR (R Rf )
uO
(1
Rf R
) uN
第2章 集成运放及其基本应用
§2.1 放大的概念与放大电路的性能指标 §2.2 集成运算放大电路 §2.3 理想运放组成的基本运算电路 §2.4 理想运放组成的电压比较器
2.1 放大的概念和放大电路主要性能指标
一、放大的概念
变压器 1.日常生活中的放大现杠象杆:放大镜
2.放大的内涵
至少一路直流
VCC
差分
RL uO
uId
放大电路
集成运放等效为高性能双入单出差分放大电路。
二、集成运放的符号及电压传输特性 1. 符号
极性相同
极性相同
二、电压传输特性
uO f (uI ) f (uP uN )
线性区
±UOM的值决 定于什么?
uO Aod (uP uN )
开环差模增益 高达几十万倍
非线性区
输出不是高电平+UOM就是低电平-UOM 若±UOM= ±14V,Aod=105,则为保证集成运放工作在线性 区输入信号的范围为多少?
电源供电
放大的对象:变化量 放大的本质:能量的控制
判断电路能否放 大的基本出发点
放大的特征:功率放大
放大的基本要求:不失真——放大的前提
二、性能指标
输入电流
输出电流
信号源内 阻
信号源
输入电压
输出电压
1. 放大倍数:输出量与输入量之比
Auu
Au
U o U i
Aii
Ai
Io Ii
Aui
U o Ii
电压放大倍数是最常被研究和测试的参数
uI3 ) R3
2. 同相求和 设 R1∥ R2∥ R3∥ R4= R∥ Rf
i1 i2 i3 i4
uI1 uP uI2 uP uI3 uP uP
R1
R2
R3
R4
uI1 R1
uI2 R2
uI3 R3
(1 R1
1 R2
1 R3
1 R4
)uP
uP
RP
(
uI1 R1
uI2 R2
uI3 ) R3
Aiu
Io U i
2. 输入电阻和输出电阻
从输入端看进去的 等效电阻
Ri
Ui Ii
输入电压与 输入电流有 效值之比。
Ro
U
' o
Uo
Uo
(U
' o
Uo
1)RL
RL
将输出等效
成有内阻的电 压源,内阻就 是输出电阻。
空载时输出 电压有效值
带RL时的输出电 压有效值
3. 通频带
下限频率
fbw fH fL
(1
Rf R
) uI
Au
运算关系的分析方法:节点电流法
同相输入比例运算电路的特例:电压跟随器
uO uN uP uI
三、加减运算电路 1. 反相求和
uN uP 0 iF iR1 iR2 iR3
uI1 uI2 uI3 R1 R2 R3
uO
iFRf
Rf
(
uI1 R1
uI2 R2
上限频率
4. 最大不失真输出电压Uom:交流有效值。 5. 最大输出功率Pom和效率η:功率放大电路的参数
§2.2 集成运算放大电路
一、差分放大电路的概念 二、集成运放的符号及电压传输特性 三、理想运放及其动态等效电路
一、差分放大电路的概念 1. 需求
测温
电桥
R
+V CC R
Rt
R
热电阻
环境温度变 化阻值变化
三、理想运放及其动态等效电路
理想运放的参数特点: 差模输入电阻rid为∞ 输出电阻ro为0 开环差模增益Aod为∞ 共模抑制比KCMR为∞ 频带无限宽、温度对参数无影响。
§2.3 理想运放组成的基本运算电路
一、概述 二、比例运算电路 三、加减运算电路 四、积分运算电路和微分运算电路
一、概述
理想运放的线性工作区域的特点:
(RP R1 ∥ R2 ∥ R3 ∥ R4 )
uO
(1
Rf R
) uP
R Rf R
RP
(
uI1 R1
uI2 R2
uI3 ) R3
Rf Rf
uO
Rf
(uI1 R1
uI2 R2
uI3 ) R3
与反相求和运算电路 的结果差一负号
3. 加减运算
设 R1∥ R2∥ Rf= R3∥ R4 ∥ R5
uO
4. 差分放大电路的放大倍数
差模放大倍数 共模放大倍数
Ad
uOd uId
Ac
uOc uIc
共模抑制比
K CMR
Ad Ac
绝对值 越大越好
绝对值
越小越好
越大越好
为综合考察差分放大电路放大差模信号和抑制共模信号 的能力,引入参数—共模抑制比。
5. 差分放大电路的四种接法 双入双出、双入单出、单入双出和单入单出。 双端输入、单端输出电路:
无源
uO Aod (uP uN )
网络
有限值 无穷小 无穷大
(1)电路结构
为保证理想运放工作在线 性区,必须引入负反馈。
uO ↑→ uN↑→ uO ↓
反馈:将放大电路的输出量通过一定的方式引回到输入回路 来影响输入量,称为反馈。 正、负反馈:若反馈的结果使输出量的变化增大,则称为正 反馈;若反馈的结果使输出量的变化减小,则称为负反馈。
(2)工作在线性区的特点
uO为有限值,Aod=∞,则净输入电压uP-uN=0,即 uP=uN ——虚短路
因输入电阻无穷大,则两输入端输入电流均为零,即 iP=iN=0 ——虚断路
“虚短”和“虚断”是分析工作在线性区的集成运放的 应用电路的两个基本出发点。
二、比例运算电路
1. 反相输入
+ iN=iP=0,
某一标准温度下
uI1
uI1=uI2=VCC/ 2 uI=uI1-uI2=0。
uI
温度变化(即偏离标准温度)时,
uI2 产生ΔuI,这是放大的对象。
需要一种放大电路,对uI1和uI2共同的部分不放大,仅对 它们的差值放大。 —— 差分放大电路
2. 共模信号和差模信号 共模信号:大小相等、极性相同的一对信号。 差模信号:大小相等、极性相反的一对信号。 对差分放大电路的要求:放大差模信号、抑制共模信号
3. 典型差分放大电路方框图
uI1
uO1
典型差分电路为双端输入、
差分放大电路
双端输出接法。
uI2
uO2
(1)加差模信号时
uI1
uIuI/2ຫໍສະໝຸດ 差分放大电路uO1
RL
uI2
uO2
输入回路和输出回路对称,故回路的中点电位不变,即动态
电位为0,即为“地”。
(2)加共模信号时
uIc
差分
放大电路
温度变化所引起晶体管参 数的变化可等效为共模信 RL uO 号输入。
相关文档
最新文档