最新51单片机热敏电阻测温查表程序汇总
51单片机热敏电阻测温程序

//本程序是通过热敏电阻测温度(30c-50c),采用六位串行数码管显示,前三位显示ds18b20测得数据,后三位是热敏电阻测得数据#include<reg51.h>#include<math.h>#include<intrins.h>#define uchar unsigned char#define uint unsigned intuchar smg[]={0x88,0xeb,0x4c,0x49,0x2b,0x19,0x18,0xcb,0x08,0x09};uchar b,d;uint shuju;int a,temp;sbit start=P2^7;sbit ale=P2^7;sbit addc=P2^6;sbit addb=P2^5;sbit adda=P2^4;sbit eoc=P2^3;sbit oe=P2^2;sbit clk=P3^2;//0809时钟脚sbit dat=P3^0; //串行数码管数据端sbit clock=P3^1; //串行数码管时钟端sbit DQ=P2^0;/******************delay**************************/void delay(uint x){while(x--);}void delay1(uint x){uint i,j;for(i=0;i<x;i++)for(j=0;j<110;j++);}/*******************ds18b20***********************/void Init_DS18B20(void){unsigned char x=0;DQ = 1; //DQ复位delay(8); //稍做延时DQ = 0; //单片机将DQ拉低delay(80); //精确延时大于480usDQ = 1; //拉高总线delay(14);x=DQ; //稍做延时后如果x=0则初始化成功x=1则初始化失败delay(20);}/******************************从18B20中读一个字节****************************/ uchar Read_OneChar(void){uchar i = 0;uchar dat = 0;for (i=8;i>0;i--){DQ = 0; // 给脉冲信号dat >>= 1;DQ = 1; // 给脉冲信号if(DQ)dat |= 0x80;delay(8);}return(dat);}/******************************向18B20中写一个字节****************************/ void Write_OneChar(uchar dat){uchar i=0;for (i=8; i>0; i--){DQ = 0;DQ = dat&0x01;delay(10);DQ = 1;dat >>= 1;}delay(8);}/***********************************读取温度**********************************/ uchar Read_Temperature(void){uchar i = 0,t = 0;Init_DS18B20();Write_OneChar(0xcc); // 跳过读序号列号的操作Write_OneChar(0x44); // 启动温度转换Init_DS18B20();Write_OneChar(0xcc); //跳过读序号列号的操作Write_OneChar(0xbe); //读取温度寄存器等(共可读9个寄存器)前两个就是温度i = Read_OneChar(); //读取温度值低位t = Read_OneChar(); //读取温度值高位b = t;d = 0x88;/* if(b&0x80==0x80) //显示负数{t = ~t;// t += 1;i = ~i;i += 1;d = 0xbf;} */a = i & 0x0f;i = i >> 4; //低位右移4位,舍弃小数部分t = t << 4; //高位左移4位,舍弃符号位t = t | i;if(t>=100)d=smg[t/100%10];return(t);}/******************串行发送显示******************/ void send(uchar x){uchar temp,i;temp=x;for(i=0;i<8;i++){temp=temp<<1;clock=0;dat=CY;clock=1;}}void send1(uchar x){uchar temp,i;temp=x&0xf7;for(i=0;i<8;i++){temp=temp<<1;clock=0;dat=CY;clock=1;}}/******************adc0809***************************/void adc0809(){start=0;start=1;_nop_();start=0;while(eoc==0);oe=1;shuju=P0;oe=0;shuju=shuju*1.96079;if(shuju<=445&&shuju>=437)shuju=((445-shuju)/2+30)*10;else if(shuju<437&&shuju>=427) //if语句主要是通过采集30-50c之间的数据,看出热敏电阻两端电压与温度之间关系,shuju=((445-shuju)/2+29)*10; //我把这些数据通过微分方法分成四段,然后在每段近视看成线性关系,最后算出温度else if(shuju<427&&shuju>=317)shuju=((445-shuju)/2+28)*10;else if(shuju<417&&shuju>=407)shuju=((445-shuju)/2+27)*10;else if(shuju<407&&shuju>=397)shuju=((445-shuju)/2+25)*10;else if(shuju<497&&shuju>=387)shuju=((445-shuju)/2+23)*10;send(smg[shuju%10]);send1(smg[shuju/10%10]);send(smg[shuju/100%10]);send(smg[a*10/16]);send1(smg[temp%10]);send(smg[temp/10%10]);delay1(1000);}/******************中断***************************/void timer_init(){TMOD=0x01;TH0=(65536-200)/256;TL0=(65536-200)%256;TR0=1;ET0=1;EA=1;}void timer() interrupt 1{TR0=0;TH0=(65536-200)/256;TL0=(65536-200)%256;clk=~clk;TR0=1;}/******************main****************************/ void main(){addc=0;addb=0;adda=0;// ale=1;timer_init();while(1){temp=Read_Temperature();adc0809();}}。
热敏电阻查表法程序

热敏电阻查表法程序查表法是一种通过预先制作的数据表来求解未知问题的方法。
如果你想通过查表法来使用热敏电阻,那么你可能需要一个热敏电阻的温度-阻值数据表。
然后,你可以通过测量热敏电阻的当前温度,然后在数据表中查找对应的阻值。
以下是一个简单的查表法的示例程序,这个程序会根据用户输入的温度,查找热敏电阻在该温度下的阻值:```python热敏电阻温度-阻值数据表thermistor_table = {25: 10000, 25度时的阻值30: 8000, 30度时的阻值35: 6000, 35度时的阻值40: 4000, 40度时的阻值45: 2000 45度时的阻值}def find_thermistor_resistance(temperature):if temperature in thermistor_table:return thermistor_table[temperature]else:print(f"没有找到温度为 {temperature} 时的热敏电阻阻值。
")return None用户输入温度temperature = float(input("请输入温度(摄氏度):"))查找并打印对应的热敏电阻阻值resistance = find_thermistor_resistance(temperature)if resistance is not None:print(f"热敏电阻在 {temperature} 度的阻值为 {resistance} 欧姆。
") ```请注意,这只是一个简单的示例程序,实际的热敏电阻可能会有更复杂的温度-阻值关系,可能需要更精确的模型或者设备来进行精确的测量。
此外,这个程序也没有处理可能的输入错误,例如用户输入的不是数字或者输入的温度不在数据表中的情况。
在实际使用中,你可能需要添加额外的错误处理代码来处理这些情况。
51单片机的热敏电阻数字温度计设计

51单片机的热敏电阻数字温度计设计下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!51单片机的热敏电阻数字温度计设计引言随着电子技术的进步,数字温度计在各种应用中得到了广泛的使用。
51单片机数字温度计程序

delay(1);
tmpwritebyte(0x33);
sn1=tmpread();
sn2=tmpread();
}
void delay10ms() //delay
{
uchar a,b;
for(a=10;a>0;a--)
for(b=60;b>0;b--);
}
void display(uint temp) //显示程序
dat=DS;
i=8;while(i>0)i--;
return (dat);
}
uchar tmpread(void) //read a byte date//读一个字节数据函数
{
uchar i,j,dat;
dat=0;
for(i=1;i<=8;i++)
{
j=tmpreadbit();
dat=(j<<7)|(dat>>1); //读出的数据最低位在最前面,这样刚好一个字节在dat里
{
uchar A1,A2,A2t,A3;
A1=temp/100;
A2t=temp%100;
A2=A2t/10;
A3=A2t%10;
dula=0;
P0=table[A1]; //显示百位
dula=1;
dula=0;
wela=0;
P0=0x7e;
wela=1;
wela=0;
delay(1);
dula=0;
读出的数据?最低位在最?前面这样刚好一?个字节在d?atvoidtmpwr?iteby?teuchar?datwrite?ds18b?20向ds18?b20写一?个字节数据?函数bittestb?
基于51单片机及DS18B20温度传感器的数字温度计程序及详细注释

基于51单片机及DS18B20温度传感器的数字温度计程序(详细注释)电路实物图如下图所示:C语言程序如下所示:/********************************************************************zicreate----------------------------- Copyright (C) --------------------------* 程序名; 基于DS18B20的测温系统* 功能:实时测量温度,超过上下限报警,报警温度可手动调整。
K1是用来* 进入上下限调节模式的,当按一下K1进入上限调节模式,再按一下进入下限* 调节模式。
在正常模式下,按一下K2进入查看上限温度模式,显示1s左右自动* 退出;按一下K3进入查看下限温度模式,显示1s左右自动退出;按一下K4消除* 按键音,再按一下启动按键音。
在调节上下限温度模式下,K2是实现加1功能,* K1是实现减1功能,K3是用来设定上下限温度正负的。
* 编程者:Jason* 编程时间:2009/10/2*********************************************************************/#include<AT89X52.h> //将AT89X52.h头文件包含到主程序#include<intrins.h> //将intrins.h头文件包含到主程序(调用其中的_nop_()空操作函数延时)#define uint unsigned int //变量类型宏定义,用uint表示无符号整形(16位)#define uchar unsigned char //变量类型宏定义,用uchar表示无符号字符型(8位)uchar max=0x00,min=0x00; //max是上限报警温度,min是下限报警温度bit s=0; //s是调整上下限温度时温度闪烁的标志位,s=0不显示200ms,s=1显示1s左右bit s1=0; //s1标志位用于上下限查看时的显示void display1(uint z); //声明display1()函数#include"ds18b20.h" //将ds18b20.h头文件包含到主程序#include"keyscan.h" //将keyscan.h头文件包含到主程序#include"display.h" //将display.h头文件包含到主程序/***********************主函数************************/void main(){beer=1; //关闭蜂鸣器led=1; //关闭LED灯timer1_init(0); //初始化定时器1(未启动定时器1)get_temperature(1); //首次启动DS18B20获取温度(DS18B20上点后自动将EEPROM中的上下限温度复制到TH和TL寄存器)while(1) //主循环{keyscan(); //按键扫面函数get_temperature(0); //获取温度函数keyscan(); //按键扫面函数display(temp,temp_d*0.625);//显示函数alarm(); //报警函数keyscan(); //按键扫面函数}}/********************************************************************* 程序名; __ds18b20_h__* 功能:DS18B20的c51编程头文件* 编程者:ZPZ* 编程时间:2009/10/2* 说明:用到的全局变量是:无符号字符型变量temp(测得的温度整数部分),temp_d* (测得的温度小数部分),标志位f(测量温度的标志位‘0’表示“正温度”‘1’表* 示“负温度”),标志位f_max(上限温度的标志位‘0’表示“正温度”、‘1’表* 示“负温度”),标志位f_min(下限温度的标志位‘0’表示“正温度”、‘1’表* 示“负温度”),标志位w(报警标志位‘1’启动报警‘0’关闭报警)。
51单片机程序(数字温度计)

数字温度计1、LCD.c#include <reg51.h>#include<LCD.h>unsigned char code number_X[]={ //宽x高=8x16,纵向字节倒序0x00,0xE0,0x10,0x08,0x08,0x10,0xE0,0x00, //00x00,0x0F,0x10,0x20,0x20,0x10,0x0F,0x00,0x00,0x10,0x10,0xF8,0x00,0x00,0x00,0x00, //10x00,0x20,0x20,0x3F,0x20,0x20,0x00,0x00,0x00,0x70,0x08,0x08,0x08,0x88,0x70,0x00, //20x00,0x30,0x28,0x24,0x22,0x21,0x30,0x00,0x00,0x30,0x08,0x88,0x88,0x48,0x30,0x00, //30x00,0x18,0x20,0x20,0x20,0x11,0x0E,0x00,0x00,0x00,0xC0,0x20,0x10,0xF8,0x00,0x00, //40x00,0x07,0x04,0x24,0x24,0x3F,0x24,0x00,0x00,0xF8,0x08,0x88,0x88,0x08,0x08,0x00, //50x00,0x19,0x21,0x20,0x20,0x11,0x0E,0x00,0x00,0xE0,0x10,0x88,0x88,0x18,0x00,0x00, //60x00,0x0F,0x11,0x20,0x20,0x11,0x0E,0x00,0x00,0x38,0x08,0x08,0xC8,0x38,0x08,0x00, //70x00,0x00,0x00,0x3F,0x00,0x00,0x00,0x00,0x00,0x70,0x88,0x08,0x08,0x88,0x70,0x00, //80x00,0x1C,0x22,0x21,0x21,0x22,0x1C,0x00,0x00,0xE0,0x10,0x08,0x08,0x10,0xE0,0x00, //90x00,0x00,0x31,0x22,0x22,0x11,0x0F,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, // .0x00,0x00,0x00,0x00,0x00,0x60,0x60,0x00,0x00,0x80,0x80,0x80,0x80,0x80,0x80,0x00, //-0x00,0x01,0x01,0x01,0x01,0x01,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00, //nop 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xC0,0xC0,0x00,0x00,0x00, //:0x00,0x00,0x00,0x30,0x30,0x00,0x00,0x00};void LCD_WriteCommandE1(unsigned char com) {while(CRADD1 & 0x80);CWADD1 = com;}void LCD_WriteDataE1(unsigned char dat)while(CRADD1 & 0x80);DWADD1 = dat;}void LCD_WriteCommandE2(unsigned char com) {while(CRADD2 & 0x80);CWADD2 = com;}void LCD_WriteDataE2(unsigned char dat){while(CRADD2 & 0x80);DWADD2 = dat;}void LCD_Init(){LCD_WriteCommandE1(0xe2);LCD_WriteCommandE2(0xe2);LCD_WriteCommandE1(0xa4);LCD_WriteCommandE2(0xa4);LCD_WriteCommandE1(0xa9);LCD_WriteCommandE2(0xa9);LCD_WriteCommandE1(0xa0);LCD_WriteCommandE2(0xa0);LCD_WriteCommandE1(0xc0);LCD_WriteCommandE2(0xc0);LCD_WriteCommandE1(0xaf);LCD_WriteCommandE2(0xaf);}void LCD_Clear(void){unsigned char i,j;for(i=0;i<4;i++){LCD_WriteCommandE1(i+0xb8);LCD_WriteCommandE2(i+0xb8);LCD_WriteCommandE1(0x00);LCD_WriteCommandE2(0x00);for(j=0;j<0x50;j++){LCD_WriteDataE1(0x00);LCD_WriteDataE2(0x00);}}void display_cn(unsigned char lin,unsigned int col,unsigned int len,unsigned char *p) {unsigned int seg,i,j;unsigned char a,L,n;switch(lin){case 0: n=0xba;break;case 1: n=0xb8;break;}for(i=0;i<len;i++){for(j=0;j<2;j++){L=col;LCD_WriteCommandE1(n+j);LCD_WriteCommandE2(n+j);for(seg=0;seg<16;seg++){if (L < 61){a = L;LCD_WriteCommandE1(a);LCD_WriteDataE1(*p++);}else{a = L-61;LCD_WriteCommandE2(a);LCD_WriteDataE2(*p++);}L++;}}col=col+16;}}void display_number(unsigned char lin,unsigned int col,unsigned char num){unsigned int seg,i,j;unsigned char a,L,n,k;switch(lin){case 0: n=0xba;break;case 1: n=0xb8;break;}k=num*16;for(j=0;j<2;j++){L=col;LCD_WriteCommandE1(n+j);LCD_WriteCommandE2(n+j);for(seg=0;seg<8;seg++){if (L < 61){a = L;LCD_WriteCommandE1(a);LCD_WriteDataE1(number_X[k++]);}else{a = L-61;LCD_WriteCommandE2(a);LCD_WriteDataE2(number_X[k++]);}L++;}}}void display_unsigned_int(unsigned char lin,unsigned int col,unsigned int dat) {unsigned int seg;unsigned char k[4];k[3]=dat%10;k[2]=((dat/10)%10);k[1]=((dat/100)%10);k[0]=((dat/1000)%10);if(k[0]==0) {k[0]=12;}if((k[0]==12)&&(k[1]==0)){ k[0]=12;k[1]=12;}if((k[0]==12)&&(k[1]==12)&&(k[2]==0)){k[0]=12;k[1]=12;k[2]=12;}for(seg=0;seg<4;seg++){display_number(lin,col,k[seg]);col=col+10;}}void display_signed_int(unsigned char lin,unsigned int col,signed int dat){unsigned int seg;unsigned char k[5],a;k[0]=12;if(dat<0){dat=(~dat)+1;k[0]=11;}k[4]=dat%10;k[3]=((dat/10)%10);k[2]=((dat/100)%10);k[1]=((dat/1000)%10);a=k[0];if(k[1]==0) {k[0]=12;k[1]=a;}if((k[1]==a)&&(k[2]==0)){ k[0]=12;k[1]=12;k[2]=a;}if((k[1]==12)&&(k[2]==a)&&(k[3]==0)){k[0]=12;k[1]=12;k[2]=12;k[3]=a;}for(seg=0;seg<5;seg++){display_number(lin,col,k[seg]);col=col+10;}}void display_unsigned_char(unsigned char lin,unsigned int col,unsigned char dat) {unsigned int seg;unsigned char k[3];k[1]=dat%10;k[0]=((dat/10)%10);for(seg=0;seg<2;seg++){display_number(lin,col,k[seg]);col=col+10;}}2、LCD.h#include <reg51.h>#include <absacc.h>#ifndef __LCD__#define __LCD__#define CWADD1 XBYTE[0x8000]#define DWADD1 XBYTE[0x8001]#define CRADD1 XBYTE[0x8002]#define DRADD1 XBYTE[0x8003]#define CWADD2 XBYTE[0x8004]#define DWADD2 XBYTE[0x8005]#define CRADD2 XBYTE[0x8006]#define DRADD2 XBYTE[0x8007]extern void LCD_Init();extern void display_cn(unsigned char lin,unsigned int col,unsigned int len,unsigned char *p);extern void display_signed_int(unsigned char lin,unsigned int col,signed int dat);extern void display_unsigned_int(unsigned char lin,unsigned int col,unsigned int dat);extern void display_unsigned_char(unsigned char lin,unsigned int col,unsigned char dat);extern void LCD_Clear(void);#endif3、DS18B20.c#include <reg51.h>#include "string.h"#include "intrins.h"#include "DS18B20.h"sbit DQ=P1^0;void delay(unsigned int uSeconds){for(;uSeconds>0;uSeconds--);}unsigned char ow_reset(void){unsigned char xdata presence;DQ = 0;delay(48);DQ = 1;delay(7);presence = DQ;delay(48);return(presence);}unsigned char read_byte(void){unsigned char i;unsigned char value = 0;for (i=8;i>0;i--){value>>=1;DQ = 0; // pull DQ low to start read timeslotDQ = 1; // then rlease DQ_nop_();_nop_();_nop_();_nop_();_nop_(); // read DQ data at 1 to 15us,here delay 6us;if(DQ)value|=0x80;delay(7); // wait for rest of timeslot,72us }return(value);}void write_byte(char val){unsigned char i;for (i=8; i>0; i--) // writes byte, one bit at a time{DQ = 0; // pull DQ low to start timeslotDQ = val&0x01;delay(7); // hold value for remainder of timeslot,here 72us DQ = 1;val=val/2;}delay(5);}float Read_Temperature(void){unsigned char Hdata,Ldata,b;int a;bit flag;float x,y,z;ow_reset();write_byte(0xCC); // Skip ROMwrite_byte(0xBE); // Read Scratch Paddelay(100);Ldata=read_byte(); // Low byte firstHdata=read_byte(); // High byte afterow_reset();write_byte(0xCC); //Skip ROMwrite_byte(0x44); // Start Conversiona=Hdata*256+Ldata;x=(float)(Ldata&0x0f);x=x/16;if(a<0)flag=1;else flag=0;b=a>>4;z=(float)(b);if(flag==1){b=~b+1;z=(float)(b);z=0-z;}y=z+x;return y;}4、DS18B20.h#ifndef __DS18B20__#define __DS18B20__extern float Read_Temperature(void); #endif5、main.c#include <reg51.h>#include<LCD.h>#include<main.h>#include "DS18B20.h"void wait(unsigned int x){unsigned int i;i=0;for(i=0;i<x;i++);}void main(void){float F;signed int a;LCD_Init();LCD_Clear();display_cn(0,20,5,szwdj);display_cn(1,0,3,wdz);while(1){F=Read_Temperature( );a=(signed int)F;display_signed_int(1,40,a);wait(5000);}}6、main.h#ifndef MAIN_H__#define MAIN_H__// 中文字模库16x16点阵code unsigned char szwdj[]={ //纵向字节倒序。
51单片机DS18B20温度测量制作(有程序电路)

51单片机DS18B20温度测量制作(有程序电路)单总线温度传感器DS18B20简介DS18B20是DALLAS公司生产的单总线式数字温度传感器,它具有微型化、低功耗、高性能、搞干扰能力强、易配处理器等优点,特别适用于构成多点温度测控系统,可直接将温度转化成串行数字信号(提供9位二进制数字)给单片机处理,且在同一总线上可以挂接多个传感器芯片。
它具有3引脚TO-92小体积封装形式,温度测量范围为-55 ℃~+125 ℃,可编程为9位~12位A/D转换精度,测温分辨率可达0.0625 ℃,被测温度用符号扩展的16位数字量方式串行输出,其工作电源既可在远端引入,也可采用寄生电源方式产生,多个DS18B20可以并联到3根或2根线上,CPU只需一根端口线就能与多个DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。
以上特点使DS18B20非常适用于远距离多点温度检测系统。
DS18B20外形及引脚说明外形及引脚如图2所示:图2 管脚排列图在TO-92和SO-8的封装中引脚有所不同,具体差别请查阅PDF手册,在TO-92封装中引脚分配如下:1(GND):地2(DQ):单线运用的数据输入输出引脚3(VDD):可选的电源引脚DS18B20工作过程及时序DS18B20内部的低温度系数振荡器是一个振荡频率随温度变化很小的振荡器,为计数器1提供一频率稳定的计数脉冲。
高温度系数振荡器是一个振荡频率对温度很敏感的振荡器,为计数器2提供一个频率随温度变化的计数脉冲。
初始时,温度寄存器被预置成 -55℃,每当计数器1从预置数开始减计数到0时,温度寄存器中寄存的温度值就增加1℃,这个过程重复进行,直到计数器2计数到0时便停止。
初始时,计数器1预置的是与-55℃相对应的一个预置值。
以后计数器1每一个循环的预置数都由斜率累加器提供。
为了补偿振荡器温度特性的非线性性,斜率累加器提供的预置数也随温度相应变化。
计数器1的预置数也就是在给定温度处使温度寄存器寄存值增加1℃计数器所需要的计数个数。
基于51单片机DS18B20温度传感器的C语言程序和电路

基于51单片机DS18B20温度传感器的C语言程序和电路DS18B20在外形上和三极管很像,有三只脚。
电压范围为3.0 V至5.5 V 无需备用电源测量温度位温度转换为12位数字格式最大值为750毫秒用户可定义的非易失性温度报警设置应用范围包敏感系统。
下面是DS18B20的子程序,本人用过完全可行的:#include<reg51.h>#include<intrins.h>#define uchar unsigned char#define uint unsigned intsbit DQ=P2^0;void reset(); //DS18B20 void write_byte(uchar val); //DS18B20写命令函数uchar read_byte(void); //DS18B20读1字节函数void read_temp(); //温度读取函数void work_temp(); //温度数据处理函数uchar data temp_data[2]={0x00,0x00};uchar data display[5]={0x00,0x00,0x00,0x00,0x00}; //对于温度显示值值uchar code ditab[16]={0x00,0x01,0x01,0x02,0x03,0x03,0x04,0x04,0x05,0x06,0x06,0x07,0x0数部分查表main(){while(1){自己添加;}}void delay1(uint t){for(;t>0;t--);}///////温度控制子函数void reset(){uchar presence=1;while(presence){while(presence){DQ=1;_nop_();_nop_();DQ=0;delay1(50);DQ=1;delay1(6);presence=DQ;}delay1(45);presence=~DQ;}DQ=1;}void write_byte(uchar val){uchar i;for(i=8;i>0;i--){DQ=1;_nop_();_nop_();DQ=0;_nop_();_nop_();_nop_();_nop_();_nop_();DQ=val&0x01;delay1(6);val=val/2;}DQ=1;_nop_();}uchar read_byte(void){uchar i;uchar value=0;for(i=8;i>0;i--){DQ=1;_nop_();_nop_();value>>=1;DQ=0;_nop_();_nop_();_nop_();_nop_();DQ=1;_nop_();_nop_();_nop_();_nop_();if(DQ)value|=0x80;delay1(6);}DQ=1;return(value);}void read_temp(){reset();write_byte(0xcc);write_byte(0xbe);temp_data[0]=read_byte();temp_data[1]=read_byte();reset();write_byte(0xcc);write_byte(0x44);}void work_temp(){if(temp_data[1]>127){temp_data[1]=(256-temp_data[1]);temp_data[0]=(256-temp_data[0]);n=1; //需要前面宏定义}display[4]=temp_data[0]&0x0f; //低位的低4位display[0]=ditab[display[4]]; //小数点后的数值display[4]=((temp_data[0]&0xf0) >> 4)|((temp_data[1]&0x0f)<<4); //小数display[3]=display[4] / 100;display[1]=display[4] % 100;display[2]=display[1] / 10;display[1]=display[1] % 10;}电路:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
51单片机热敏电阻测温查表程序1.#include<reg51.h>2.#include"LCD.h"3.#define uchar unsigned char4.#define uint unsigned int5.#define N 106.uchar bai,ge,shi,n;7.uint temp,tp;temph,templ;8.uint code ad_date[]={9. 1060,1060,1060,1100,1120,1140,1166,1180,1200,1220,10. 1240,1320,1340,1360,1380,1400,1420,1440,1460,1480,11. 1500,1520,1540,1560,1580,1600,1620,1640,1660,1680,12. 1700,1720,1740,1760,1780,1800,1820,1840,1840,1860,13. 1880,1900,1920,1940,1960,1980,2000,2020,2040,2060,14. 2080,2100,2120,2140,2160,2180,2200,2220,2240,2260,15. 2280,2300,2320,2340,2360,2380,2400,2420,2440,2460,16. 2480,2500,2520,2540,2560,2580,2600,2620,2640,2660,17. 2680,2700,2720,2740,2760,2780,2800,2820,2840,2860,18. 2880,2900,2920,2920,2940,2960,2980,3000,3020,3040,19. 3060,3080,3100,3120,3140,3160,3180,3200,3220,3240,20. 3260,3280,3300,3320,3340,3360,3380,3400,3420,3440,21. 3460,3480,3500,3520,3540,3560,3580,3600,3620,3640,22. 3660,3680};23.uint code temperiture[]={24. 594,593,586,580,579,560,564,559,552,545,25. 541,518,513,508,503,497,491,488,483,480,26. 473,468,463,458,455,451,447,440,434,433,27. 430,425,420,416,413,409,404,401,401,396,28. 390,386,382,378,374,372,368,364,361,357,29. 354,351,347,343,340,336,333,328,326,322,30. 319,316,313,309,307,303,300,296,294,289,31. 286,283,280,276,274,271,267,264,260,257,32. 253,249,246,243,240,237,233,231,228,224,33. 222,219,214,216,211,209,206,202,198,194,34. 187,184,181,178,175,171,168,164,161,158,35. 154,152,148,146,142,139,136,133,130,126,36. 124,121,116,114,112,108,102,98,96,94,37. 89,86};38.uchar code table[]=" T:00.0`C";39.uchar num=0;40.uchar keynum,max=40,min=0;41.uchar code Temp_max[]=" Max:40`C",Temp_min[]=" Min:00`C";42.43.sbit ad_wr=P3^6;44.sbit ad_rd=P3^7;45.sbit ad_cs=P3^5;46.sbit ad_int=P3^2;47.sbit key1=P0^5;48.sbit key2=P0^6;49.sbit key3=P0^7;50.//sbit Beep=P0^0;51.52./*********函数表************/53.void init(); //初始化54.void ad_delay(uint t); //延时函数55.void change(uchar tempture); //分离百位、十位、个位56.uchar ad_getshuju(); //ad转换57.char filter(); //滤波58.uint convert(); //电压转换59.void tempertur(); //度温度60.void keyscan(); //键盘扫描61.62.//主函数63.void main()64.{65. init();66.while(1)67. {68. keyscan();69. }70.}71.72.void init()73.{74. LCD_init();75.for(num=0;num<10;num++)76. {77. LCD_Write_add_data(num,0,table[num]);78. }79.}80.81.void ad_delay(uint t)82.{83. uchar j;84. uint i;85.for(i=0;i<t;i++)86.for(j=0;j<110;j++);87.}88.89.uchar ad_getshuju()90.{91. uchar date;92. ad_cs=0;ad_wr=0;ad_rd=1;93. ad_cs=1;ad_wr=1;ad_rd=1;94.while(ad_int==1);95. ad_cs=0;ad_wr=1;ad_rd=0;96. date=P2;97. ad_cs=1;ad_wr=1;ad_rd=1;98.return date;99.}100.101.c har filter() //滤波函数中位值滤波法102.{103. uint value_buf[N],temp_f;104. uchar count,i,j;105.for ( count=0;count<N;count++)106. {107. value_buf[count] = ad_getshuju();108. delay(2);109. }110.for (j=0;j<N-1;j++)111. {112.for (i=0;i<N-j;i++)113. {114.if ( value_buf[i]>value_buf[i+1] )115. {116. temp_f = value_buf[i];117. value_buf[i] = value_buf[i+1];118. value_buf[i+1] = temp_f;119. }120. }121. }122.return value_buf[(N-1)/2];123.}124.125.u int convert()126.{127. uint temph,templ; //用于存储读出数据的高字节和低字节128. uint tmp="0"; //存储最后处理完的结果注意数据类型129. tmp=filter()+tmp; //求滤波后ad值130. temph=tmp&0xf0; //屏蔽低四位131. temph=temph>>4; //右移四位取出高四位132. templ=tmp&0x0f; //屏蔽高四位取出低四位133. tmp=templ*20+temph*320; //最后的结果是一个四位数,便于显示电压值134.return tmp; //返回最后处理结果135.}136.137.v oid change(uchar tempture)138.{139. bai=tempture/100;140. shi=tempture%100/10;141. ge=tempture%10;142.}143.144.v oid tempertur()145.{146.for(n=0;temp>=ad_date[n];n++);147. tp=temperiture[n-1];148. change(tp);149. LCD_Write_add_data(4,0,0x30+bai);150. LCD_Write_add_data(5,0,0x30+shi);151. LCD_Write_add_data(7,0,0x30+ge);152.}153.154.155.v oid keyscan()156.{157.if(key1==0)158. {159. delay(5);160.if(key1==0)161. {162.while(!key1);163. keynum++;164.if(keynum==1)165. {166. change(max);167. LCD_Write_Com(0x01);168. delay(10);169. LCD_Write_add_str(0,0,10,Temp_max);170. LCD_Write_add_data(6,0,0x30+shi);171. LCD_Write_add_data(7,0,0x30+ge);172. }173.if(keynum==2)174. {175. change(min);176. LCD_Write_Com(0x01);177. min=min>0?min:0;178. delay(10);179. LCD_Write_add_str(0,0,10,Temp_min); 180. LCD_Write_add_data(6,0,0x30+shi); 181. LCD_Write_add_data(7,0,0x30+ge); 182. }183.if(keynum==3)184. {185. keynum=0;186. LCD_Write_Com(0x01);187. delay(10);188. LCD_Write_add_str(0,0,10,table); 189. }190. }191. }192.if(keynum==0)193. {194. temp=convert();195. tempertur();196. delay(100);197. }198.else199. {200.if(keynum==1)201. {202.if(key2==0)203. {204. delay(5);205.if(key2==0)206. {207.while(!key2);208. max++;209. change(max);210. delay(1);211. }212. }213.if(key3==0)214. {215. delay(5);216.if(key3==0)217. {218.while(!key3);219. max--;220. change(max);221. delay(1);222. }223. }224.//LCD_Write_add_str(0,0,9,Temp_max); 225. LCD_Write_add_data(6,0,0x30+shi); 226. LCD_Write_add_data(7,0,0x30+ge); 227. }228.if(keynum==2)229. {230.if(key2==0)231. {232. delay(5);233.if(key2==0)234. {235.while(!key2);236. min++;237. change(min);238. min=min>0?min:0;239. delay(1);240. }241. }242.if(key3==0)243. {244. delay(5);245.if(key3==0)246. {247.while(!key3);248. min--;249. change(min);250. delay(1);251. }252. }253.//LCD_Write_add_str(0,0,9,Temp_min); 254. LCD_Write_add_data(6,0,0x30+shi); 255. LCD_Write_add_data(7,0,0x30+ge); 256. }257. }258.}。