四川省高二上学期期末数学试卷(a卷)
四川2022年高二数学前半期期末考试带答案与解析

四川2022年高二数学前半期期末考试带答案与解析选择题直线:和:垂直,则实数A. B. 1 C. 或1 D. 3【答案】A【解析】本题可以根据直线与直线的解析式以及两直线垂直的相关性质列出算式,然后通过计算得出结果。
由,解得,故选A。
选择题若命题p:,,则为A. ,B. ,C. ,D. ,【答案】C【解析】本题首先可以判断出命题是特称命题,然后根据特称命题的否定是全称命题,分别对量词和结论进行否定即可得出结果。
命题是特称命题,则命题的否定是:,,故选C。
选择题中,若,,,则该三角形的形状是:()A. 锐角三角形B. 等边三角形C. 钝角三角形D. 等腰直角三角形【答案】D【解析】利用空间向量模的公式求出三角形三边的长,从而可得结果.因为,,,所以,,,,所以,且,是等腰直角三角形,故选D.选择题“”是“”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】先得出,由子集关系可得解。
⇒,但由包含了,得是充分不必要条件。
故选A选择题执行如图所示的程序框图,输出的s值为A. B.C. D.【答案】B【解析】分析:初始化数值,执行循环结构,判断条件是否成立,详解:初始化数值循环结果执行如下:第一次:不成立;第二次:成立,循环结束,输出,故选B.选择题已知圆,圆与圆关于直线对称,则圆的方程为()A. B.C. D.【答案】B【解析】试题分析:在圆上任取一点,则此点关于直线的对称点在圆上,所以有,即,所以答案为,故选B.选择题如图,将矩形沿对角线把折起,使移到点,且在平面上的射影恰好在上,则与所成角是()A. B. C. D.【答案】D【解析】由线面垂直的性质可得,由矩形的性质可得,由此可得平面,从而可得,进而可得结果.因为在平面上的射影恰好在上,所以平面,因为在平面内,所以,又因为,与在平面内相交,所以,平面,在平面内,所以,、成的角为,故选D.选择题某校高三年级共有学生900人,编号为1,2,3,,900,现用系统抽样的方法抽取一个容量为45的样本,若在第一组抽取的编号是5,则抽取的45人中,编号落在区间的人数为A. 10B. 11C. 12D. 13【答案】C【解析】本题首先可以通过总量以及样本数量计算出样本组距,然后根据区间的间距以及系统抽样的性质即可得出结果。
四川省2020学年高二数学上学期期末教学质量监测试题理

高二数学上学期期末教学质量监测试题 理本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上. 2.本部分共12小题,每小题5分,共60分.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线24y x =的准线方程为( ) (A )1x =-(B )1y =- (C )1x =(D )1y =2.从含有10件正品、2件次品的12件产品中,任意抽取3件,则必然事件是( ) (A )3件都是正品 (B )3件都是次品 (C )至少有1件次品(D )至少有1件正品3.如图是2018年第一季度五省GDP 情况图,则下列描述中不正确...的是( )(A )与去年同期相比2018年第一季度五个省的GDP 总量均实现了增长 (B )2018年第一季度GDP 增速由高到低排位第5的是浙江省(C )2018年第一季度GDP 总量和增速由高到低排位均居同一位的省只有1个 (D )去年同期河南省的GDP 总量不超过4000亿元4.已知随机变量X 服从正态分布2(2,)N σ,且(4)0.8P X <=,则(02)P X <<=( )(A )0.6 (B )0.4 (C )0.3 (D )0.2 5.执行如图所示的程序框图,当输出的值为1时,则输入的x 值是( )(A )1± (B )1-(C)1 (D )16.椭圆221169x y +=的以点(2,1)M -为中点的弦所在的直线斜率为( )(A )932-(B )98- (C )98 (D )9327.一个口袋中装有若干个除颜色外都相同的黑色、白色的小球,从中取出一个小球是白球的概率为53,连续取出两个小球都是白球的概率为52,已知某次取出的小球是白球,则随后一次取出的小球为白球的概率为( )(A )53 (B )32 (C )52 (D )51 8.若2101()()x a x x-+的展开式中6x 的系数为30,则a =( )(A )12- (B )2- (C )12(D )29.从0,1,2,3,4中选取三个不同的数字组成一个三位数,其中偶数有( )(A )27个 (B )30个 (C )36个 (D )60个10.已知双曲线221x y -=,点1F ,2F 为其两个焦点,点P 为双曲线上一点,若12PF PF ⊥,则以1F ,2F 为焦点且经过P 的椭圆的离心率为( ) (A(B(C)2(D )1211.下列说法正确的个数是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71x y -= ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率;③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP ,则直线OP (O 333)(,)82(A )1 (B )2 (C )3 (D )412.已知双曲线22:145x y C -=右支上的一点P ,经过点P 的直线与双曲线C 的两条渐近线分别相交于A ,B 两点.若点A ,B 分别位于第一,四象限,O 为坐标原点.当12AP PB =时,||||OA OB ⋅为( ) (A )818 (B )9 (C )274 (D )92第Ⅱ卷(非选择题 共90分)注意事项:1.必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷上无效.2.本部分共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.13.已知某地区中小学生人数如图所示,用分层抽样的方法抽取200名学生 进行调查,则抽取的高中生人数为 .14.运行如图所示的程序框图,则输出的所有y 值之和为 .15.在区间[0,2]上随机取两个数,a b ,则事件“函数()1f x bx a =+-在[0,1]内有零点” 的概率为_______.16.已知A ,B 分别为椭圆2214x y +=的右顶点和上顶点,平行于AB 的直线l 与x 轴、y 轴分别交于C 、D 两点,直线CE 、DF 均与椭圆相切,则CE 和DF 的斜率之积等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)求适合下列条件的双曲线的标准方程:(Ⅰ)焦点在y 轴上,虚轴长为8,离心率为53e =; (Ⅱ)经过点)2,3(-C ,且与双曲线116822=-y x 有共同的渐近线.18.(本小题满分12分) (Ⅰ)已知55443322105)13(x a x a x a x a x a a x +++++=-,求22024135()()a a a a a a ++-++的值.(Ⅱ)若nx )21(+展开式前三项的二项式系数和等于37,求nx )21(+的展开式中二项式系数最大的项的系数.19.(本小题满分12分)2018年9月16日下午5时左右,今年第22号台风“山竹”在广东江门川岛镇附近正面登陆,给当地人民造成了巨大的财产损失,某记者调查了当地某小区的100户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如下频率分布直方图(图1).(Ⅰ)根据频率分布直方图估计该小区居民由于台风造成的经济损失的众数和平均值. (Ⅱ)“一方有难,八方支援”,台风后居委会号召小区居民为台风重灾区捐款,记者调查的100户居民捐款情况如下表格,在图2表格空白处填写正确数字,并说明是否有99%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?2图1图/元(Ⅲ)将上述调查所得到的频率视为概率,现在从该地区大量受灾居民中,采用随机抽样方法每次抽取1户居民,抽取3次,记被抽取的3户居民中自身经济损失超过4000元的人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列及期望)(ξE .参考公式:))()()(()(22d c d b c a b a bc ad n K ++++-=,其中d c b a n +++=20.(本小题满分12分)已知抛物线21:2C x py =(0)p >,椭圆2222:116x y C b+=(0<b <4),O 为坐标原点,F 为抛物线的焦点,A 是椭圆的右顶点,AOF ∆的面积为4.(Ⅰ)求抛物线的方程;(Ⅱ)过F 点作直线交于、两点,求OCD ∆面积的最小值.21.(本小题满分12分)某公司为了确定下一年度投入某种产品的宣传费用,需了解年宣传费x (单位:万元)对年销量y (单位:吨)和年利润(单位:万元)的影响.对近6年宣传费i x 和年销量)6,5,4,3,2,1(=i y i 的数据做了初步统计,得到如下数据:式)0,(>⋅=b a x a y b 即a x b y ln ln ln +=,对上述数据作了初步处理,得到相关的值如下表:求所选数据中至多有一年年销售量低于20吨的概率.(Ⅱ)根据所给数据,求y 关于x 的回归方程;(Ⅲ)若生产该产品的固定成本为200(万元),且每生产1(吨)产品的生产成本为20(万元)(总成本=固定成本+生产成本+年宣传费),销售收入为500)2040()(+++-=x e x x R (万元),假定该产品产销平衡(即生产的产品都能卖掉),2019年该公司计划投入108万元宣传费,你认为该决策合理吗?请说明理由.(其中e 为自然对数的底数, 2.71828e =)附:对于一组数据()()()1122,,,,,,n n u v u v u v ,其回归直线v u βα=⋅+中的斜率和截距的最小二乘估计分别为1221,ni i i nii u v nuvv u unu βαβ==-==-⋅-∑∑.22.(本小题满分12分)在圆221:(48C x y ++=内有一点P ,Q 为圆1C 上一动点,线段PQ 的垂直平分线与1C Q 的连线交于点C . (Ⅰ)求点C 的轨迹方程.(Ⅱ)若动直线l 与点C 的轨迹交于M 、N 两点,且以MN 为直径的圆恒过坐标原点O .问是否存在一个定圆与动直线l 总相切.若存在,求出该定圆的方程;若不存在,请说明理由.参考答案一、选择题:本大题共12小题,每小题5分,共60分. (1~5)ADCCB (6~10)CBDBA (11~12)CA二、填空题:本大题共4小题,每小题5分,共20分. 13.40 14.10 15.38 16.14±三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)解:(Ⅰ)设所求双曲线的标准方程为22221(0,0)y x a b a b-=>> ………………………1分则35,82===a c e b ,从而54,3c b a ==,代入222b a c +=,得92=a ,故方程为116922=-x y ………5分 (Ⅱ)由题意可设所求双曲线方程为)0(16822≠=-λλy x ,将点)2,3(-C 的坐标代入,得λ=-16283, 解得41=λ,所以所求双曲线的标准方程为14222=-y x ………………………10分18.(本小题满分12分)解:(Ⅰ)令1=x 得554321052)13(=+++++=-a a a a a a ………………………2分 令1-=x 得1054321052)13(-=-+-+-=--a a a a a a ………………………4分15543210543210233124202))(()()(-=-+-+-+++++=++-++∴a a a a a a a a a a a a a a a a a a ……6分(Ⅱ)由题意372)1(1210=-++=++n n n C C C n n n ,即0722=-+n n ,解得8=n 或9-=n (舍) …9分所以nx )21(+的展开式中第五项的二项式系数48C 最大,由展开式的通项公式知第五项为444851120)2(x x C T ==,故所求的系数为1120 ………………………12分19.(本小题满分12分)解:(Ⅰ)根据频率分布直方图知该小区居民由于台风造成的经济损失的众数=3000(元)…………1分平均值=10000.330000.550000.1670000.0290000.022920⨯+⨯+⨯+⨯+⨯=(元)…………3分(Ⅱ)由频率分布直方图可知,在抽取的100人中,经济损失不超过4000元的有0.810080⨯=人,经济损失超过4000元的有100-80=20人, ………………………5分 则表格数据如下22100(60101020) 4.76280207030K ⨯⨯-⨯=≈⨯⨯⨯.………………………7分由于4.762 6.635<,( 6.635)0.010P k ≥=所以没有99%以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关.………………………8分(Ⅲ)由频率分布直方图可知抽到自身经济损失超过4000元居民的频率为0.2,将频率视为概率.由题意知ξ的取值可能有10,1,2,3,~(3,)5B ξ, ………………………10分ξ的分布列()30.20.6E np ξ∴==⨯= ………………………12分20.(本小题满分12分) 解:(Ⅰ)已知(0,)2pF ,因为椭圆长半轴长的平方为16,所以右顶点为(4,0)A , 又AOF ∆的面积为14422p⋅⋅=,解得4p =,………………………2分 所以抛物线方程为28x y = ………………………4分(Ⅱ)由题知直线CD 斜率一定存在,设为k ,则设直线的方程为2y kx =+,联立抛物线方程得:28160x kx --=,………………………5分由根与系数的关系12128,16x x k x x +=⋅=-……………………6分||CD =……………………7分()2||81CD k ==+………………………8分,点O 到直线CD的距离为d =……………………9分所以OCD S ∆=218(1)82k ⋅+=≥………………………11分 所以,OCD S ∆最小值为8.………………………………………………12分 21.(本小题满分12分)解:(Ⅰ)记事件A 表示“至多有一年年销量低于20吨”,由表中数据可知6年中有2年的年销量低于20吨,故1514)(26141224=⋅+=C C C C A P ……………………3分 (Ⅱ)对)0,0(>>⋅=b a x a y b两边取对数得x b a y ln ln ln +=,令l n ,l n i i i i u x v y ==得u b a v ⋅+=ln ,由题中数据得:1.466.24==u ,05.363.18==v ……………………4分3.75)ln (ln )(6161=⋅=∑∑==ii iii i y x v u ,4.101)(ln 261612==∑∑==i i i ix u所以21)1.4(64.10105.31.463.75)()()(2612261=⨯-⨯⨯-=--=∑∑==i ii i i u n uv u n v u b ,由11.42105.3ln =⨯-=-=u b v a ,得e a =,故所求回归方程为x e y =.…………………………………8分(Ⅲ)设该公司的年利润为)(x f ,因为利润=销售收入-总成本,所以由题意可知500)10(2300402)20200(500)2040()(2+--=++-=++-+++-=x x x x x e x e x x f ,当10=x 即100=x 时,利润)(x f 取得最大值500(万元),故2019年该公司计划投入108万元宣传费的决策不合理. …………………………………………12分22.(本小题满分12分)解:(Ⅰ)圆221:(48C x y ++=的圆心为1(C -,半径为r =点C 在线段PQ 的垂直平分线上 ∴||||CP CQ =又点C在线段1C Q的上∴1111||||||||||||C Q CQ CC CP CC C P =+=+==∴由椭圆的定义可知点C的轨迹是以1(C -,P为焦点,长轴长为椭圆,∴2c a b ===,故点C 的轨迹方程为221124x y += (4)分(Ⅱ)假设存在这样的圆.设,.由已知,以为直径的圆恒过原点,即O M O N ⊥,所以12120x x y y +=.……………………5分当直线l 垂直于x 轴时,,,所以,又221124x y +=,解得22113x y ==,不妨设M,N或(M,(N,即直线的方程为x =x =O 到直线l的距离为d =……………………7分当直线l 的斜率存在时,可设直线l 的方程为y kx m =+,解221124y kx m x y =+⎧⎪⎨+=⎪⎩消去y 得方程:11 222(13)63120k x kmx m +++-=因为直线与椭圆C 交于M , N 两点,所以方程的判别式222(6)4(13)(312)0km k m ∆=-+->即224(13)m k <+,且122613km x x k -+=+, 212231213m x x k-=+. 由12120x x y y +=,得, 所以22222(312)6(1)()01313m km k km m k k--+++=++整理得223(1)m k =+(满足0∆>). 所以原点O 到直线l的距离d ==综上所述,原点O 到直线l的距离为定值,即存在定圆223x y +=总与直线l 相切. ………………12分。
四川省高二上学期期末教学质量检测理科数学试题(解析版)

期末教学质量检测 数学试题卷(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).满分150分,考试时间120分钟. 注意事项:1.答题前,务必将自己的姓名.准考证号等填写在答题卷规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卷上对应题目的答案标号涂黑.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卷规定的位置上.4.考试结束后,将答题卷交回.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求.1. 平面∥平面,,则直线和的位置关系( )αβ,a b αβ⊂⊂a b A. 平行 B. 平行或异面C. 平行或相交D. 平行或相交或异面【答案】B 【解析】 【分析】利用平面∥平面,可得平面与平面没有公共点,根据,可得直线,没有公共αβαβ,a b αβ⊂⊂a b 点,即可得到结论.【详解】∵平面平面,∴平面与平面没有公共点 //αβαβ∵,,∴直线,没有公共点 a α⊂b β⊂a b ∴直线,的位置关系是平行或异面, a b 故选:B.2. 双曲线的左、右焦点坐标分别是 ,虚轴长为4,则双曲线的标准方程是( )()()123,03,0F F -,A.B.22154x y -=22154y x -=C.D.221134x y -=221916x y -=【答案】A 【解析】【分析】根据双曲线的几何性质即可求解的值.,,a b c 【详解】由题意,双曲线的左、右焦点坐标分别是,所以, 12(3,0),(3,0)F F -3c =又虚轴长为,则,所以,所以,424b =2b =a = 所以双曲线的标准方程为, 22154x y -=故选:A.3. 已知表示两条不同直线,表示平面,下列说法正确的是 ,m n αA. 若,则 B. 若,则 ,m n ααA A m n A ,m n αα⊥∥m n ⊥C. 若,则 D. 若,则,m m n α⊥⊥n α⊥,m n m α⊥∥n αA 【答案】B 【解析】【分析】根据直线与平面的位置关系,可判定A ,利用线面垂直的性质,可判定B ;根据线面垂直的性质和直线与平面的位置关系,可判定C 、D ,得到答案.【详解】由题意,对于A 中,若,则与相交、平行或异面,所以不正确; ,m n ααA A m n 对于B 中,若,根据线面垂直的性质可知是正确的; ,m n αα⊥∥m n ⊥对于C 中,若,则与平行、相交或在平面内,所以不正确; ,m m n α⊥⊥n α对于D 中,若,则与的位置关系不确定,所以不正确,故选B.,m n m α⊥∥n α【点睛】本题主要考查了空间中直线与平面的位置关系的判定,其中解答中熟记空间中线面位置关系的判定定理和线面垂直的性质是解答本题的关键,着重考查了推理与论证能力,属于基础题.4. 在空间直角坐标系中,已知,则的中点关于平面的对称点坐标()()1,0,2,3,2,4M N --MN Q xOy 是()A. B.C.D.()1,1,1-()1,1,1--()1,1,1--()1,1,1【答案】D 【解析】 【分析】由中点坐标公式可得点,再由关于平面对称的点的特征即可得解. ()1,1,1Q -xOy 【详解】因为,所以的中点,()()1,0,2,3,2,4M N --MN ()1,1,1Q -所以点关于平面的对称点坐标是. Q xOy ()1,1,1故选:D.5. 已知椭圆的两个焦点是,点在椭圆上,若,则的面积是22142x y +=12F F 、P 12||||2PF PF -=12PF F ∆A.B.C.D.1+1+【答案】D 【解析】【详解】,可得,2212+1,4,242x y PF PF c =∴+== 122PF PF -= 123,1PF PF ==,是直角三角形,的面积故选(2219+= 21PF F ∴∆12PF F ∴∆21211122PF F F ⨯=⨯⨯=D.6. 某四棱锥的三视图如图所示,该四棱锥的表面积是A. 32B. 16+C. 48D. 16+【答案】B 【解析】【详解】由题意知原几何体是正四棱锥,其中正四棱锥的高为2,底面是一个边长为4的正方形,过顶点向底面做垂线,垂线段长是2,过底面的中心向长度是4的边做垂线,连接垂足与顶点,得到直角三角形,得到斜高是2,所以四个侧面积是,底面面积为,所以该四棱锥的表面积是16+,故选B .点评:本题考查由三视图求几何体的表面积,做此题型的关键是正确还原几何体及几何体的棱的长度.7. 已知为椭圆上的点,点到椭圆焦点的距离的最小值为,最大值为1P 2222:1(0)x y C a b a b+=>>P 28,则椭圆的离心率为( ) A.B.C.D.35455453【答案】B 【解析】【分析】根据点到椭圆焦点的距离的最小值为,最大值为18,列出a ,c 的方程组,进而解出a ,c ,最P 2后求出离心率.【详解】因为点到椭圆焦点的距离的最小值为,最大值为18, P 2所以,210188a c a a c c -==⎧⎧⇒⎨⎨+==⎩⎩所以椭圆的离心率为:. 45c e a ==故选:B.8. 在长方体中,,,为的中点,则异面直线与1111ABCD A B C D -12AB AA ==1AD =E 1CC 1BC AE 所成角的余弦值为 ( )A .B.C.D.【答案】B 【解析】【分析】建立空间直角坐标系结合空间向量的数量积即可求解.【详解】解:由题意,在长方体中,以为原点建立如图所示的空间直角坐标系D由题知,,为的中点,则12AB AA ==1AD =E 1CC ,,, ()1,0,0A ()1,2,0B ()10,2,2C ()0,2,1E 所以,()1,2,1AE =- ()11,0,2BC =-设直线与所成角为,则1BC AE α11cos AE BC AE BC α⋅====所以直线与 1BC AE 故选:B .9. 已知矩形,,,将矩形沿对角线折成大小为的二面角ABCD 4AB =3BC =ABCD AC θ,则折叠后形成的四面体的外接球的表面积是B ACD --ABCD A. B.C.D. 与的大小有关9π16π25πθ【答案】C 【解析】【详解】由题意得,在二面角内的中点O 到点A,B,C,D 的距离相等,且为,所以点O 即D B AC --AC 522AC =为外接球的球心,且球半径为,所以外接球的表面积为.选C . 52R =24=25S R ππ=10. 已知点P 是抛物线上的-个动点,则点P 到点A(0, 1)的距离与点P 到y 轴的距离之和的最小214x y =值为 A. 2 B.C.D.11+【答案】C 【解析】【详解】抛物线,可得:y 2=4x ,抛物线的焦点坐标(1,0). 214x y =依题点P 到点A (0,1)的距离与点P 到y 轴的距离之和的最小值,就是P 到(0,1)与P 到该抛物线准线的距离的和减去1.由抛物线的定义,可得则点P 到点A (0,1)的距离与P 到该抛物线焦点坐标的距离之和减1,.1故选C .11. 已知为坐标原点,双曲线:的右焦点为,直线过点且与的右支交于,O C 2213y x -=F l F C M 两点,若,,则直线的斜率为( )N 2OM ON OA +=8OA OF ⋅=l k A. B.C.D.2±±3±【答案】B 【解析】【分析】根据点差法,结合平面向量坐标表示公式、斜率的公式进行求解即可.【详解】设,,,由题可知,是线段的中点,()11,M x y ()22,N x y ()00,A x y ()2,0F A MN ,∴,∵,分别是双曲线右支上的点,∴两式相减并整理得028OA OF x ⋅== 04x =M N 221122221,31,3y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,∴,即, ()()()()1212121203y y y y x x x x +-+--=002203y k x⋅-=0403y k⋅-=又,∴,∴. 00022AF y yk k x ===-0y =±k =故选:B【点睛】关键点睛:应用点差法,结合平面向量运算的坐标表示公式是解题的关键.12. 已知是椭圆上一点,,是椭圆的左,右焦点,点是的内心,延长交M 2212516x y +=1F 2F I 12MF F ∆MI线段于,则的值为( )12F F N MI INA.B.C.D.53354334【答案】A 【解析】【分析】如图,点是椭圆上一点,过点M 作BM 垂直直线于点,过点作垂直直M 2212516x y +=12F F B I IA 线于点,设的内切圆半径为,则,由得:12F F A 12MF F ∆r IA r =121212MF F MF I MIF IF F S S S S =++A A A A 12112211112222F F MB r MF r F F r MF ⋅=++又,故得:,所以,由椭圆方程122MF MF a +=111222222c MB r a r c ⋅=⋅+⋅IA c MB a c =+得:,,,所以由与相似,可2212516x y +=5a =4b =3c ==38IA c MB a c ==+MNB A INA A 得:,令,则,可求得:,问38IA INMBMN ==3IN m =8MN m =383IN IN m IM MN IN m m ===--35题得解.【详解】如图,点是椭圆上一点,过点M 作BM 垂直直线于点,过点I 作垂直直M 2212516x y +=12F F B IA 线于点,设的内切圆半径为,则,由三角形面积相等即:12F F A 12MF F ∆r IA r =得:121212MF F MF I MIF IF F S S S S =++A A A A 12112211112222F F MB r MF r F F r MF ⋅=++又,故得:,所以,由椭圆方程122MF MF a +=111222222c MB r a r c ⋅=⋅+⋅IA c MB a c =+得:,,,所以由与相似,可2212516x y +=5a =4b =3c ==38IA c MB a c ==+MNB A INA A 得:,令,则,可求得:,故38IA INMBMN ==3IN m =8MN m =383IN IN m IM MN IN m m ===--35选A .【点睛】本题主要是利用三角形相似将所求的比值转化成三角形相似比问题,即构造两个三角形相似来处理,对于内切圆问题通常利用等面积法列方程.即:即:=++(其中是ABC S A IBC S A IAC S A IAB S A I ABC A 的内切圆圆心),从而解决问题. ⇔1()2ABC S r a b c =++A 第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卷中的相应位置.13. 若抛物线上任意一点到点的距离与到直线的距离相等,则___________. 22y px =(1,0)=1x -p =【答案】 2【解析】【分析】直接由抛物线的定义求解即可. 【详解】由抛物线的定义可得,解得. 12p=2p =故答案为:2.14. 已知直线与圆相切,则a 的值为_____________. 340x y a ++=221x y +=【答案】 5±【解析】 【分析】利用圆心到直线的距离,直接求的值.d r =a【详解】由题意可知圆心到直线的距离,d r =1d ∴==解得:. 5a =±故答案为:5±【点睛】本题考查直线与圆的位置相切,求参数,属于简单题型.15. 设点,分别为椭圆C :的左,右焦点,点是椭圆上任意一点,若使得1F 2F 2214x y +=P C 成立的点恰好是4个,则实数的一个取值可以为_________.12PF PF m ⋅=m 【答案】0(答案不唯一) 【解析】【分析】当时,说明椭圆上存在4点满足条件. 120PF PF ⋅=【详解】当时,,则,0m =120PF PF ⋅= 12PF PF ⊥由椭圆方程可知,,,,因为,所以以为直径的圆与椭圆有4个交点,使24a =21b =23c =c b >12F F 得成立的点恰好有4个,所以实数的一个取值可以为0.120PF PF ⋅=m 故答案为:0(答案不唯一)16. 在长方体中,已知底面为正方形,为的中点,,1111ABCD A B C D -ABCD P 11A D 2AD =,点为正方形所在平面内的一个动点,且满足,则线段的长度的1AA =Q ABCD QC =BQ 最大值是________. 【答案】 6【解析】【分析】在正方形所在平面内建立平面直角坐标系,设,由,可得ABCD (,)Q x y QC =,进而可得出结果.22(2)4x y ++=【详解】在正方形所在平面内建立平面直角坐标系,设, ABCD (,)Q x y 则有,, 2223(1)PQ x y =++-222(2)(2)QC x y =-+-因为,所以,QC =2222(2)(2)622(1)x y x y -+-=++-整理得,22(2)4x y ++=所以点的轨迹是以为圆心,以为半径的圆, Q (2,0)-2所以线段长度的最大值为. BQ 2226⨯+=故答案为6【点睛】本题主要考查点线面间的距离计算,以及立体几何中的轨迹问题,常用坐标系的方法处理,属于常考题型.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. 已知圆经过坐标原点和点,且圆心在轴上. C O ()4,0x (1)求圆的方程;C (2)设直线经过点,且与圆相交所得弦长为的方程. l ()1,2l C l 【答案】(1)()2224x y -+=(2)或. 10x -=34110x y +-=【解析】【分析】(1)设圆的方程为,再利用待定系数法求出,即可得解;C ()()2220x a y rr -+=>,a r (2)分类讨论直线的斜率存在与不存在两种情况,结合弦长公式及点到直线的距离公式即可求解. 【小问1详解】依题意,设圆的方程为,C ()()2220x a y rr -+=>则有,解得, ()22224a r a r⎧=⎪⎨-=⎪⎩224a r =⎧⎨=⎩所以圆的方程为; C ()2224x y -+=【小问2详解】由弦长公式知,解得,==1d =即圆心到直线的距离为1,()2,0C l当直线斜率不存在时,即符合题意,l 1x =当直线斜率存在时,设直线方程为,即,l 2(1)y k x -=-20kx y k --+=,解得, 1=34k =-所以直线的方程为,即, l 32(1)4y x -=--34110x y +-=综上,直线的方程为或.l 10x -=34110x y +-=18. 如图所示,在四棱锥中,四边形是正方形,点分别是线段的中点.C ABED -ABED ,G F ,EC BD(1)求证:;//GF ABC 平面(2)线段上是否存在一点,使得面面,若存在,请找出点并证明;若不存在,请说BC H GFH ∥ACD H 明理由.【答案】(1)见证明;(2)见解析【解析】【分析】(1)由四边形为正方形可知,连接必与相交于中点,证得,利用ABED AE BD F GF AC A 线面平行的判定定理,即可得到面;GF A ABC (2)由点分别为中点,得,由线面平行的判定定理,证得面,G H ,CE CB GH EB AD ∥∥GH A ,由面面平行的判定定理,即可得到证明.ACD 【详解】(1)证明:由四边形为正方形可知,连接必与相交于中点ABED AE BD F 故GF AC A ∵面GF ⊄ABC ∴面GF A ABC (2)线段上存在一点满足题意,且点是中点BC H H BC理由如下:由点分别为中点可得:,G H ,CE CBGH EB AD A A ∵面GH ⊄ACD ∴面GH A ACD 由(1)可知,面GF A ACD 且GF GH G ⋂=故面面GFH A ACD 【点睛】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直,着重考查了推理与论证能力. 19. 如图,在多面体中,矩形,矩形所在的平面均垂直于正方形所在ABCDEFG ADEF CDEG ABCD 的平面,且.2,3AB AF ==(1)求多面体的体积;ABCDEFG (2)求平面与平面所成锐二面角的余弦值.BFG ADEF【答案】(1)10(2【解析】【分析】(1)利用补形法和体积差减去三棱锥的体积即可;B FHG -(2)以为坐标原点,分别为轴正方向建立空间直角坐标系,求出平面与平A ,,AB AD AF ,,x y z BFG 面的法向量,,求出,并结合立体图形判定二面角为锐角,从ADEF 21,1,3m ⎛⎫=- ⎪⎝⎭()1,0,0n = ,m n 而进一步求出二面角余弦值即可.【小问1详解】平面,同理均与平面垂直,故可将多面体补成如图所示的,AF AD AF ⊥∴⊥ ABCD ,ED GC ABCD 长方体,此长方体体积为,三棱锥的体积为,故此ABCD FHGE -22312⨯⨯=B FHG -12323⨯⨯=多面体的体积为10;【小问2详解】以为坐标原点,分别为轴正方向建立空间直角坐标系,则A ,,AB AD AF ,,x y z ,()()()()()0,0,0,2,0,0,0,2,0,0,0,3,2,2,3A B D F G ,设平面的法向量为,()()2,0,3,2,2,0BF FG ∴=-= BFG (),,m x y z =则,令得, 230220x z x y -+=⎧⎨+=⎩1x =21,1,3m ⎛⎫=- ⎪⎝⎭ 又为正方形,,故平面,ABCD AB AD ∴⊥AB ⊥ADEF 为平面的一个法向量,()1,0,0n∴= ADEF ,cos ,m n ==故平面与平面BFG ADEF 20. 已知在平面直角坐标系中,椭圆的离心率为,过焦点的直xOy 2222:1(0)x y C a b a b+=>>12(1,0)F 线与椭圆交于两点.l ,A B (1)求椭圆的标准方程;C (2)从下面两个条件中任选其一作为已知,证明另一个成立:①;②直线的斜率满足:. 415=AB l k 214k =【答案】(1) 22143x y +=(2)答案见解析【解析】【分析】(1)由椭圆的性质求解,(2)联立直线与椭圆方程公式,由弦长公式与韦达定理化简求解,【小问1详解】依题意,有:,则,121c a c ⎧=⎪⎨⎪=⎩21a b c =⎧⎪=⎨⎪=⎩故椭圆的标准方程为:· 22143x y +=【小问2详解】选①作为已知:当直线斜率不存在时,与椭圆交点为,此时,不合题意, :1l x =3(1,2±41215=≠AB 当直线斜率存在时,设,联立,有:, :l y kx k =-22::143l y kx k x y C =-⎧⎪⎨+=⎪⎩2222(43)84120k x k x k +-+-=,22222(8)4(43)(412)169(1)∆=--+-=⋅+k k k k 则, 22211243+=-==⋅+k AB x k 令,则有:, 154AB =22221511220151616443+=⋅⇒+=++k k k k 解得, 214k =选②作为已知:依题意,,则直线, 12k =±1:(1)2=±-l y x 联立,有, ()22112:143y x x y C ⎧=±-⎪⎪⎨⎪+=⎪⎩242110x x --=,2(2)44(11)180∆=--⨯⨯-=则, 2154AB x =-==即 415=AB 21. 如图,在四棱柱中,底面是正方形,平面平面,1111ABCD A B C D -ABCD 11A ADD ⊥ABCD ,.2AD =11AA A D =(1)求证:; 1A D AB ⊥(2)若直线与平面,求的长度. AB 11A DC 1AA 【答案】(1)证明见解析(2)12AA =【解析】【分析】(1)利用面面垂直的性质可证得平面,再利用线面垂直的性质可证得结论成立; AB ⊥11AA D D (2)取的中点,连接,证明出平面,以点为坐标原点,、、AD O 1AO 1A O ⊥ABCD O AB AD 1OA 的方向分别为、、的正方向建立空间直角坐标系,设,其中,利用空间向量法可得x y z 1A O a =0a >出关于的方程,求出的值,即可求得棱的长.a a 1AA 【小问1详解】证明:因为四边形为正方形,则,ABCD AB AD ⊥因为平面平面,平面平面,平面, 11A ADD ⊥ABCD 11 A ADD ABCD AD =AB ⊂ABCD 平面,AB ∴⊥11AA D D 平面,所以,.1A D ⊂Q 11AA D D 1AB A D ⊥【小问2详解】解:取的中点,连接,AD O 1AO,为的中点,则,11AA A D = O AD 1A O AD ⊥因为平面平面,平面平面,平面, 11AA D D ⊥ABCD 11AA D D ⋂ABCD AD =1AO ⊂11AA D D 所以,平面,1A O ⊥ABCD 以点为坐标原点,、、的方向分别为、、的正方向建立如下图所示的空间直角坐标O AB AD 1OA x y z 系,设,其中,1A O a =0a>则、、、、,()0,1,0A -()2,1,0B -()10,0,A a ()12,2,C a ()0,1,0D ,,,()2,0,0AB = ()112,2,0A C =u u u u r ()10,1,A D a =- 设平面的法向量为,则,取,则, 11A C D (),,m x y z = 1112200m A C x y m A D y az ⎧⋅=+=⎪⎨⋅=-=⎪⎩ x a =(),,1m a a =-- 由题意可得cos ,AB m AB m AB m ⋅<>====⋅,解得,则.0a > a =12AA == 22. 已知以动点为圆心的与直线:相切,与定圆:相外切. P P A l 12x =-F A 221(1)4x y -+=(Ⅰ)求动圆圆心的轨迹方程;P C (Ⅱ)过曲线上位于轴两侧的点、(不与轴垂直)分别作直线的垂线,垂足记为、C x M N MN x l 1M ,直线交轴于点,记、、的面积分别为、、,且1N l x A 1AMM ∆AMN ∆1ANN ∆1S 2S 3S 22134S S S =,证明:直线过定点.MN 【答案】(Ⅰ);(Ⅱ)详见解析.24y x =【解析】【分析】(Ⅰ)根据题意,点到直线的距离与到的距离相等,由抛物线的定义可得解; P =1x -(1,0)F (Ⅱ)设、,用坐标表示、、,利用韦达定理,代入即得解. 111,2M y ⎛⎫- ⎪⎝⎭21,2N y ⎛⎫- ⎪⎝⎭1S 2S 3S 【详解】(Ⅰ)设,半径为,则,,所以点到直线的距离(,)P x y P A R 12R x =+1||2PF R =+P =1x -与到的距离相等,故点的轨迹方程为.(1,0)F P C 24y x =(Ⅱ)设,,则、 ()11,M x y ()22,N x y 111,2M y ⎛⎫- ⎪⎝⎭21,2N y ⎛⎫- ⎪⎝⎭设直线:()代入中得MN x ty n =+0t ≠24y x =2440y ty n --=,124y y t +=1240y y n =-<∵、 1111122S x y =+⋅3221122S x y =+⋅∴ 131********S S x x y y ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭ 12121122ty n ty n y y ⎛⎫⎛⎫=++++ ⎪⎪⎝⎭⎝⎭ ()22121211422t y y n t y y n n ⎡⎤⎛⎫⎛⎫=+++++⋅-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦2221144422nt t n n n ⎡⎤⎛⎫⎛⎫=-++++⋅⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦ 221242t n n ⎡⎤⎛⎫=++⋅⎢⎥ ⎪⎝⎭⎢⎥⎣⎦又212111222S n y y n =+⋅-=+∴ ()()22222211116164422S n t n n t n ⎛⎫⎛⎫=+⋅+=+⋅+ ⎪ ⎪⎝⎭⎝⎭ 222222131114842222S S S nt n t n n n ⎛⎫⎛⎫=⇔=+⇔=+⇒= ⎪ ⎪⎝⎭⎝⎭∴直线恒过 MN 1,02⎛⎫ ⎪⎝⎭【点睛】本题考查了直线和抛物线综合,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.。
四川省高二上学期期末数学试卷及解析

四川省高二上学期期末数学试卷及解析数学的学习少不了勤奋的练习,只有在题目中才能将数学的知识点理解透彻。
以下是店铺为您整理的关于四川省高二上学期期末数学试卷及解析的相关资料,供您阅读。
四川省高二上学期期末数学试卷及解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知圆C:(x﹣2)2+(y+1)2=4,则圆C的圆心和半径分别为( )A.(2,1),4B.(2,﹣1),2C.(﹣2,1),2D.(﹣2,﹣1),2【考点】圆的标准方程.【分析】利用圆的标准方程,直接写出圆心与半径即可.【解答】解:圆C:(x﹣2)2+(y+1)2=4,则圆C的圆心和半径分别为:(2,﹣1),2.故选:B.2.当m∈N*,命题“若m>0,则方程x2+x﹣m=0有实根”的逆否命题是( )A.若方程x2+x﹣m=0有实根,则m>0B.若方程x2+x﹣m=0有实根,则m≤0C.若方程x2+x﹣m=0没有实根,则m>0D.若方程x2+x﹣m=0没有实根,则m≤0【考点】四种命题间的逆否关系.【分析】直接利用逆否命题的定义写出结果判断选项即可.【解答】解:由逆否命题的定义可知:当m∈N*,命题“若m>0,则方程x2+x﹣m=0有实根”的逆否命题是:若方程x2+x﹣m=0没有实根,则m≤0.故选:D.3.已知命题p:∀x>0,x3>0,那么¬p是( )A.∀x>0,x3≤0B.C.∀x<0,x3≤0D.【考点】命题的否定.【分析】利用全称命题的否定是特称命题,写出结果即可.【解答】解:因为全称命题的否定是特称命题,所以,命题p:∀x>0,x3>0,那么¬p是 .故选:D.4.已知一个几何体的三视图如图所示,则该几何体的体积为( )A.8πB.4πC.2πD.π【考点】由三视图求面积、体积.【分析】首先将几何体还原,然后求体积.【解答】解:由已知得到几何体是底面直径为2,高为2的圆柱,所以其体积为π×12×2=2π;故选C.5.已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是( )A. =0.4x+2.3B. =2x﹣2.4C. =﹣2x+9.5D. =﹣0.3x+4.4【考点】线性回归方程.【分析】变量x与y正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.【解答】解:∵变量x与y正相关,∴可以排除C,D;样本平均数 =3, =3.5,代入A符合,B不符合,故选:A.6.在区间[0,3]上随机地取一个实数x,则事件“1≤2x﹣1≤3”发生的概率为( )A. B. C. D.【考点】几何概型.【分析】首先求出事件“1≤2x﹣1≤3”发生对应的区间长度,利用几何概型公式解答.【解答】解:在区间[0,3]上随机地取一个实数x,则事件“1≤2x﹣1≤3”发生,即1≤x≤2,区间长度为1,由几何概型公式得到事件“1≤2x﹣1≤3”发生的概率为 ;故选:B.7.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入a,b分别为6,4,则输出a的值为( )A.0B.2C.4D.6【考点】程序框图.【分析】由循环结构的特点,先判断,再执行,分别计算出当前的a,b的值,即可得到结论.【解答】解:由a=6,b=4,a>b,则a变为6﹣4=2,由a由a=b=2,则输出的a=2.故选:B.8.在班级的演讲比赛中,将甲、乙两名同学的得分情况制成如图所示的茎叶图.记甲、乙两名同学所得分数的平均分分别为甲、乙,则下列判断正确的是( )A. 甲< 乙,甲比乙成绩稳定B. 甲> 乙,甲比乙成绩稳定C. 甲< 乙,乙比甲成绩稳定D. 甲> 乙,乙比甲成绩稳定【考点】众数、中位数、平均数.【分析】由茎叶图知分别求出两组数据的平均数和方差,由此能求出结果.【解答】解:由茎叶图知:= (76+77+88+90+94)=85,= [(76﹣85)2+(77﹣85)2+(88﹣85)2+(90﹣85)2+(94﹣85)2]=52,= (75+86+88+88+93)=86,= [(75﹣86)2+(86﹣86)2+(88﹣86)2+(88﹣86)2+(93﹣86)2]=35.6,∴ 甲< 乙,乙比甲成绩稳定.故选:C.9.设m,n是空间两条直线,α,β是空间两个平面,则下列选项中不正确的是( )A.当n⊥α时,“n⊥β”是“α∥β”成立的充要条件B.当m⊂α时,“m⊥β”是“α⊥β”的充分不必要条件C.当m⊂α时,“n∥α”是“m∥n”必要不充分条件D.当m⊂α时,“n⊥α”是“m⊥n”的充分不必要条件【考点】平面的基本性质及推论.【分析】当n⊥α时,“n⊥β”⇔“α∥β”;当m⊂α时,“m⊥β”⇒“α⊥β”,但是“α⊥β”推不出“m⊥β”;当m⊂α时,“n∥α”⇒“m∥n或m与n异面”,“m∥n”⇒“n∥α或n⊂α”;当m⊂α时,“n⊥α”⇒“m⊥n”,但“m⊥n”推不出“n⊥α”.【解答】解:当n⊥α时,“n⊥β”⇔“α∥β”,故A正确;当m⊂α时,“m⊥β”⇒“α⊥β”,但是“α⊥β”推不出“m⊥β”,故B正确;当m⊂α时,“n∥α”⇒“m∥n或m与n异面”,“m∥n”⇒“n∥α或n⊂α”,故C不正确;当m⊂α时,“n⊥α”⇒“m⊥n”,但“m⊥n”推不出“n⊥α”,故D正确.故选C10.如图,三棱锥A﹣BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值为( )A. B. C. D.【考点】异面直线及其所成的角.【分析】连结ND,取ND的中点E,连结ME,推导出异面直线AN,CM所成角就是∠EMC,通解三角形,能求出结果.【解答】解:连结ND,取ND的中点E,连结ME,则ME∥AN,∴∠EMC是异面直线AN,CM所成的角,∵AN=2 ,∴ME= =EN,MC=2 ,又∵EN⊥NC,∴EC= = ,∴cos∠EMC= = = ,∴异面直线AN,CM所成的角的余弦值为 .故选:A.11.已知命题p:函数f(x)=x2﹣2mx+4在[2,+∞)上单调递增;命题q:关于x的不等式mx2+2(m﹣2)x+1>0对任意x∈R恒成立.若p∨q为真命题,p∧q为假命题,则实数m的取值范围为( )A.(1,4)B.[﹣2,4]C.(﹣∞,1]∪(2,4)D.(﹣∞,1)∪(2,4)【考点】复合命题的真假.【分析】根据二次函数的单调性,以及一元二次不等式的解的情况和判别式△的关系即可求出命题p,q为真命题时m的取值范围.根据p∨q为真命题,p∧q为假命题得到p真q假或p假q真,求出这两种情况下m的范围求并集即可.【解答】解:若命题p为真,∵函数f(x)的对称轴为x=m,∴m≤2;若命题q为真,当m=0时原不等式为﹣4x+1>0,该不等式的解集不为R,即这种情况不存在;当m≠0时,则有,解得1又∵P∨q为真,P∧q为假,∴P与q一真一假;若P真q假,则,解得m≤1;若P假q真,则,解得2综上所述,m的取值范围是m≤1或2故选:C.12.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,给出以下结论:①直线A1B与B1C所成的角为60°;②若M是线段AC1上的动点,则直线CM与平面BC1D所成角的正弦值的取值范围是 ;③若P,Q是线段AC上的动点,且PQ=1,则四面体B1D1PQ 的体积恒为 .其中,正确结论的个数是( )A.0个B.1个C.2个D.3个【考点】命题的真假判断与应用.【分析】①先证明A1B与A1D所成角为60°,又B1C∥A1D,可得直线A1B与B1C所成的角为60°,判断①正确;②由平面BDC1⊥平面ACC1,结合线面角的定义分别求出直线CM与平面BDC1所成角的正弦值最大值与最小值判断②正确;③在PQ变化过程中,四面体PQB1D1的顶点D1到底面B1PQ 的距离不变,底面积不变,则体积不变,求出体积判断③正确.【解答】解:①在△A1BD中,每条边都是,即为等边三角形,∴A1B与A1D所成角为60°,又B1C∥A1D,∴直线A1B与B1C所成的角为60°,正确;②如图,由正方体可得平面BDC1⊥平面ACC1,当M点位于AC1上,且使CM⊥平面BDC1时,直线CM与平面BDC1所成角的正弦值最大为1,当M与C1重合时,连接CM交平面BDC1所得斜线最长,直线CM与平面BDC1所成角的正弦值最小等于,∴直线CM与平面BDC1所成角的正弦值的取值范围是[ ,1],正确;③连接B1P,B1Q,设D1到平面B1AC的距离为h,则h= ,B1到直线AC的距离为,则四面体PQB1D1的体积V= ,正确.∴正确的命题是①②③.故选:D二、填空题:本大题共4小题,每小题5分,共20分.13.根据如图所示的算法语句,当输入的x为50时,输出的y的值为35 .【考点】伪代码.【分析】算法的功能是求y= 的值,当输入x=50时,计算输出y 的值.【解答】解:由算法语句知:算法的功能是求y= 的值,当输入x=50时,输出y=30+0.5×10=35.故答案为:35.14.某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为25 .【考点】分层抽样方法.【分析】根据分层抽样的定义求出在各层中的抽样比,即样本容量比上总体容量,按此比例求出应抽取的男生人数.【解答】解:根据题意得,用分层抽样在各层中的抽样比为 = ,则应抽取的男生人数是500× =25人,故答案为:25.15.袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.【考点】列举法计算基本事件数及事件发生的概率.【分析】根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.【解答】解:根据题意,记白球为A,红球为B,黄球为C1、C2,则一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种,其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种;所以所求的概率是P= ,故答案为: .16.若直线y=x+b与曲线y=3﹣有两个公共点,则b的取值范围是1﹣2【考点】直线与圆的位置关系.【分析】曲线方程变形后,表示圆心为(2,3),半径为2的下半圆,如图所示,根据直线y=x+b与圆有2个公共点,【解答】解:曲线方程变形为(x﹣2)2+(y﹣3)2=4,表示圆心A为(2,3),半径为2的下半圆,根据题意画出图形,如图所示,当直线y=x+b过B(4,3)时,将B坐标代入直线方程得:3=4+b,即b=﹣1;当直线y=x+b与半圆相切时,圆心A到直线的距离d=r,即=2,即b﹣1=2 (不合题意舍去)或b﹣1=﹣2 ,解得:b=1﹣2 ,则直线与曲线有两个公共点时b的范围为1﹣2故答案为:1﹣2三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.17.已知命题p:x2﹣8x﹣20≤0,命题q:[x﹣(1+m)]•[x﹣(1﹣m)]≤0(m>0),若p是q的充分不必要条件,求实数m的取值范围.【考点】必要条件、充分条件与充要条件的判断.【分析】由p:x2﹣8x﹣20≤0,得﹣2≤x≤10.由于p是q的充分不必要条件,可得[﹣2,10]⊊[1﹣m,1+m].即可得出.【解答】解:由p:x2﹣8x﹣20≤0,得﹣2≤x≤10,∵p是q的充分不必要条件,∴[﹣2,10]⊊[1﹣m,1+m].则,或,解得m≥9.故实数m的取值范围为[9,+∞).18.已知圆C过点A(1,4),B(3,2),且圆心在x轴上,求圆C的方程.【考点】圆的标准方程.【分析】法一:设圆C:(x﹣a)2+y2=r2,利用待定系数法能求出圆C的方程.法二:设圆C:x2+y2+Dx+F=0,利用待定系数法能求出圆C的方程.法三:由已知圆心C必在线段AB的垂直平分线l上,AB的中点为(2,3),由此能求出圆心C的坐标和半径,从而能求出圆C的方程.【解答】解法一:设圆C:(x﹣a)2+y2=r2,则解得所以圆C的方程为(x+1)2+y2=20.解法二:设圆C:x2+y2+Dx+F=0,则解得所以圆C的方程为x2+y2+2x﹣19=0.解法三:因为圆C过两点A(1,4),B(3,2),所以圆心C必在线段AB的垂直平分线l上,又因为,所以kl=1,又AB的中点为(2,3),故AB的垂直平分线l的方程为y﹣3=x﹣2,即y=x+1.又圆心C在x轴上,所以圆心C的坐标为(﹣1,0),所以半径,所以圆C的方程为(x+1)2+y2=20.19.如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,底面ABC等边三角形,E,F分别是BC,CC1的中点.求证:(Ⅰ) EF∥平面A1BC1;(Ⅱ) 平面AEF⊥平面BCC1B1.【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(Ⅰ)由三角形中位线定理得EF∥BC1,由此能证明EF∥平面A1BC1.(Ⅱ)由三棱柱ABC﹣A1B1C1是直三棱柱,得AE⊥BB1,由正三角形性质得AE⊥BC,由此能证明平面AEF⊥平面BCC1B1.【解答】证明:(Ⅰ)因为E,F分别是BC,CC1的中点,所以EF∥BC1.又因为BC1⊂平面A1BC1,EF⊄平面A1BC1,所以EF∥平面A1BC1.(Ⅱ)因为三棱柱ABC﹣A1B1C1是直三棱柱,所以BB1⊥平面ABC.又AE⊂平面ABC,所以AE⊥BB1.又因为△ABC为正三角形,E为BC的中点,所以AE⊥BC.又BB1∩BC=B,所以AE⊥平面BCC1B1.又AE⊂平面AEF,所以平面AEF⊥平面BCC1B1.20.某校高中一年级组织学生参加了环保知识竞赛,并抽取了20名学生的成绩进行分析,如图是这20名学生竞赛成绩(单位:分)的频率分布直方图,其分组为[100,110),[110,120),…,[130,140),[140,150].(Ⅰ) 求图中a的值及成绩分别落在[100,110)与[110,120)中的学生人数;(Ⅱ) 学校决定从成绩在[100,120)的学生中任选2名进行座谈,求此2人的成绩都在[110,120)中的概率.【考点】古典概型及其概率计算公式;频率分布直方图.【分析】(Ⅰ)根据频率分布直方图知组距为10,由频率分布直方图中小矩形面积之和为1,求出a,由此能求出成绩分别落在[100,110)与[110,120)中的学生人数.(Ⅱ)记成绩落在[100,110)中的2人为A1,A2,成绩落在[110,120)中的3人为B1,B2,B3,由此利用列举法能求出此2人的成绩都在[110,120)中的概率.【解答】解:(Ⅰ)根据频率分布直方图知组距为10,由(2a+3a+7a+6a+2a)×10=1,解得 ;所以成绩落在[100,110)中的人数为2×0.005×10×20=2;成绩落在[110,120)中的人数为3×0.005×10×20=3.(Ⅱ)记成绩落在[100,110)中的2人为A1,A2,成绩落在[110,120)中的3人为B1,B2,B3,则从成绩在[100,120)的学生中任选2人的基本事件共有10个:{A1,A2},{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{B1,B2},{B1,B3},{B2,B3},其中2人的成绩都在[110,120)中的基本事件有3个:{B1,B2},{B1,B3},{B2,B3},所以所求概率为 .21.如图1,在直角梯形ABCD中,AD∥BC,∠BAD= ,AB=BC=1,AD=2,E是AD的中点,O是AC与BE的交点.将△ABE 沿BE折起到图2中△A1BE的位置,得到四棱锥A1﹣BCDE.(Ⅰ) 证明:CD⊥平面A1OC;(Ⅱ) 若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角(锐角)的余弦值.【考点】二面角的平面角及求法;直线与平面垂直的判定.【分析】(Ⅰ)根据线面垂直的判定定理即可证明:CD⊥平面A1OC;(Ⅱ)若平面A1BE⊥平面BCDE,建立空间坐标系,利用向量法即可求平面A1BC与平面A1CD夹角的余弦值.【解答】证明:(Ⅰ)在图1中,∵AB=BC=1,AD=2,E是AD的中点,∠BAD= ,∴BE⊥AC,即在图2中,BE⊥OA1,BE⊥OC,则BE⊥平面A1OC;∵CD∥BE,∴CD⊥平面A1OC.解:(Ⅱ)若平面A1BE⊥平面BCDE,由(Ⅰ)知BE⊥OA1,BE⊥OC,∴∠A1OC为二面角A1﹣BE﹣C的平面角,∴∠A1OC= ,如图,建立空间坐标系,∵A1B=A1E=BC=ED=1.BC∥ED∴B( ,0,0),E(﹣,0,0),A1(0,0, ),C(0,,0),=(﹣,,0), =(0,,﹣ ), = =(﹣,0,0),设平面A1BC的法向量为=(x,y,z),平面A1CD的法向量为=(a,b,c),则,得,令x=1,则y=1,z=1,即 =(1,1,1),由,得,取b=1,得 =(0,1,1),则cos< , >= = = ,∴平面A1BC与平面A1CD夹角(锐角)的余弦值为 .22.已知圆C:x2﹣(1+a)x+y2﹣ay+a=0(a∈R).(Ⅰ) 若a=1,求直线y=x被圆C所截得的弦长;(Ⅱ) 若a>1,如图,圆C与x轴相交于两点M,N(点M在点N 的左侧).过点M的动直线l与圆O:x2+y2=4相交于A,B两点.问:是否存在实数a,使得对任意的直线l均有∠ANM=∠BNM?若存在,求出实数a的值,若不存在,请说明理由.【考点】圆方程的综合应用.【分析】(Ⅰ)当a=1时,求出圆心C(1,),半径r= ,求出圆心C到直线y=x的距离,由此利用勾股定理能求出直线y=x被圆C所截得的弦长.(Ⅱ)先求出所以M(1,0),N(a,0),假设存在实数a,当直线AB 与x轴不垂直时,设直线AB的方程为y=k(x﹣1),代入x2+y2=4,利用韦达定理,根据NA、NB的斜率之和等于零求得a的值.经过检验,当直线AB与x轴垂直时,这个a值仍然满足∠ANM=∠BNM,从而得出结论.【解答】解:(Ⅰ) 当a=1时,圆C:x2﹣2x+y2﹣y+1=0,圆心C(1, ),半径r= = ,圆心C(1, )到直线y=x的距离d= = ,∴直线y=x被圆C所截得的弦长为:2 = .(Ⅱ)令y=0,得x2﹣(1+a)x+a=0,即(x﹣1)(x﹣a)=0,解得x=1,或x=a,∴M(1,0),N(a,0).假设存在实数a,当直线AB与x轴不垂直时,设直线AB的方程为y=k(x﹣1),代入x2+y2=4得,(1+k2)x2﹣2k2x+k2﹣4=0,设A(x1,y1),B(x2,y2),从而,x1x2= .∵NA、NB的斜率之和为 + = ,而(x1﹣1)(x2﹣a)+(x2﹣1)(x1﹣a)=2x1x2﹣(a+1)(x2+x1)+2a= +2a= ,∵∠ANM=∠BNM,所以,NA、NB的斜率互为相反数,=0,即=0,得a=4.当直线AB与x轴垂直时,仍然满足∠ANM=∠BNM,即NA、NB 的斜率互为相反数.综上,存在a=4,使得∠ANM=∠BNM.。
四川省成都市2023-2024学年高二上学期期末复习数学试题(三)含解析

成都高2025届高二期末考试数学复习试题(三)(答案在最后)一、单选题(共8个小题,每个小题5分,共40分)1.设直线l sin 20y θ++=,则直线l 的倾斜角的取值范围是()A.[)0,πB.πππ2π,,3223⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦C.π2π,33⎡⎤⎢⎥⎣⎦D.π2π0,,π33⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭U 【答案】D 【解析】【分析】根据直线斜率的范围求倾斜角的取值范围.sin 20y θ++=的倾斜角为[)0πa a Î,,,则由直线可得tan a q =Î,所以π2π0,,π33a 轾轹÷Î犏÷犏臌滕,故选:D2.能够使得圆x 2+y 2-2x +4y +1=0上恰有两个点到直线2x +y +c =0距离等于1的c 的一个值为()A.2B.C.3D.【答案】C 【解析】【分析】利用圆心到直线的距离大于1且小于3,列不等式求解即可.【详解】由圆的标准方程()()22124x y -++=,可得圆心为()1,2-,半径为2,根据圆的性质可知,当圆心到直线的距离大于1且小于3时,圆上有两点到直线20x y c ++=的距离为1,由()1,3d =可得(c ∈-⋃,经验证,3c =∈,符合题意,故选C.【点睛】本题主要考查圆的标准方程,点到直线距离公式的距离公式以及圆的几何性质,意在考查数形结合思想的应用,属于中档题.3.若椭圆的中心为原点,对称轴为坐标轴,短轴的一个端点与两焦点构成个正三角形,焦点到椭圆上点的)A.221129x y +=B.221129x y +=或221912x y +=C.2213612x y += D.以上都不对【答案】B 【解析】【分析】由短轴的一个端点与两焦点构成个正三角形可得b =,由焦点到椭圆上点的最短距离为a c -,结合222a b c =+可得.【详解】由题意,当椭圆焦点在x 轴上,设椭圆方程为:22221x ya b+=,由题意b =,a c -=所以2a c ===,c =a =,3b =,所以椭圆方程为:221129x y +=,当椭圆焦点在y 轴上时,同理可得:221912x y+=,故选:B4.某市经济开发区的经济发展取得阶段性成效,为深入了解该区的发展情况,现对该区两企业进行连续11个月的调研,得到两企业这11个月利润增长指数折线图(如下图所示),下列说法正确的是()A.这11个月甲企业月利润增长指数的平均数没超过82%B.这11个月的乙企业月利润增长指数的第70百分位数小于82%C.这11个月的甲企业月利润增长指数较乙企业更稳定D.在这11个月中任选2个月,则这2个月乙企业月利润增长指数都小于82%的概率为411【答案】C 【解析】【分析】根据折线图估算AC ,对于B 项把月利润增长指数从小到大排列,计算1170⨯%=7.7可求,对于D 项用古典概型的概率解决.【详解】显然甲企业大部分月份位于82%以上,故利润增长均数大于82%,A 不正确;乙企业润增长指数按从小到大排列分别是第2,1,3,4,8,5,6,7,9,11,10又因为1170⨯%=7.7,所以从小到大排列的第8个月份,即7月份是第70百分位,从折线图可知,7月份利润增长均数大于82%,故B 错误;观察折现图发现甲企业的数据更集中,所以甲企业月利润增长指数较乙企业更稳定,故C 正确;P (2个月乙企业月利润增长指数都小于82%)26211C 3C 11==,故D 错误.故选:C.5.已知空间三点(4,1,9),(10,1,6),(2,4,3)A B C -,则下列结论不正确的是()A.||||AB AC =B.点(8,2,0)P 在平面ABC 内C.AB AC ⊥D.若2AB CD =,则D 的坐标为31,5,2⎛⎫-- ⎪⎝⎭【答案】D 【解析】【分析】根据空间两点距离公式判断A ,根据数量积的坐标运算判断B ,根据共面向量基本定理判断C ,根据向量的坐标运算判断D.【详解】因为||7AB ==,||7AC ==,故A 正确;因为(6,2,3)(2,3,6)126180AB AC →→⋅=--⋅--=--+=,所以AB AC ⊥,故C 正确;因为(6,2,3),(2,3,6)AB AC →→=--=--,(4,1,9)AP →=-,所以(4,1,9)AP AB AC →→→=+=-,所以点(8,2,0)P 在平面ABC 内,故B 正确;因为92(1,9,))(62(22,31,8,,),92AB CD ==------=-- ,显然不成立,故D 错误.故选:D6.已知某人收集一个样本容量为50的一组数据,并求得其平均数为70,方差为75,现发现在收集这些数据时,其中得两个数据记录有误,一个错将80记录为60,另一个错将70记录为90,在对错误得数据进行更正后,重新求得样本的平均数为X ,方差为2s ,则()A.270,75X sB.270,75X s ><C.270,75X s =>D.270,75X s =<【答案】D 【解析】【分析】根据平均数与方差的定义判断.【详解】因为80706090+=+,因此平均数不变,即70X =,设其他48个数据依次为1248,,,a a a ,因此()()()()()222221248707070607090705075a a a -+-++-+-+-=⨯ ,()()()()()22222212487070708070707050a a a s -+-++-+-+-=⨯ ,()250751004001004000s -=--=-<,∴275s <,故选:D .7.如图所示,在直三棱柱111ABC A B C -中,ACBC ⊥,且3BC =,4AC =,13CC =,点P 在棱1AA 上,且三棱锥A PBC -的体积为4,则直线1BC 与平面PBC 所成角的正弦值等于()A.4B.4C.5D.5【答案】C 【解析】【分析】利用锥体的体积公式可求得2PA =,然后以点C 为坐标原点,CB 、CA 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得直线1BC 与平面PBC 所成角的正弦值.【详解】由已知得1AA ⊥底面ABC ,且AC BC ⊥,所以111344332A PBC P ABC ABC V V S PA PA --==⨯⨯=⨯⨯⨯⨯=△,解得2PA =.如图所示,以点C 为坐标原点,CB 、CA 、1CC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()0,0,0C 、()0,4,2P 、()3,0,0B 、()10,0,3C ,则()3,0,0CB = ,()0,4,2CP = ,()13,0,3BC =-.设平面BCP 的法向量为(),,n x y z =,则由00n CB n CP ⎧⋅=⎨⋅=⎩可得30420x y z =⎧⎨+=⎩,即020x y z =⎧⎨+=⎩,得0x =,令1y =,得2z =-,所以()0,1,2n =-为平面BCP 的一个法向量.设直线1BC 与平面PBC 所成的角为θ,则11110sin cos ,5n BC n BC n BC θ⋅=<>==⋅.故选:C.【点睛】方法点睛:求直线与平面所成角的方法:(1)定义法,①作,在直线上选取恰当的点向平面引垂线,确定垂足的位置是关键;②证,证明所作的角为直线与平面所成的角,证明的主要依据是直线与平面所成角的概念;③求,利用解三角形的知识求角;(2)向量法,sin cos ,AB n AB n AB nθ⋅=<>=⋅ (其中AB 为平面α的斜线,n为平面α的法向量,θ为斜线AB 与平面α所成的角).8.已知F 1,F 2分别为双曲线C :221412x y -=的左、右焦点,E 为双曲线C 的右顶点.过F 2的直线与双曲线C的右支交于A ,B 两点(其中点A 在第一象限),设M ,N 分别为△AF 1F 2,△BF 1F 2的内心,则ME NE -的取值范围是()A.44,33⎛⎫-⎪⎝⎭B.,33⎛⎫- ⎪ ⎪⎝⎭C.3333,55⎛⎫- ⎪⎪⎝⎭ D.,33⎛⎫- ⎪ ⎪⎝⎭【答案】B 【解析】【分析】利用平面几何和内心的性质,可知M ,N 的横坐标都是a ,得到MN ⊥x 轴,设直线AB 的倾斜角为θ,有22,22-∠=∠=EF M EF N πθθ,根据θ∈(60∘,90∘],将ME NE -表示为θ的三角函数可求得范围.【详解】解:设1212,,AF AF F F 上的切点分别为H 、I 、J ,则1122||||,,===AH AI F H F J F J F I .由122AF AF a -=,得()()12||||2+-+=AH HF AI IF a ,∴122-=HF IF a ,即122-=JF JF a.设内心M 的横坐标为0x ,由JM x ⊥轴得点J 的横坐标也为0x ,则()()002c x c x a +--=,得0x a =,则E 为直线JM 与x 轴的交点,即J 与E 重合.同理可得12BF F △的内心在直线JM 上,设直线AB 的领斜角为θ,则22,22-∠=∠=EF M EF N πθθ,||||()tan()tan 22--=---ME NE c a c a πθθcos sin 2cos 222()()()sin tan sin cos 22⎛⎫ ⎪=-⋅-=-=-⎪ ⎪⎝⎭c a c a c a θθθθθθθ,当2πθ=时,||||0ME NE -=;当2πθ≠时,由题知,2,4,===b a c a,因为A ,B 两点在双曲线的右支上,∴233ππθ<<,且2πθ≠,所以tan θ<tan θ>,∴3133tan 3θ-<<且10tan θ≠,∴44343||||,00,tan 33⎛⎫⎛⎫-=∈- ⎪ ⎪⎝⎭⎝⎭ME NE θ,综上所述,44343||||,tan 33⎛⎫-=∈- ⎪⎝⎭ME NE θ.故选:B.二、多选题(共4个小题,每个小题5分,共20分)9.已知甲罐中有五个相同的小球,标号为1,2,3,4,5,乙罐中有四个相同的小球,标号为1,4,5,6,现从甲罐、乙罐中分别随机抽取1个小球,记事件A =“抽取的两个小球标号之和大于6”,事件B =“抽取的两个小球标号之积小于6”,则()A.事件A 与事件B 是互斥事件B.事件A 与事件B 不是对立事件C.事件A B ⋃发生的概率为1920D.事件A 与事件B 是相互独立事件【答案】ABC 【解析】【分析】由两球编号写出事件,A B 所含有的基本事件,同时得出所有的基本事件,然后根据互斥事件、对立事件的定义判断AB ,求出A B ⋃的概率判断C ,由公式()()()P AB P A P B =判断D .【详解】甲罐中小球编号在前,乙罐中小球编号在后,表示一个基本事件,事件A 含有的基本事件有:16,25,26,34,35,36,44,45,46,54,55,56,共12个,事件B 含有的基本事件有:11,14,15,21,31,41,51,共7个,两者不可能同时发生,它们互斥,A 正确;基本事件15发生时,事件,A B 均不发生,不对立,B 正确;事件A B ⋃中含有19个基本事件,由以上分析知共有基本事件20个,因此19()20P A B =,C 正确;123()205P A ==,7()20P B =,()0P AB =()()P A P B ≠,,A B 不相互独立,D 错.故选:ABC .10.在如图所示试验装置中,两个长方形框架ABCD 与ABEF 全等,1AB =,2BC BE ==,且它们所在的平面互相垂直,活动弹子,M N 分别在长方形对角线AC 与BF 上移动,且(0CM BN a a ==<<,则下列说法正确的是()A.AB MN⊥ B.MN 2C.当MN 的长最小时,平面MNA 与平面MNB 所成夹角的余弦值为13D .()25215M ABN a V-=【答案】ABC 【解析】【分析】建立空间直角坐标系,写出相应点的坐标,利用空间向量数量积的运算即可判断选项A ;利用空间两点间距离公式即可判断选项B ;根据二面角的余弦值推导即可判断选项C ;根据棱锥的体积计算公式即可判断选项D .【详解】由题意可知:,,BA BC BE 两两互相垂直,以点B 为坐标原点,,,BA BE BC为,,x y z 轴正方向,建立空间直角坐标系,建系可得525525,0,2,,,05555a a a a M N ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭()25250,,2,1,0,055a a MN BA ⎛⎫∴=-= ⎪ ⎪⎝⎭,0,AB MN AB MN ∴⋅=∴⊥,故选项A 正确;又MN===∴当2a=时,min||MN=,故选项B正确;当MN最小时,,,2a M N=分别是,AC BF的中点,取MN中点K,连接AK和BK,,AM AN BM BN==,,AK MN BK MN∴⊥⊥,AKB∠∴是二面角A MN B--的平面角.BMN中,,2BM BN MN===,可得2BK==,同理可得2AK=,由余弦定理可得331144cos322AKB∠+-==,故选项C 正确;2125252522365515M ABN ABNa aV S h-⎛⎫-=⨯⨯=⨯-=⎪⎪⎝⎭,故选项D错误.故选:ABC.11.抛物线有如下光学性质:由其焦点射出的光线经拋物线反射后,沿平行于拋物线对称轴的方向射出.反之,平行于拋物线对称轴的入射光线经拋物线反射后必过抛物线的焦点.已知抛物线2:,C y x O=为坐标原点,一束平行于x轴的光线1l从点41,116P⎛⎫⎪⎝⎭射入,经过C上的点()11,A x y反射后,再经C上另一点()22,B x y 反射后,沿直线2l 射出,经过点Q ,则()A.PB 平分ABQ ∠B.121y y =-C.延长AO 交直线14x =-于点D ,则,,D B Q 三点共线D.2516AB =【答案】ACD 【解析】【分析】对于A ,根据题意求得()1,1A ,11,164B ⎛⎫- ⎪⎝⎭,从而证得PA AB =,结合平面几何的知识易得PB 平分ABQ ∠;对于B ,直接代入12,y y 即可得到1214y y =-;对于C ,结合题意求得11,44D ⎛⎫-- ⎪⎝⎭,由,,D B Q 的纵坐标相同得,,D B Q 三点共线;对于D ,由选项A 可知2516AB =.【详解】根据题意,由2:C y x =得1,04F ⎛⎫⎪⎝⎭,又由//PA x 轴,得()1,1A x ,代入2:C y x =得11x =(负值舍去),则()1,1A ,所以141314AF k ==-,故直线AF 为4134y x ⎛⎫=- ⎪⎝⎭,即4310x y --=,依题意知AB 经过抛物线焦点F ,故联立24310x y y x --=⎧⎨=⎩,解得11614x y ⎧=⎪⎪⎨⎪=-⎪⎩,即11,164B ⎛⎫- ⎪⎝⎭,对于A ,412511616PA =-=,2516AB =,故PA AB =,所以APB ABP ∠=∠,又因为//PA x 轴,//BQ x 轴,所以//PA BQ ,故APB PBQ =∠∠,所以ABP PBQ ∠=∠,则PB 平分ABQ ∠,故A 正确;对于B ,因为12141,y y =-=,故1214y y =-,故B 错误;对于C ,易得AO 的方程为y x =,联立14y x x =⎧⎪⎨=-⎪⎩,故11,44D ⎛⎫-- ⎪⎝⎭,又//BQ x 轴,所以,,D B Q 三点的纵坐标都相同,则,,D B Q 三点共线,故C 正确;对于D ,由选项A 知2516AB =,故D 正确.故选:ACD..12.己知椭圆222:1(02)4x y C b b+=<<的左,右焦点分别为1F ,2F ,圆22:(2)1M x y +-=,点P 在椭圆C 上,点Q 在圆M 上,则下列说法正确的有()A.若椭圆C 和圆M 没有交点,则椭圆C的离心率的取值范围是2,1⎛⎫⎪ ⎪⎝⎭B.若1b =,则||PQ 的最大值为4C.若存在点P 使得213PF PF =,则0b <≤D.若存在点Q使得12QF =,则1b =【答案】ACD 【解析】【分析】A 根据已知,数形结合得01b <<时椭圆C 和圆M 没有交点,进而求离心率范围;B 令(,)P x y ,求得||MP =,结合椭圆有界性得max ||MP =即可判断;C 由题设123,1PF PF ==,令(,)P x y,进而得到((222291x y x y⎧++=⎪⎨⎪-+=⎩,结合点在椭圆上得到公共解(0,2]x =求范围;D将问题化为圆心为的圆与圆22:(2)1M x y +-=有交点.【详解】由椭圆C 中2a =,圆M 中圆心(0,2)M ,半径为1,如下图示,A :由于02b <<,由图知:当01b <<时椭圆C 和圆M 没有交点,此时离心率,12e ⎛⎫⎪ ⎪⎝==⎭,对;B :当1b =时,令(,)P x y,则||MP =,而224(1)x y =-,所以||MP =,又11y -≤≤,故max ||MP =所以||PQ1+,错;C :由1224PF PF a +==,若213PF PF =,则123,1PF PF ==,由12(F F ,令(,)P x y ,且2221)(4x y b =-,则((222291x y x y⎧++=⎪⎨⎪+=⎩,即2222(4)200(4)120b x b x ⎧-+-=⎪⎨--+=⎪⎩,所以(0,2]x =,则23b ≤,且02b <<,故0b <≤D :令(,)Q x y,若12QF =,所以2222(3[(]x y x y +=-+,则222(4)0x b y -+-+=,所以222(3(4)x y b -+=-,Q轨迹是圆心为的圆,而(0,2)M与的距离为,要使点Q 存在,则1|1-≤≤,可得22(1)0b -≤,且02b <<,即1b =,对;故选:ACD【点睛】关键点点睛:对于C ,根据已知得到123,1PF PF ==,设(,)P x y ,利用两点距离公式得到方程组,求出公共解(0,2]x =为关键;对于D ,问题化为圆心为的圆与圆22:(2)1M x y +-=有交点为关键.三、填空题(共4个小题,每个小题5分,共20分)13.若直线1x y +=与直线2(1)40m x my ++-=平行,则这两条平行线之间的距离是__.【答案】322【解析】【分析】由题意结合直线平行的性质可得2m =-,再由平行线间的距离公式即可得解.【详解】 直线1x y +=与直线2(1)40m x my ++-=平行,∴2(1)4111m m +-=≠-,解得2m =-,故直线1x y +=与直线2(1)40m x my ++-=即为直线10x y +-=与直线20x y ++=,2=,故答案为:2.【点睛】本题考查了直线平行性质的应用,考查了平行线间距离公式的应用,属于基础题.14.曲线1y =+与直线l :y =k (x -2)+4有两个交点,则实数k 的取值范围是________.【答案】53124,纟çúçú棼【解析】【分析】首先画出曲线表示的半圆,再判断直线l 是过定点()24,的直线,利用数形结合判断k 的取值范围.【详解】直线l 过点A (2,4),又曲线1y =+0,1)为圆心,2为半径的半圆,如图,当直线l 与半圆相切,C 为切点时,圆心到直线l 的距离d =r,2=,解得512k =.当直线l 过点B (-2,1)时,直线l 的斜率为()413224-=--,则直线l 与半圆有两个不同的交点时,实数k 的取值范围为53124,纟çúçú棼.故答案为:53124,纟çúçú棼15.数学兴趣小组的四名同学各自抛掷骰子5次,分别记录每次骰子出现的点数,四名同学的部分统计结果如下:甲同学:中位数为3,方差为2.8;乙同学:平均数为3.4,方差为1.04;丙同学:中位数为3,众数为3;丁同学:平均数为3,中位数为2.根据统计结果,数据中肯定没有出现点数6的是______同学.【答案】乙【解析】【分析】假设出现6点,利用特例法,结合平均数和方差的计算公式,即可求解.【详解】对于甲同学,当投掷骰子出现结果为1,2,3,3,6时,满足中位数为3,平均数为:()11233635x =++++=,方差为()()()()()22222211323333363 2.85S ⎡⎤-+-+-+-+-⎣⎦==,可以出现点数6;对于乙同学,若平均数为3.4,且出现点数6,则方差221(6 3.4) 1.352 1.045S >-=>,所以当平均数为3.4,方差为1.04时,一定不会出现点数6;对于丙同学,当掷骰子出现的结果为1,2,3,3,6时,满足中位数为3,众数为3,可以出现点数6;对于丁同学,当投掷骰子出现的结果为2,2,2,3,6时,满足平均数为3,中位数为2,可以出现点数6.综上,根据统计结果,数据中肯定没有出现点数6的是乙同学.故答案为:乙16.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,离心率为e ,点P 在椭圆上,连接1PF 并延长交C 于点Q ,连接2QF ,若存在点P 使2PQ QF =成立,则2e 的取值范围为___________.【答案】)11,1⎡-⎣【解析】【分析】设11,QF m PF n ==,所以存在点P 使2PQ QF =等价于()2min0,PQ QF -≤由2112am n b +=可求222PQ QF m n a -=+-的最小值,求得22b a的范围,从而得到2e 的取值范围.【详解】设11,QF m PF n ==,则22QF a m =-.显然当P 靠近右顶点时,2PQ QF >,所以存在点P 使2PQ QF =等价于()22min0,22PQ QF PQ QF m n a -≤-=+-,在12PF F △中由余弦定理得22221121122cos PF PF F F PF F F θ=+-⋅⋅,即()2222422cos a n n c n c θ-=+-⋅⋅,解得2cos b n a c θ=-,同理可得2cos b m a c θ=+,所以2112a m n b +=,所以()(2223112223222b b b n m m n m n a m n a m n a +⎛⎫⎛⎫+=++=++≥ ⎪ ⎝⎭⎝⎭,所以22min1)(22)22b m n a a a++-=-,当且仅当n =时等号成立.由221)202b a a+-≤得2212b a ≤-,所以2111e -≤<.故答案为:)11,1⎡-⎣【点睛】关键点点睛:求离心率范围关键是建立,,a b c 的不等式,此时将问题转化为()2min0PQ QF -≤,从而只需求222PQ QF m n a -=+-的最小值,求最小值的方法是结合焦半径性质211112aPF QF b+=使用基本不等式求解.四、解答题(共7个题,17题10分,18题—22题每题12分,共70分)17.在平面直角坐标系xOy 中,存在四点()0,1A ,()7,0B ,()4,9C ,()1,3D .(1)求过A ,B ,C 三点的圆M 的方程,并判断D 点与圆M 的位置关系;(2)若过D 点的直线l 被圆M 截得的弦长为8,求直线l 的方程.【答案】(1)228870x y x y +--+=,D 在圆M 内;(2)43130x y +-=或1x =.【解析】【分析】(1)设出圆的一般方程,利用待定系数法计算可得圆的方程,把D 坐标代入圆的方程判定位置关系即可;(2)对直线分类讨论,设出直线方程,利用直线与圆相交,已知弦长求直线方程.【小问1详解】设圆M 方程为220x y Dx Ey F ++++=,把A ,B ,C 三点坐标代入可得:10,4970,1681490,E F D F D E F ++=⎧⎪++=⎨⎪++++=⎩解得8D =-,8E =-,7F =,所以圆M 方程是228870x y x y +--+=,把D 点坐标代入可得:1982470+--+<,故D 在圆M 内;【小问2详解】由(1)可知圆M :()()224425x y -+-=,则圆心()4,4M ,半径=5r ,由题意可知圆心到直线l 的距离是3,当直线l 斜率存在时,设直线l 方程为:()1330y k x kx y k =-+⇒-+-=,3=,解得43k =-,故直线l 的方程为43130x y +-=;当直线l 斜率不存在时,则直线l 方程为:1x =,此时圆心到直线l 的距离是3,符合题意.综上所述,直线l 的方程为43130x y +-=或1x =.18.我校举行的“青年歌手大选赛”吸引了众多有才华的学生参赛.为了了解本次比赛成绩情况,从中抽取了50名学生的成绩作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:频率分布表组别分组频数频率第1组[50,60)80.16第2组[60,70)a ▓第3组[70,80)200.40第4组[80,90)▓0.08第5组[90,100]2b 合计▓▓(1)求出a ,b ,x ,y 的值;(2)在选取的样本中,从成绩是80分以上的同学中随机抽取2名同学参加元旦晚会,求所抽取的2名同学中至少有1名同学来自第5组的概率;(3)根据频率分布直方图,估计这50名学生成绩的中位数、平均数和方差(同一组的数据用该组区间的中点值作代表).【答案】(1)a =16,b =0.04,x =0.032,y =0.004(2)35(3)中位数为70.5,平均数为70.2,方差为96.96【解析】【分析】(1)利用频率=100%⨯频数样本容量,及频率组距表示频率分布直方图的纵坐标即可求出a ,b ,x ,y ;(2)由(2)可知第四组的人数,已知第五组的人数是2,利用组合的计算公式即可求出从这6人中任选2人的种数,再分两类分别求出所选的两人来自同一组的情况,利用互斥事件的概率和古典概型的概率计算公式即可得出.(3)根据频率分布直方图,估计这50名学生成绩的中位数、平均数和方差.【小问1详解】由题意可知,样本容量n =8500.16=,∴b =250=0.04,第四组的频数=50×0.08=4,∴508202416a =----=.y =0.0410=0.004,x =1650×110=0.032.∴a =16,b =0.04,x =0.032,y =0.004.【小问2详解】由题意可知,第4组共有4人,记为A ,B ,C ,D ,第5组共有2人,记为X ,Y .从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学,有AB ,AC ,AD ,BC ,BD ,CD ,AX ,AY ,BX ,BY ,CX ,CY ,DX ,DY ,XY ,共15种情况.设“随机抽取的2名同学中至少有1名同学来自第5组”为事件E ,有AX ,AY ,BX ,BY ,CX ,CY ,DX ,DY ,XY 共9种情况.所以随机抽取的2名同学中至少有1名同学来自第5组的概率是P (E )=93155=.∴随机抽取的2名同学中至少有1名同学来自第5组的概率35.【小问3详解】∵[50,70)的频率为:0.160.320.48+=,[70,80)的频率为0.4,∴中位数为:0.50.48701070.50.4-+⨯=,平均数为:550.16650.32750.4850.08950.0470.2⨯+⨯+⨯+⨯+⨯=.方差为:()()()()()222225570.20.166570.20.327570.20.48570.20.089570.20.0496.96⨯+⨯+⨯+⨯+⨯﹣﹣﹣﹣﹣=.19.已知抛物线()2:20C y px p =>的焦点为F ,点0(,4)M x 在C 上,且52pMF =.(1)求点M 的坐标及C 的方程;(2)设动直线l 与C 相交于,A B 两点,且直线MA 与MB 的斜率互为倒数,试问直线l 是否恒过定点?若过,求出该点坐标;若不过,请说明理由.【答案】(1)M 的坐标为()4,4,C 的方程为24y x =;(2)直线l 过定点()0,4-.【解析】【分析】(1)利用抛物线定义求出0x ,进而求出p 值即可得解.(2)设出直线l 的方程x my n =+,再联立直线l 与抛物线C 的方程,借助韦达定理探求出m 与n 的关系即可作答.【小问1详解】抛物线2:2C y px =的准线:2px =-,于是得0522p p MF x =+=,解得02x p =,而点M 在C 上,即2164p =,解得2p =±,又0p >,则2p =,所以M 的坐标为()4,4,C 的方程为24y x =.【小问2详解】设()()1122,,,A x y B x y ,直线l 的方程为x my n =+,由24x my n y x =+⎧⎨=⎩消去x 并整理得:2440y my n --=,则()2160m n ∆=+>,124y y m +=,124y y n =-,因此,121222121212444444144444444MA MB y y y y k k y y x x y y ----⋅=⋅==⋅=--++--,化简得()121240y y y y ++=,即4n m =,代入l 方程得4x my m =+,即()40x m y -+=,则直线l 过定点()0,4-,所以直线l 过定点()0,4-.【点睛】思路点睛:直线与圆锥曲线相交,直线过定点问题,设出直线的斜截式方程,与圆锥曲线方程联立,借助韦达定理求出直线斜率与纵截距的关系即可解决问题.20.如图,在四棱锥P ABCD -中,底面ABCD 是直角梯形,AD AB ⊥,//AB DC ,PA ⊥底面ABCD ,点E 为棱PC 的中点.22AD DC AP AB ====.()1证明://BE 平面PAD .()2若F 为棱PC 上一点,满足BF AC ⊥,求二面角F AD C --的余弦值.【答案】()1证明见解析;()210.【解析】【分析】()1在PD 上找中点G ,连接AG ,EG ,利用三角形中位线性质得出12EG CD =,因为底面ABCD 是直角梯形,2CD AB =,所以能得出EG 平行且等于AB ,得出四边形ABEG 为平行四边形,再利用线面平行的判定,即可证出//BE 平面PAD ;()2根据BF AC ⊥,求出向量BF的坐标,进而求出平面FAD 和平面ADC 的法向量,代入向量夹角公式,可得二面角F AD C --的余弦值.【详解】解:()1证明:在PD 上找中点G ,连接AG ,EG ,图象如下:G 和E 分别为PD 和PC 的中点,∴EG //CD ,且12EG CD =,又 底面ABCD 是直角梯形,2CD AB =∴AB //CD ,且12AB CD =,∴AB GE //且AB GE =.即四边形ABEG 为平行四边形.∴AG E //B .AG ⊂平面PAD ,BE ⊄平面PAD ,∴//BE 平面PAD.()2以A 为原点,以AB 所在直线为x 轴,AD 所在直线为y 轴,AP 所在直线为z 轴,建立如图所示的空间直角坐标系,可得()1,0,0B ,()2,2,0C ,()0,2,0D ,()002P ,,,()1,1,1E ,()1,2,0BC = ,()2,2,2CP =-- ,()2,2,0AC = .由F 为棱PC 上一点,设()2,2,2CF CP λλλλ==-- ()01λ≤≤,所以()12,22,2BF BC CF λλλ=+=-- ()01λ≤≤,由BF AC ⊥,得()()2122220BF AC λλ⋅=-+-= ,解得34λ=,即113,,222BF ⎛⎫=- ⎪⎝⎭ ,()1131131,0,0,,,,222222AF AB BF ⎛⎫⎛⎫=+=+-= ⎪ ⎪⎝⎭⎝⎭,设平面FAD 的法向量为(),,n a b c = ,由00n AF n AD ⎧⋅=⎨⋅=⎩ 可得113022220a b c b ⎧++=⎪⎨⎪=⎩所以030b a c =⎧⎨+=⎩,令1c =,则3a =-,则()3,0,1n =- ,取平面ADC 的法向量为()0,0,1m = ,则二面角F AD C --的平面角α满足:cos 10m n m nα⋅===⋅ ,故二面角F AD C --的余弦值为10.【点睛】本题考查线面平行的判定,空间二面角的平面角,建立空间直角坐标系,将二面角问题转化为向量夹角问题,属于难题.21.已知O 为坐标原点,()120F -,,()220F ,,点P 满足122PF PF -=,记点P 的轨迹为曲线.E (1)求曲线E 的方程;(2)过点()220F ,的直线l 与曲线E 交于A B ,两点,求+ OA OB 的取值范围.【答案】(1)()2211.3y x x -=≥(2)[)4∞+,【解析】【分析】(1)根据双曲线的定义,易判断点P 的轨迹是双曲线的右支,求出,a b 的值,即得;(2)设出直线方程与双曲线方程联立消元得到一元二次方程,推出韦达定理,依题得出参数m 的范围,将所求式等价转化为关于m 的函数式,通过整体换元即可求出其取值范围.【小问1详解】因()120F -,,()220F ,,且动点P 满足12122PF PF F F -=<,由双曲线的定义知:曲线E 是以12F F ,为焦点的双曲线的右支,且2c =,1a =,则2223b c a =-=,故曲线E 的方程为()2211.3y x x -=≥【小问2详解】当直线l 的斜率为0时,直线l 与双曲线的右支只有一个交点,故不符题意.如图,不妨设直线l 方程为:2x my =+,设()11A x y ,,()22B x y ,,联立22213x my y x =+⎧⎪⎨-=⎪⎩,得()22311290m y my -++=,由韦达定理得1221221231931m y y m y y m -⎧+=⎪⎪-⎨⎪⋅=⎪-⎩,2121222124()443131m x x m y y m m -+=++=+=---,2212121212234(2)(2)2()431m x x my my m y y m y y m +⋅=++=+++=--.由题意:()()22212221223101243190403134031m m m x x m m x x m ⎧-≠⎪-⨯-⨯>⎪⎪⎪⎨+=->⎪-⎪+⎪⋅=->⎪-⎩,解得:210.3m ≤<OA OB +=====,令2131t m =-,因210,3m ≤<故1t ≤-,而OA OB +== ,在(],1t ∞∈--为减函数,故4OA OB +≥ ,即OA OB + 的取值范围为[)4∞+,.22.如图,已知椭圆22122:1(0)x y C a b a b+=>>与等轴双曲线2C 共顶点(±,过椭圆1C 上一点P (2,-1)作两直线与椭圆1C 相交于相异的两点A ,B ,直线PA 、PB 的倾斜角互补,直线AB 与x ,y 轴正半轴相交,分别记交点为M ,N .(1)求直线AB 的斜率;(2)若直线AB 与双曲线2C 的左,右两支分别交于Q ,R ,求NQ NR 的取值范围.【答案】(1)12-(2)11(1,9+【解析】【分析】(1)先求出椭圆方程,联立直线与椭圆方程,利用韦达定理求解A ,B 坐标,直接计算直线AB 斜率即可.(2)联立直线与双曲线的方程,利用求根公式表示出Q ,R 的坐标,化简NQ NR 的表达式,整理求出NQ NR的取值范围即可得出结果.【小问1详解】由题椭圆22122:1(0)x y C a b a b+=>>,顶点(±,可得a =(2,1)P -在椭圆1C 上,即24118b +=,得22b =,所以椭圆方程为22182x y +=,设等轴双曲线2C :222x y m -=,0m >,由题意等轴双曲线2C 的顶点为(±,可得2=8m ,所以双曲线2C 的方程为:228x y -=,因为直线PA 、PB 的倾斜角互补,且A ,B 是不同的点,所以直线PA 、PB 都必须有斜率,设直线PA 方程为(2)1y k x =--,联立22(2)1182y k x x y =--⎧⎪⎨+=⎪⎩,整理得2222(14)(168)161640k x k k x k k +-+++-=,A 和P 点横坐标即为方程两个根,可得221681+4A P k k x x k ++=,因为=2P x ,所以22882=14A k k x k +-+,代入直线PA 可得2244114A k k y k--=+,即2222882441(,)1414k k k k A k k+---++,又因为直线PA 、PB 的倾斜角互补,将k 换成k -,可得2222882441(,)1414k k k k B k k --+-++,两点求斜率可得出12AB k =-所以直线AB 的斜率为12-【小问2详解】由(1)可设直线AB 的方程:12y x n =-+,又因为直线AB 与x ,y 轴正半轴相交,则0n >,联立方程组2212182y x n x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,整理得2224480x nx n -+-=,22Δ168(48)0n n =-->,解得02n <<.联立直线AB 和双曲线方程221(02)28y x n n x y ⎧=-+<<⎪⎨⎪-=⎩,消去y 得22344320x nx n +--=,利用求根公式可得23n x -±=,所以1Q R x NQ NR x ====,又因为204n <<,所以2632n >,则11>,即29<,所以1121019NQNR+<<,所以NQNR 的取值范围为11210(1,9+【点睛】方法点睛:(1)解答直线与圆锥曲线题目时,时常把两个曲线的方程联立,消去一个未知数建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率不存在的特殊情况.。
四川省资阳市高二数学上学期期末质量检测试题 理 新人教A版

理科数学本试题卷分为第一部分(选择题)和第二部分(非选择题)两部分. 第一部分1至2页,第二部分3至8页. 全卷共150分,考试时间为120分钟.第一部分(选择题共50分)注意事项:1.答第一部分前,考生务必将自己的姓名、考号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束时,将本试卷和答题卡一并收回.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.一个几何体的三视图如图所示,则该几何体可以是(A)圆台(B)棱台(C)圆柱(D)棱柱2.资阳市某中学为了解高中学生学习心理承受压力情况,在高中三个年级分别抽取部分学生进行调查,采用的最佳抽样方法是(A)简单随机抽样(B)系统抽样(C)随机数表法(D)分层抽样3.三棱锥A-BCD中,AC⊥BD,E、F、G、H分别是AB、BC、CD、DA的中点,则四边形EFGH是(A)菱形(B)矩形(C)梯形(D)正方形4.10名工人某天生产同一种零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a,中位数为b,众数为c,则有(A)a b c>>(B)b c a>>(C)c b a>>(D)c a b>> 5.从集合{a,b,c}的所有子集中任取一个,这个集合恰是集合{a,b}的子集的概率是(A)58(B)38(C)12(D)186.设l是一条直线,α,β,γ是不同的平面,则下列说法不正确...的是(A)如果αβ⊥,那么α内一定存在直线平行于β(B)如果α不垂直于β,那么α内一定不存在直线垂直于β(C )如果αγ⊥,βγ⊥,l αβ=,那么l γ⊥(D )如果αβ⊥,l 与α,β都相交,那么l 与α,β所成的角互余7.甲、乙两名运动员在某项测试中的6次成绩的茎叶图如图所示,1x ,2x 分别表示甲、乙两名运动员这项测试成绩的平均数,1s ,2s 标准差,则有(A )1212,x x s s >< (B )1212,x x s s => (C )1212,x x s s ==(D )1212,x x s s =<8.如图,在正三棱锥A-BCD 中,E 、F 分别是AB 、BC 的中点,EF ⊥DE ,且BC =1,则正三棱锥A-BCD 的体积是(A )12(B(C(D 9.执行如图所示的程序框图,若输入8,n S ==则输出的 (A )49(B )67(C )89(D )101110.如图,在三棱锥P-ABC 中,∠APB =∠BPC =∠APC =90°,M 在△ABC 内, ∠MPA =60°,∠MPB =45°,则∠MPC 的度数为(A )30°(B )45° (C )60°(D )75°INPUT xIF x <0 THEN (1)*(1)y x x =++ ELSE(1)*(1)y x x =-- END IF PRINT y资阳市2013—2014学年度高中二年级第一学期期末质量检测理 科 数 学第二部分(非选择题 共100分)题号 二 三总分 总分人 16 17 18 19 20 21 得分注意事项:1.第二部分共6页,用钢笔或圆珠笔直接答在试题卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共5小题,每小题5分,共25分.把答案直接填在题中横线上. 11.输入x =5,运行如图所示的程序之后得到的_____________ .12.在边长为3的正方形ABCD 内任取一点P ,则P 的距离均不小于l 的概率为_______________ .13.一个几何体的三视图如图所示,则这个几何体的表面积与其外接球表面积之比为_______.14.先后抛掷一枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为x ,y ,则事件2log 1x y =发生的概率为_______.15.在四面体ABCD 中,有如下结论:①若AC ⊥BD ,AB ⊥,则AD ⊥BC ;②若E 、F 、G 分别是BC 、AB 、CD 的中点,则∠FEG 的大小等于异面直线AC 与BD 所成角的大小;③若点O 是四面体ABCD 外接球的球心,则O 在面ABD 上的射影为△ABD 的外心;④若四个面是全等的三角形,则ABCD 为正四面体.其中所有正确结论的序号是 .三、解答题:(本题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.)16.(本小题满分12分)已知三点()2,0,1C.B,()A,()3,1,11,0,0(Ⅰ)求CB与CA的夹角;(Ⅱ)求CB在CA方向上的投影.17.(本小题满分12分)如图,在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥DC ,AB =21DC ,中点为PD E .(Ⅰ)求证:AE ∥平面PBC ; (Ⅱ)求证:AE ⊥平面PDC .18.(本小题满分12分)已知二次函数()f x =222b ax x +-(,a b ∈R ),若a 是从区间[2,2]-中随机抽取的一个数,b 是从区间[3,3]-中随机抽取的一个数,求方程()0f x =没有实数根的概率.如图,在矩形ABCD中,点E为边A D上的点,点F为边CD的中点,AB=AE=23AD,现将△ABE沿BE边折至△PBE位置,且平面PBE⊥平面BCDE.(Ⅰ) 求证:平面PBE⊥平面PEF;(Ⅱ) 求二面角E-PF-C的大小 .某班同学利用寒假进行社会实践,对年龄在[25,55]的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非(Ⅰ)补全频率分布直方图,并求n、x、p的值;(Ⅱ)从年龄在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[45,50)的概率.21.(本小题满分14分)如图,在长方体1111ABCD A B C D -中,11,2AD AA AB ===,点E 是棱AB 上的一个动点 . (Ⅰ)证明:11D E A D ⊥;(Ⅱ)当E 为AB 的中点时,求点E 到面1ACD 的距离; (Ⅲ)线段AE 的长为何值时,二面角1D EC D --的大小为4π.ABCDA 1B 1C 1D 1E资阳市2013—2014学年度高中二年级第一学期期末质量检测理科数学参考答案及评分意见一、选择题:本大题共10个小题,每小题5分,共50分. 1-5.ADBCC 6-10.DDBAC二、填空题:本大题共5个小题,每小题5分,共25分.11.16 12.19 13.3 14.11215.①③三、解答题:本大题共6个小题,共75分.16.解:(Ⅰ) CB (1,1,0)=,CA )1,0,1(--=, ··············· 2分1cos ,2||||22CB CA CB CA CB CA ⋅<>===-⋅⋅ ··············· 6分∴2,3CB CA π<>=····················· 8分 (Ⅱ)CB 在CA 方向上的投影2||2CB CA CA ⋅===- ·········· 12分17.证明: (Ⅰ)取PC 的中点M ,连接EM 、BM , 则EM ∥DC ,EM =21DC , ·························· 2分 ∴EM ∥AB 且EM =AB ,则四边形ABME 是平行四边形. ∴AE ∥BM ,AE ⊄平面PBC 内,所以AE ∥平面PBC . ···· 6分(Ⅱ)AB ⊥平面PBC ,AB ∥CD ,所以CD ⊥平面PBC ,CD ⊥BM .由(1)得,BM ⊥PC ,又PCCD C =,所以BM ⊥平面PDC ,又AE ∥BM ,∴AE ⊥平面PDC . ··················· 12分18.解:由方程0)(=x f 没有实数根,得:.0))((,04422<+-∴<-b a b a b a …………………………2分即:⎩⎨⎧<->+00b a b a 或者⎩⎨⎧>-<+00b a b a 又因为33,22≤≤-≤≤-b a作出平面区域图如图所示.……………………………………………8分可知方程0)(=xf没有实数根的概率为:32644221264=⨯⨯⨯⨯-⨯=P故方程0)(=xf没有实数根的概率为32……………………………12分19.(I)证明:45Rt DEF ED DF DEF∆=∴∠=在中,45Rt ABE AE AB AEB∆=∴∠=在中,90BEF∴∠=EF BE∴⊥······························ 3分PBE BCDE PBE BCDE BE EF PBE⊥=∴⊥平面平面且平面平面平面,EF PEF PBE PEF⊂∴⊥平面平面平面················ 6分(II)不妨设AD=3,以D为原点,以DC方向为x轴,以ED方向为y轴,以与平面EBCD 向上的法向量同方向为z轴,建立坐标系. ················ 7分则(0,1,0),(1,(1,0,0),(2,0,0)E PF C--,1,12,(1,2,2),0,2.EP CP FP=-=--=-(,)(设平面PEF和平面PCF的法向量分别为→1n()111zyx,,=,→2n()222zyx,,=.由1n EP⋅=及1n FP⋅=可得到1111120x yy⎧-+=⎪⎨-+=⎪⎩,,不妨取→1n(11=-,,.又由→2n•0CP=及→2n•0FP=可得到222222020x yy⎧--+=⎪⎨-+=⎪⎩,,不妨取=→2n()210,,,························· 9分12|cos,|n n<>==···················11分综上所述,二面角E-PF-C大小为150°. ·················12分20.解:(I)第二组的频率为1-(0.04+补全频率分布直方图如下:······2分ABCDA 1B 1C 1D 1EF 第一组的人数为1202000.6=, 频率为0.04×5=0.2 ∴2001000.0.2n == ·········· 3分 由题可知,第二组的频率为0.3, ∴第二组的人数为1000×0.3=300, ∴195300p ==0.65. ············ 5分 第四组的频率为0.03×5=0.15, ∴第四组的人数为1000×0.15=150, ∴x =150×0.4=60.综上所述:n =1000, x =60, p =0.65. ···················· 7分 (II )∵年龄在[40,45)的“低碳族”与年龄在[45,50)的“低碳族”的比值为60:30=2:1, ∴采用分层抽样法抽取6人,[40,45)岁的有4人,[45, 50)岁的有2人.设[40,45)岁中的4人为a 、b 、c 、d ,[45,50)岁中的2人为m 、n ,则选取2人作为领队的方法有(a,b )、(a,c )、(a,d )、(a,m )、(a,n )、(b,c )、(b,d )、(b,m )、(b,n )、(c,d )、(c,m )、(c,n )、(d,m )、(d,n )、(m,n )共15种 ················· 10分其中恰有1人年龄在[40,45)岁的有(a,m )、(a,n )、(b,m )、(b,n )、(c,m )、(c,n )、(d,m )、(d,n )共8种 ································ 12分∴选取的2名领队中恰有1人年龄在[40,45)岁的概率为8.15P = ·······13分 21.解法一(Ⅰ)∵AB ⊥平面11A ADD ,∴1A D AB ⊥,又∵11A D AD ⊥,AB ∩1AD A =,∴1A D ⊥平面1AD E ,1A D ⊥1D E . (4)分 (Ⅱ)等体积法由已知条件可得,21=AD ,51==C D AC ,所以1ACD ∆为等腰三角形,1ACD S ∆=23, AEC S ∆12=,设点E 到平面1ACD 的距离d ,根据AEC D ACD E V V --=11可得,111133ACD AEC S d S DD ∆∆⨯⨯=⨯⨯,即131113232d ⨯⨯=⨯⨯, 解得31=d .……………………………………8分 (Ⅲ)过点D 作DF EC ⊥于F ,连接1D F . 因为1DD ⊥平面ABCD ,所以1EC DD ⊥,又EC DF ⊥,1DD ∩DF D =,所以EC ⊥平面1D DF ,故EC ⊥1D F ,1D FD ∠为二面角1D EC D --的平面角,所以14D FD π∠=,1DF DD =1=,sin DF DCF DC ∠=12=,6DCF π∠=,3ECB π∠=,由tan EBECB BC∠=可得EB,2AE =······························· 14分 解法二:以D 为坐标原点,直线1,,DA DC DD 分别为,,x y z 轴,建立空间直角坐标系, 设AE x =,则11(1,0,1),(0,0,1),(1,,0),(1,0,0),(0,2,0)A D E x A C ·········· 2分(I)因为11(1,0,1)(1,,1)0DA D E x ⋅=⋅-= 所以11DA D E ⊥,即11D E A D ⊥. ··· 4分 (II)因为E 为AB 的中点,则(1,1,0)E ,从而1(1,1,1),(1,2,0)D E AC =-=-, 1(1,0,1)AD =-,设平面1ACD 的法向量为111(,,)m a b c =,则10,0,m AC m AD ⎧⋅=⎪⎨⋅=⎪⎩也即1111200a b a c -+=⎧⎨-+=⎩,得11112a b a c =⎧⎨=⎩, 设11a =,从而(2,1,2)m =,所以点E 到平面1ACD 的距离为1212133D E m h m⋅+-===······················· 10分 (Ⅲ)设平面1D EC 的法向量222(,,)n a b c =, ∴11(1,2,0),(0,2,1),(0,0,1)CE x D C DD =-=-=由22122200(2)00b c n D C a b x n CE ⎧-=⋅=⎧⎪⇒⎨⎨+-=⎩⋅=⎪⎩ 令2221,2,2b c a x =∴==-,∴(2,1,2)n x =-依题意112cos4n DDn DDπ⋅===⋅∴12x=+不合,舍去),22x=-∴2AE=,二面角1D EC D--的大小为4π·············14分。
四川省成都市2023-2024学年高二上学期期末能力测评数学试题含答案

高二2023-2024学年度上期期末能力测评数学(答案在最后)满分150分考试时间120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡指定位置;2.回答选择题时,选出每小题答案后,用铅笔把答题卡上相应题目答案标号涂黑.如需改动,请用橡皮擦干净;3.回答非选择题时,在答题卡上作答.写在本试卷上无效;4.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共8小题,每小题5分,共40分.每小题的四个选项中,只有一个选项符合题目要求.1.直线:l 2310x y +-=的一个方向向量为()A.()2,3- B.()3,2- C.()2,3 D.()3,2【答案】B 【解析】【分析】利用直线方向向量的定义和直线斜率与方向向量的关系直接求解即可.【详解】由2310x y +-=得,2133y x -+,所以直线的一个方向向量为2(1,)3-,而2(3,2)3(1,)3-=--,所以(3,2)-也是直线的一个方向向量.故选:B.2.对于变量x ,条件:p Q x ∈,条件:q R ,则p 是q 的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【答案】D 【解析】【分析】根据充分必要条件的要求,分别判断p 能否推出q ,以及q 能否推出p 即得.【详解】由Q x ∈,若取=1x -R ,即p 不是q 的充分条件;R ,若取πx =,显然不满足Q x ∈,即p 不是q 的必要条件.3.对某社团进行系统抽样,编号为001,002,⋯,120,则抽取的序号不可能是()A.001,004,⋯,117B.008,020,⋯,116C.005,015,⋯,115D.014,034,⋯,114【答案】A 【解析】【分析】根据系统抽样的要求抽取的序号的间隔相同,序号构成等差数列,逐项验证.【详解】根据系统抽样的要求抽取的序号的间隔相同,序号构成等差数列,对A :121,4,3,32n a a d a n ====-,令32117n -=此方程没有正整数解,故A 不可能;对B :128,20,12,124n a a d a n ====-,令124116n -=得10n =满足要求,故B 可能;对C :125,15,10,105n a a d a n ====-,令105115n -=得12n =满足要求,故C 可能;对D :1214,34,20,206n a a d a n ====-,令206114n -=得6n =满足要求,故D 可能;故选:A4.若直线:l 260x y m -+-=平分圆:C 22240x mx y +++=,则实数m 的值为()A .2- B.2 C.3 D.2-或3【答案】C 【解析】【分析】列出22240x mx y +++=所满足的条件,由直线l 过圆心求得m 的值.【详解】22240x mx y +++=可化为()2224x m y m ++=-,则240m ->,直线260x y m -+-=始终平分圆22240x mx y +++=的周长,则直线l 经过圆心(,0)m -.代入直线得260m m --=,解得3m =或2m =-.因为2m =-不满足240m ->,故3m =故选:C.5.若数列{}n a 满足12a =,1123n nn S S n a +++=+,则88S a +的值为()A.9B.10C.11D.12【解析】【分析】由n S 与n a 的关系求得()()112n n S n S n +=++,从而1n S n ⎧⎫⎨⎬+⎩⎭为常数列,得到1n S n =+,即可求88S a +的值.【详解】由11n n n S S a ++-=及1123n nn S S n a +++=+得()()1123n n n n S S n S S +++=+-,即()()112323n n n n S S n S n S ++-+=++,即()()112n n S n S n +=++,所以112n n S S n n +=++,即1n S n ⎧⎫⎨⎬+⎩⎭为常数列,又11221S a ==,所以11n Sn =+,即1n S n =+,所以878879,81,S S a S S ===-=,所以8810S a +=.故选:B6.已知实数,x y28x y =+-,则点(),P x y 的轨迹为()A.抛物线B.双曲线C.一条直线D.两条直线【答案】D 【解析】【分析】将已知方程等价变形为()()334170x x y -⋅+-=,即可判断点(),P x y 的轨迹.28x y =+-,所以两边平方得()()22223246443216x y x y xy x y -+-=+++--,化简整理得2351426120x xy x y ++--=,所以()()334170x x y -⋅+-=,所以30x -=或34170x y +-=,即点(),P x y 的轨迹方程为30x -=或34170x y +-=,所以点(),P x y 的轨迹为两条相交直线.故选:D7.若复数z 满足()24z z z ⋅+=,则23z z +的最小值为()A .16B. C. D.【答案】C 【解析】【分析】设i z x y =+,利用复数的乘法运算及模的公式得422491016x x y y ++=,所求式子为()2244x y +,令224t x y =+,则利用422152160x tx t --+=有解求得t ≥,即可得解.【详解】设i z x y =+,则()()()()222i 3i 34i 4z z z x y x y x yxy ⋅+=+⋅+=-+=,所以()()22223416x y xy -+=,即422491016x x y y ++=,而()()()2222222333i i 42i 16444z zx y x y x y x y x y +=++-=+=+=+,令224t x y =+,则224y t x =-,所以()()242229104416x x t x t x +-+-=,即422152160x tx t --+=,记20m x =≥,则22152160m tm t --+=,由题意,该方程存在非负根,且二次函数对称轴015tm =>,所以()()22Δ2415160t t =-⨯⨯-+≥,所以215t ≥,又0t >,所以t ≥,所以234z z t +=≥,即23z +的最小值为.故选:C8.计算:cos 20cos 40cos 40cos80cos80cos 20-+= ()A.12B.23C.34D.2【答案】C 【解析】【分析】根据和差角公式以及积化和差公式即可求解.【详解】()()()()11cos 20cos 40cos 40cos80cos80cos 20cos 4020cos 4020cos 8040cos 804022⎡⎤⎡⎤-+=++--++-⎣⎦⎣⎦()()1cos 8020cos 80202⎡⎤+++-⎣⎦111131cos 20cos 40cos100cos 202cos 40cos100222242112⎡⎤⎡⎤⎡⎤⎡⎤=+-+++=+⎣⎦-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣-⎦+()()3131cos 20cos 40cos100cos 3010cos 3010sin104242⎡⎤⎡⎤=+=+--+-⎣⎦-+⎦⎣3132sin 30sin10sin10424⎡⎤=+-=⎣⎦,故选:C二、选择题:本题共4小题,每小题5分,共20分.在每小题的四个选项中,有多个选项符合题目要求.全部选对得5分,部分选对得2分,有选错的得0分.9.设集合A ={|αα为两个非零向量可能的夹角},集合B ={|ββ为两条异面直线可能的夹角},则下列说法错误的是()A.4π3A ∉ B.2π3B ∈C.ππ2A B θθ⎧⎫⊆≤≤⎨⎬⎩⎭ð D.ππ2A B θθ⎧⎫⊇≤≤⎨⎬⎩⎭ð【答案】BCD 【解析】【分析】由向量夹角定义和异面直线所成角取值范围求出集合A ,B ,再结合集合相关概念即可求解.【详解】由题集合[]0,πA =,π0,2B ⎛⎤= ⎥⎝⎦,所以4π3A ∉,2π3B ∈,故A 对,B 错;由上{}π0,π2A B ⎛⎤=⋃ ⎥⎝⎦ð,故C 、D 错.故选:BCD.10.已知曲线:Γ1x x y y +=-,将曲线Γ用函数()f x 表示,则下列说法正确的是()A.()f x 在R 上单调递减;B.()y f x =的图象关于34y x =对称;C.()22fx x +的最小值为9;D.若直线:l y kx b =+()0b <与()y f x =的图象没有交点,则实数k 为定值.【答案】ACD 【解析】【分析】分段讨论确定Γ所表示的曲线方程作出图象,由图象判断A ,B ,D 选项;求出()22f x x +的表达式求其最小值判断C 选项;【详解】当0,0x y >≥时,221916x y+=-不存在,故在第一象限内无图象;当0,0x y <≥时,221916x y-+=-,在第二象限内为双曲线的一部分,其渐近线为43y x =-,此时2216169x y =-,即()()221616,39x f x x =-≤-,所以()222251699x f x x +=-≥;当0,0x y ≤<时,221916x y +=,在第三象限内为椭圆的一部分;此时2216169x y =-,即()()221616,309x f x x =--<≤,所以()22271699x f x x +=->当0,0x y ><时,22916x y -=-,在第四象限内为双曲线的一部分,其渐近线为43y x =-;此时2216169x y =+,即()()221616,09x f x x =+>,所以()2222516169x f x x +=+>;综上:()22fx x +的最小值为9,故C 正确;()y f x =图象如图所示:对于A :由图象可得()f x 在R 上单调递减,故A 正确;对于B ,由图象可得()f x 图象不关于直线34y x =成轴对称图形,也可以求得()3,0-关于直线34y x =对称的点2172,2525⎛⎫-- ⎪⎝⎭不在()f x 图象上,故B 错误;对D :若直线:l y kx b =+()0b <与()y f x =的图象没有交点,则直线l 与渐近线平行,即43k =-为定值,否则直线l 与渐近线相交,则一定会与()y f x =的图象相交,故D 正确.故选:ACD【点睛】关键点点睛:本题关键是能根据,x y 的正负去掉绝对值符号得到曲线方程,作出图象,数形结合分析.11.已知独立的事件A 、B 满足()()0P A P B <<,则下列说法错误的是()A.()()P A P AB +一定小于()2P B ;B.()()P A B P AB +可能等于()2PB ;C.事件AB 和事件AB 不可能相互独立;D.事件AB 和事件A B +可以相互独立.【答案】BC 【解析】【分析】利用独立事件的定义和性质可判断A 正确,B 错误;根据事件A 与B ,A 与B ,A 与B ,A 与B 都相互独立,利用相互独立事件概率公式计算即可.【详解】()()P A P B <且,A B 相互独立,则()()P AB P B <,()()2()P A P AB P B +<,A 正确.∵A B +表示事件,A B 至少发生一个,AB 表示事件,A B 同时发生,∴()(),()()()()P A B P B P AB P A P B P B +>=<,∴()()P A B P AB +不能等于()2P B ,B 错误.若1()2P B =,则1()2P B =,此时()()P AB P AB =,∵AB AB A = .∴()(()(()()()P A P AB AB P AB P AB P A P B P AB ==+=+ .∴移项得(()()()()()()(1())()()P AB P A P AB P A P A P B P A P B P A P B =-=-=-=.∴事件A 与B 相互独立,同理可知事件A 与B ,A 与B 也都相互独立.∴事件AB 和AB 可能相互独立,事件AB 和A B +可能相互独立,C 错误,D 正确.故选:BC【点睛】关键点点睛:解题的关键是已知独立事件A 、B ,可推出事件A 与B ,A 与B ,A 与B ,A 与B 都相互独立.12.如图,在棱长为6的正方体1111ABCD A B C D -上,点M 为体对角线1BD 靠近1D 点的三等分点,点E F 、为棱AB 、1CC 的中点,点P 在平面MEF 上,且在该平面与正方体表面的交线所组成的封闭图形中(含边界),则下列说法正确的是()A.平面MEF 与底面ABCD 的夹角余弦值为77;B.点D 到平面MEF 的距离为11; C.点D 到点P 的距离最大值为6345;D.设平面MEF 与正方体棱的交点为1T 、…、n T ,则n 边形1n T T ⋯最长的对角线的长度大于172.【答案】BCD 【解析】【分析】建立空间直角坐标系,即可利用法向量的夹角求解A ,根据点面距离的向量法即可求解B ,根据面面平行的性质可得截面为六边形EQFNKT ,即可根据点点距离公式求解CD.【详解】建立如图所示的空间直角坐标系,则()()()2,2,4,6,3,0,0,6,3M E F ,()()4,1,4,2,4,1ME MF =-=--,设平面MEF 法向量为(),,m x y z =,440240ME m x y z MF m x y z ⎧⋅=+-=⎪⎨⋅=-+-=⎪⎩,取4y =,则()5,4,6m = ,而平面ABCD 的一个法向量为()10,0,6AA =,所以平面MEF 与底面ABCD的夹角余弦值为1677cos ,77m AA ==.故A 错误,()2,2,4,DM = 所以点D 到平面MEF的距离为11DM m m ⋅==,故B正确,延长EM 交11D C 于点N ,连接NF 交DC 延长线于点H ,连接EH 交BC 于Q ,由于点M 为体对角线1BD 靠近1D 点的三等分点,所以1111322D M D N D N MB EB ==⇒=,11912C N C F CH CH CF ==⇒=,9612235CH CQ BQ BQ EB BQ BQ -=⇒=⇒=,在棱11A D 上取K ,使得165D K =,由于11116124455,35352D K D KBQ BQ D N EB EB D N==⇒=⇒=,故//KN EQ ,连接,,TE TK FQ ,故六边形EQFNKT 即为平面MEF 上与正方体所截得的截面,由于1121863,6,555FC AE CQ D K ===-==113//,2932C F AT ATNF TE AT NC AE ∴=⇒=⇒= ,由于CQ 最大,故DQ为最大值5DQ =,故当P 在Q 处时,DP最大为5,C正确,由于()()()1863,6,0,6,3,0,0,6,3,6,0,2,,0,6,0,,6,552Q E F T K N ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭172NE ==>,因此六边形EQFNKT 的最长对角线的长度不小于NE 的长度,因此六边形EQFNKT 的最长对角线的长度大于172,故D 正确,故选:BCD【点睛】方法点睛:作截面的常用三种方法:直接法,截面的定点在几何体的棱上;平行线法,截面与几何体的两个平行平面相交,或者截面上有一条直线与几何体的某个面平行;延长交线得交点,截面上的点中至少有两个点在几何体的同一平面上.三、填空题:本题共4小题,每小题5分,共20分.13.函数()f x =的定义域为______.【答案】()11,2∞⎧⎫+⋃⎨⎬⎩⎭【解析】【分析】根据根式函数和对数函数及分式函数定义域法则列不等式求解即可.【详解】由题意2100ln 0x x x -≥⎧⎪>⎨⎪>⎩或2100ln 0x x x -=⎧⎪>⎨⎪≠⎩,解得1x >或12x =,所以函数()f x =的定义域为()11,2∞⎧⎫+⋃⎨⎬⎩⎭.故答案为:()11,2∞⎧⎫+⋃⎨⎬⎩⎭14.已知某平面内三角形ABC 为等腰三角形,AB AC =,点D 为AC 中点,且3BD =,则ABC 面积的最大值为____________.【答案】6【解析】【分析】根据向量的模长公式可得259cos 4A x=-,即可利用面积公式得()()2229203664ABC S x =--+ ,利用二次函数的性质即可求解.【详解】设AB AC x==由于12BD AC AB =- ,所以2222215cos 44BD AC AB AC AB x x A =+-⋅=- ,故259cos 4A x=-,()()222424211159sin 1cos 12444ABC S AB AC A x A x x ⎡⎤⎛⎫⎛⎫==-=--⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()24229458192036648464x x x =-+-=--+故当220x =时,此时()2ABC S 取最大值36,故面积的最大值为6,故答案为:615.已知锐角α,β满足2tan cos αβ=,2tan tan2αβ=,则sin sin βα的值为______.【答案】56【解析】【分析】根据已知结合同角关系消去β得1tan tan2tan ααα-=,再根据二倍角公式化弦为切得1sin 2cos αα+=,然后利用同角三角函数关系求得33sin ,tan 54αα==,然后代入sin sin βα==计算可得.【详解】因为2tan cos αβ=,2tan tan 2αβ=,所以22sin 1tan tan 2cos tan αβαβα-==,又2sin2sin 1cos 22tan 2sin cos 2sin cos 222αααααααα-===,所以1cos 1tan cos sin sin tan sin ααααααα---==,所以1cos cos sin ααα-=-,即1sin 2cos αα+=,又22sin cos 1αα+=,所以25sin 2sin 30αα+-=,又α为锐角,解得3sin 5α=,或sin 1α=-(舍去),所以43cos ,tan 54αα==,所以sin 5sin 6βα==.故答案为:5616.假设视网膜为一个平面,光在空气中不折射,眼球的成像原理为小孔成像.思考如下成像原理:如图,地面内有圆1O ,其圆心在线段MB 上,且与线段MB 交于不与,M B 重合的点A ,PM ⊥地面,且24BM PM ==,P 点为人眼所在处,视网膜平面与直线BM 垂直.过A 点作平面α平行于视网膜平面.科学家已经证明,这种情况下圆1O 上任意一点到P 点的直线与平面α交点的轨迹(令为曲线C )为椭圆或圆,且由于小孔成像,曲线C 与圆1O 在视网膜平面上的影像是相似的,则当视网膜平面上的圆1O 的影像为圆时,圆1O 的半径r 为____________.当圆1O 的半径r 满足112r ≤≤时,视网膜平面上的圆1O 的影像的离心率的取值范围为____________.【答案】①.32②.26,23⎣⎦【解析】【分析】使用空间向量方法可以验证曲线C 的两条半轴(半长轴和半短轴,但顺序可能不对应)的长分别为2r和,然后根据题设求解.【详解】由于视网膜平面与直线BM 垂直,平面α平行于视网膜平面,故平面α与直线BM 垂直.设地面平面为β,则据已知条件有PM β⊥.从而在β内可过M 作MA 的垂线MD ,使得,,MA MD MP 可分别作为以M为原点的一个右手坐标系的,, x y z轴正方向.由已知有4BM=,2PM=,故()0,0,0M,()4,0,0B,()0,0,2P.而42MA MB AB r=-=-,故()42,0,0A r-.再由1O A r=,知()14,0,0O r-.由于平面α与直线BM垂直,即平面α与x轴垂直,从而平面α上每一点的坐标的x轴分量都是定值42r-.再根据点A在线段MB内部及4BM=,又有0424r<-<,得02r<<.此时,地面平面即平面xOy,故圆1O的方程为()2224x r y rz⎧+-+=⎪⎨=⎪⎩.据此可设圆1O上的一点Q的坐标为()4cos,sin,0r r t r t-+,故()4cos,sin,2PQ r r t r t=-+-.设直线PQ和平面的交点为R,则,,P Q R三点共线,且R的坐标的x轴分量是42r-.故()22sin424842,,4cos4cos4cosr r tr rPR PQ rr r t r r t r r t⎛⎫---==-⎪-+-+-+⎝⎭,这得到R的坐标为()()22sin21cos42,,4cos4cosr r t r trr r t r r t⎛⎫-+-⎪-+-+⎝⎭.设()22sin4cosr r tyr r t-=-+,()21cos4cosr tzr r t+=-+,则()222221682242r ry zrr r-⎛⎫⎛⎫⋅+-⎪ ⎪⎝⎭⎝⎭-()()22222242142r ry zrr r--⎛⎫=⋅+-⎪⎝⎭-()()()222168sin41cos14cos4cosr t tr r tr r t⎛⎫-+=+-⎪-+-+⎝⎭()()()()()()22221681cos4cos4cos4cosr t r t rr r t r r t---+=+-+-+()()()()()2221681cos 4cos 4cos r t r t r r r t --+-+=-+()()()()()22222168168cos 168cos 24cos 4cos r r t r r t r r t r r r t ---+-++-+=-+()()()222216824cos cos 4cos r r r r t r tr r t -++-+=-+()()224cos 4cos r r t r r t -+=-+1=.所以我们得到点R 的轨迹为()222224216821242x r r r y z r r r =-⎧⎪-⎛⎫⎛⎫⎨⋅+-= ⎪ ⎪⎪⎝⎭⎝⎭-⎩.由此可知,曲线C 是位于平面α内,以42,0,2r r ⎛⎫- ⎪⎝⎭为中心,半长轴和半短轴分别(顺序可能不对应)为2r22-=的椭圆(或者是圆,因为在二者相等时是圆).而曲线C 和视网膜平面上的圆1O 的影像相似,故其中一个是圆当且仅当另一个是圆,且二者离心率相等.当曲线C 是圆时,有2r=12=,两边平方可得32r =.当112r ≤≤时,2r>=>,故和2r分别(顺序对应)是半长轴和半短轴的长,从而离心率e =再由112r≤≤,23⎣⎦.故答案为:32,26,23⎣⎦.【点睛】关键点点睛:本题的关键点在于,利用已知的坐标,采取适当的配凑得到类似椭圆的方程,从而得到相应曲线的性质.四、解答题:本题共5小题,共70分.解答题应写出文字说明、证明过程或演算步骤.17.已知抛物线C 的顶点是坐标原点O ,焦点是双曲线2241x y -=的右顶点.(1)求抛物线C 的方程;(2)若直线:l 2x y +=与抛物线相交于A 、B 两点,解决下列问题:(i )求弦长AB ;(ii )求证:OA OB ⊥.【答案】(1)22y x =;(2)(i);(ii )证明见解析.【解析】【分析】(1)求出双曲线右顶点,再求出抛物线的方程即得.(2)把直线l 的方程与抛物线方程联立,利用韦达定理,结合弦长公式及数量积的坐标表示求解即得.【小问1详解】双曲线2241x y -=,即22114x y -=,其右顶点为1(,0)2,则抛物线C 的焦点为1(,0)2,而抛物线C 的顶点是坐标原点O ,所以抛物线C 的方程:22y x =.【小问2详解】(i )设211)1(,2A y y ,222)1(,2B y y ,由222y xx y ⎧=⎨=-+⎩消去x 得:2240y y +-=,则122y y +=-,124y y =-,于是12y y -==所以12AB y y =-==.(ii )显然211)1(,2OA y y = ,222)1(,2OB y y = ,则221212121211(1)044OA OB y y y y y y y y ⋅=+=+= ,显然0,0OA OB ≠≠ ,即OA OB ⊥ ,所以OA OB ⊥.18.已知递增数列{}n a 和{}n b 分别为等差数列和等比数列,且113=a b ,422a b =,73a b =,126a b +=(1)求数列{}n a 和{}n b 的通项公式;(2)若ln ln n nb n a ac b =,证明:1211nc c c n 迹+.【答案】(1)2n a n =+,13n n b -=(2)证明见解析【解析】【分析】(1)由等差和等比数列的性质结合题意列方程组,解出11,,,a d q b ,再由基本量法求出通项即可;(2)由对数的运算性质化简再简单放缩可得()11133log 32log 31n n n n n nc n ++-=+≤=+,最后利用累乘法可证明.【小问1详解】设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,由题意可得:11112111133266a b a d b q a d b q a b q =⎧⎪+=⎪⎨+=⎪⎪+=⎩,前两式化简后有1111131322a b a d b q ⎧=⎪⎪⎨⎪+=⎪⎩,由上述式子可得:()21111136322a a d a d ⎛⎫+=+ ⎪⎝⎭,化简得:()()11930a d a d +-=,则19a d =-或13a d =,若19a d =-,可得1233b b b d ===-,数列{}n b 为常数列,故舍去;若13a d =,带入得3q =,又由116a b q +=,解得1d =,13a =,11b =,于是得到数列{}n a 的通项公式为2n a n =+,数列{}n b 的通项公式为13n n b -=.【小问2详解】由题可得()113ln log log 32ln n n a n nnb n n b b a ac a b +-===+,由于N n *∈时,()()113322310nn n ---+=-≥,则1332n n -³+(当且仅当1n =时取等号),所以()11133log 32log 31n n n n n nc n ++-=+≤=+,则121212311nn c c c n n 迹创即=++(当且仅当1n =时取等号).所以1211n c c c n 迹+.19.如图,1111ABCD A B C D -为一个平行六面体,且12AB AD AA ===,1BAA ∠=23πBAD ∠=,13DAA π∠=.(1)证明:直线AB 与直线1AC 垂直;(2)求点1B 到平面ABCD 的距离;(3)求直线1AC 与平面ABCD 的夹角的余弦值.【答案】(1)证明见解析(2)3(3)3【解析】【分析】(1)利用垂直关系的向量表示求1AB AC即可证明.(2)由已知条件得三棱锥1B ABC -为正四面体,再利用正四面体结构特征即可求解得到点1B 到平面ABCD 的距离.(3)由(1)可得1AC,再由(2)得点1C 到平面ABCD 的距离,进而可求出线面角的正弦值,再结合同角三角函数平方和为1求解余弦值即可.【小问1详解】由题可得111AC AC CC AB AD AA =+=++,所以()2111····AB AC AB AB AD AA AB AB AD AB AA =++=++ 2π2π422cos 22cos 033=+⨯+⨯=,则1AB AC ⊥,于是得证:1AB AC ⊥.【小问2详解】连接11,,AB CB AC ,则由题意可知1113DAA CBB ABC ABB π∠=∠=∠=∠=,且1AB BB BC ==,所以三棱锥1B ABC -为正四面体,所以由正四面体结构性质1B 在底面ABC 的投影O 在BG (G 为AC 中点)上,且1112333GO BO BG ====,所以1B O ⊥平面ABC ,且1263B O ==,即点1B 到平面ABCD 的距离为3.【小问3详解】设直线1AC 与平面ABCD 的夹角为θ,由于1111ABCD A B C D -为一个平行六面体,则点1C 到平面ABCD 的距离等于点1B 到平面ABCD 的距离为3d =,由(1)中11AC AB AD AA =++,得到:1AC === ,则1sin 3d AC θ== ,显然π0,2θ⎛⎫∈ ⎪⎝⎭,则cos 3θ==.20.已知圆1:O 224x y +=,圆2:O ()221x y m +-=()01m ≤<,点P 为圆2O 上的一点.(1)若过P 点作圆2O 的切线l 交圆1O 于A 、B 两点,且弦AB长度最大值与最小值之积为m 的值;(2)当0m =时,圆1O 上有C 、D 两点满足PC PD ⊥,求线段CD 长度的最大值.【答案】(1)12(21【解析】【分析】(1)画出图形,得出AB =,进一步由三角形三边关系得出1O Q 的最值,由此即可顺利得解.(2)由三角形三边关系、直角三角形性质可得关于CD 的不等式,解不等式即可得解.【小问1详解】设AB 中点为Q 点,连接12O O 、1O Q 、2O Q 、2O P ,由01m ≤<,得12211O O <-=,则圆1O 内含圆2O ,由垂径定理得:AB =,1AB O Q ⊥,由切线l 可得2AB O P ⊥,可得112121O Q O P O P O O m ≤≤+=+(当且仅当直线AB 为1y m =+时都取等),12121121O Q O P O O O P O O m ≥-≥-=-(当且仅当直线AB 为1y m =-+时都取等),所以111m O Q m -≤≤+,于是=,解得12m =.【小问2详解】取CD 中点T ,连接1O T 、TP 、1O P .当0m =时,1O 和2O 重合,由于PC PD ⊥,则12PT CD =,而11112O T PT O P CD ≥-=-,221144O T CD +=,则22114142CD CD ⎛⎫-≥- ⎪⎝⎭,解得:1CD ≤,当且仅当1O 在线段TP 上时取等,所以CD 1.21.请解决以下两道关于圆锥曲线的题目.(1)已知圆:M ()22224x y a ++=()02a <<,圆P 过点()2,0N 且与圆M 外切.设P 点的轨迹为曲线E .①已知曲线Γ:x yλ=()R λ∈与曲线E 无交点,求λ的最大值(用a 表示);②若记(2)中题①的λ最大值为0λ,圆:Q ()2211x y -+=和曲线00Γ:x y λ=相交于A 、B 两点,曲线E 与x 轴交于K 点,求四边形OAKB 的面积的最大值,并求出此时a 的值.(参考公式:322223a b c abc ⎛⎫++≤ ⎪⎝⎭,其中,,0a b c >,当且仅当a b c ==时取等号)(2)如图,椭圆:C 22221x y a b+=()0a b >>的左右焦点分别为1F 、2F ,其上动点M 到1F 的距离最大值和最小值之积为1,且椭圆C 的离心率为2.①求椭圆C 的标准方程;②已知椭圆C 外有一点P ,过P 点作椭圆C 的两条切线,且两切线斜率之积为12-.是否存在合适的P 点,使得123F PF π∠=?若存在,请写出P 点的坐标;若不存在,请说明理由.【答案】(1;②四边形OAKB 的面积的最大值为839,实数a的值为3(2)①2214x y +=;②不存在P 点使得123F PF π∠=,理由见解析【解析】【分析】(1)①根据已知条件求出点P 的轨迹方程E ,再将两个曲线无交点转化为对应的方程组无解即可.②根据已知条件求出,A B 两点坐标,表示出所求四边形的面积结合参考的不等式求解即可.(2)①根据焦点弦的范围和离心率列方程组求解即可.②由点P 和椭圆关系可以求出点P 的轨迹方程;再根据123F PF π∠=也以确定点所在圆弧的轨迹方程;根据联立两个方程有没有解来判断是否存在这样的点P 即可.【小问1详解】由圆P 过点()2,0N 且与圆M 外切可得:2P P M P ON R OM R R R a ⎧=⎪⎨=+=+⎪⎩,所以有24OM ON a MN -=<=,则点P 的轨迹为以M 、N 为左右焦点,实轴长为2a 的双曲线右支,所以曲线:E 222214x y a a-=-()0x >.①显然,当0λ≤时,曲线Γ与曲线E 无交点,当0λ>时,()222Γ:Γ:0x y x y x λλ=⇔=≥,于是令2222222014x x y a a x y λ>⎧⎪⎪-=⎨-⎪=⎪⎩,得222241a a x λ⎛⎫--= ⎪⎝⎭,若该方程在()0,∞+上无实数解,则22240a a λ--≤,解得λ≤所以λ.②将0λ=曲线00Γ:x y λ=得:曲线0Γ:x =22224a x y a ⇔=-()0x ≥,不妨令()222222411a x y a x y ⎧=⎪-⎨⎪-+=⎩,得0x =或212a ,于是212A B x x a ==,则四边形OAKB的面积12OAKB S a ==根据参考公式将该式化为32222228283269OAKB a a a S a ⎛⎫⎛⎫++-=≤= ⎪ ⎪ ⎪⎝⎭⎝⎭,2a =取等号,解得263a =或3-,负值舍去)所以四边形OAKB 的面积的最大值为839,此时实数a 的值为263.【小问2详解】①由焦点弦取值范围1a c MF a c -≤≤+,离心率c e a =得:()()21c a a c a c ⎧=⎪⎨⎪-+=⎩,解得:21a b c ⎧=⎪=⎨⎪=⎩,所以椭圆C 的标准方程为2214x y +=.②设00(,)P x y ,过点P 的切线方程为()00y y k x x -=-,由对称性不妨令00≥y ,()220014x y y y k x x ⎧+=⎪⎨⎪-=-⎩,消元得()()()2220000418440k x k y kx x y kx ++-+--=,令Δ0=,化简得:()()22200004210x k x y k y --+-=,由于两切线斜率之积为12-,则202020401142x y x ⎧-≠⎪-⎨=-⎪-⎩,化简得:2200163x y +=()02x ≠±,由于123F PF π∠=,则点P 在以12F F 为弦所对圆心角为23π的圆的优弧 12F F 上,当00≥y 时,易得该圆的方程为()2214x y +-=,不妨令()22221631420x y x y x y ⎧+=⎪⎪⎪+-=⎨⎪≠±⎪⎪≥⎩,解得该方程组无实数解,则当00≥y 时,不存在P 点使得123F PF π∠=,由对称性可知,当00≤y 时也不存在P 点使得123F PF π∠=,综上,不存在P 点使得123F PF π∠=.。
2023-2024学年四川省成都市高二上期期末考试数学(理)试题(含解析)

2023-2024学年四川省成都市高二上期期末考试数学(理)试题一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.过点()0,2-且与已知直线0x y +=垂直的直线方程为()A.20x y +-=B.20x y --= C.20x y ++= D.20x y -+=【正确答案】B【分析】由垂直关系得到直线斜率,由点斜式写出方程即可.【详解】∵直线0x y +=的斜率11k =-,∴所求直线斜率2 1k =,故直线方程为()()220y k x --=-,即20x y --=.故选:B .2.若一个圆的标准方程为()2214x y +-=,则此圆的圆心与半径分别是()A.()1,04-; B.()102,; C.()014-,; D.()0,12;【正确答案】D【分析】根据圆的标准方程求得圆心和半径.【详解】圆的标准方程为()2214x y +-=,所以圆心为()0,1,半径为2.故选:D3.将某选手的得分去掉1个最高分,去掉1个最低分,剩余分数的平均分为91,现场作的分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示,则x =()A.2B.3C.4 D.5【正确答案】B【分析】根据去掉最高分和最低分后的平均分可直接构造方程求解.【详解】由茎叶图可知:最高分为99分,最低分为87分,∴剩余分数的平均分为8794909190915x+++++=,解得.3x =故选:B.4.某校为了了解高二学生的身高情况,打算在高二年级12个班中抽取3个班,再按每个班男女生比例抽取样本,正确的抽样方法是()A.简单随机抽样B.先用分层抽样,再用随机数表法C.分层抽样D.先用抽签法,再用分层抽样【正确答案】D【分析】利用抽样方法求解.【详解】解:在高二年级12个班中抽取3个班,这属于简单随机抽样中的抽签法,按男女生比例抽取样本属于分层抽样,所以是先用抽签法,再用分层抽样.故选:D .5.若x ∈R ,则“44x -<<”是“22x x <”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【正确答案】B【分析】由22x x <解得02x <<,由集合的包含关系判断必要性、充分性即可【详解】由22x x <解得02x <<,则由()0,2真包含于()4,4-可得“44x -<<”是“22x x <”的必要不充分条件.故选:B .6.已知命题*:p x ∀∈R ,12x x+≥,则p ⌝为()A.*0x ∃∈R ,0012x x +≥ B.*0x ∃∈R ,0012x x +<C.*0x ∃∉R ,0012x x +< D.x ∀∈R ,12x x+<【正确答案】B【分析】“任意一个都符合”的否定为“存在一个不符合”.【详解】“任意一个都符合”的否定为“存在一个不符合”.故选:B .7.下列命题为真命题的是()A.若0a b <<,则11a b< B.若ac bc >,则a b >C.若a b >,c d >,则a c b d ->- D.若22ac bc >,则a b>【正确答案】D【分析】利用不等式的性质,赋值法进行判断解决即可.【详解】对于A ,当2,1a b =-=-时,11a b>,故A 错误;对于B ,当0c <时,a b <,故B 错误;对于C ,当2,1,5,1a b c d ====时,a c b d -<-,故C 错误;对于D ,当22ac bc >时,必有20c >,所以a b >,故D 正确;故选:D8.已知双曲线的上、下焦点分别为()10,5F ,()20,5F -,P 是双曲线上一点且满足126PF PF -=,则双曲线的标准方程为()A.221169x y -= B.221916x y -= C.221169y x -= D.221916y x -=【正确答案】D【分析】根据双曲线的定义求得正确答案.【详解】依题意5c =,1226,3PF PF a a -===,所以4b ==,由于双曲线的焦点在y 轴上,所以双曲线的标准方程是221916y x -=.故选:D9.已知圆O 的圆心是坐标原点O 0y --=截得的弦长为6,则圆O 的方程为()A.224x y +=B.228x y +=C.2212x y +=D.22216x y +=【正确答案】C【分析】由圆的弦长公式,计算可得.【详解】圆心到直线的距离d ==6=212r =,故选:C .10.如图所示程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的,a b 分别为39,27,则输出的=a ()A.1B.3C.5D.7【正确答案】B【分析】按照程序框图运行程序,直到不满足a b ¹时输出结果即可.【详解】按照程序框图运行程序,输入39a =,27b =,满足a b ¹,且a b >,392712a ∴=-=,继续运行;满足a b ¹,不满足a b >,271215b ∴=-=,继续运行;满足a b ¹,不满足a b >,15123b ∴=-=,继续运行;满足a b ¹,且a b >,1239a ∴=-=,继续运行;满足a b ¹,且a b >,936a ∴=-=,继续运行;满足a b ¹,且a b >,633a ∴=-=,继续运行;不满足a b ¹,输出3a =.故选:B.11.若两个正实数x ,y 满足311x y+=,则x +3y 的最小值为()A.6B.9C.12D.15【正确答案】C【分析】运用基本不等式求解.【详解】()319336612y x x y x y x y x y ⎛⎫+=++=++≥+=⎪⎝⎭,当且仅当9y xx y=,x =6,y =2时取等号;故选:C .12.直线l 过抛物线22y px =(p >0)的焦点F ,且交抛物线于P ,Q 两点,由P ,Q 分别向准线引垂线PR ,QS ,垂足分别为R ,S ,如果2PF =,4QF =,M 为RS 的中点,则MF =()A. B.C. D.2【正确答案】A【分析】利用抛物线的定义得QF QS =,PF PR =,证明90SFR ∠= ,则有12MF RS =,过点P 作PN ⊥QS 交于点N ,利用矩形性质得PN RS =,利用勾股定理求得PN =MF .【详解】如图所示,由抛物线的定义可得QF QS =,PF PR =,QFS QSF ∴∠=∠,PFR PRF ∠=∠,由题意可得////QS FG PR ,SFG QSF ∴∠=∠,RFG PRF ∠=∠,90SFG RFG ∴∠+∠= ,∴12MF RS =,过点P 作PN ⊥QS 交于点N ,则PN RS =,在Rt PQN 中,PN ==,∴MF =.故选:A .二、填空题:本题共4小题,每小题5分,共20分.13.以下两个变量成负相关的是_____.①学生的学籍号与学生的数学成绩;②坚持每天吃早餐的人数与患胃病的人数;③气温与冷饮销售量;④电瓶车的重量和行驶每千米的耗电量.【正确答案】②【分析】根据相关关系的知识确定正确答案.【详解】①无相关关系;②负相关;③④正相关.故②14.若圆224x y +=与圆22()9(0)x m y m ++=>外切,则实数m =_____.【正确答案】5【分析】根据两圆外切列方程,从而求得m 的值.【详解】圆224x y +=的圆心为()0,0,半径为2.圆22()9(0)x m y m ++=>的圆心为(),0m -,半径为3.235m ==+=,由于0m >,故解得5m =.故515.若抛物线212y x =上的点M 到焦点的距离为8,则点M 到y 轴的距离为_____.【正确答案】5【分析】设()0,M x y ,根据已知求出抛物线的准线方程.根据抛物线的定义求出05x=,即可得出结果.【详解】解:由已知可得,抛物线的焦点坐标为()3,0F ,准线方程为:3l x =-.由已知根据抛物线的定义可得,点M 到准线距离为8.设()0,Mx y ,00x≥,则()038x --=,解得05x =.所以点M 到y 轴距离为5.故5.16.1F ,2F 是椭圆C 的两个焦点,点P 是椭圆C 上异于顶点的一点,点I 是12PF F △的内切圆圆心,若12PF F △的面积是12IF F △的面积的4倍,则椭圆C 的离心率为______.【正确答案】13【分析】作图,根据几何关系以及条件求出a 与c 的关系式,再求出e .【详解】设椭圆方程为:221x y a b +=,如图,设P (m ,n ),()1,0F c -,()2,0F c ,12PF F △的周长为l ,内切圆I 的半径为r ,则由椭圆的定义可得l =2a +2c ,∴122222PF F S c n c n r la ca c===++△,12124PF F IF F S S =△△,∴1124222c nc n c a c⨯⨯=⨯⨯⨯+,解得:13c a =,13e =;故13.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知直线l :12540x y +-=与圆C :222270x y x y +---=交于A ,B 两点.(1)求圆C 的弦AB 的长;(2)若直线m 与直线l 平行,且与圆C 相切,求直线m 的方程.【正确答案】(1)AB =;(2)125220x y ++=或125560x y +-=.【分析】(1)求出圆心到直线l 的距离,利用弦长公式即可求出AB .(2)设出直线m 的方程,利用点到直线的距离公式列方程,化简求得直线m 的方程.【小问1详解】圆C :()()22119x y -+-=,其中圆心(1,1)C ,半径r =3,圆心C 到直线l的距离1d ==,可得AB ==【小问2详解】∵直线m 与直线l 平行,∴可设直线m 的方程为:1250(4)x y K K ++=≠-,又直线m 与圆C相切,有3=,可得22K =或56K =-,∴直线m 的方程为:125220x y ++=或125560x y +-=.18.已知命题p :方程22113x y m m +=--表示焦点在x 轴上的双曲线,命题q :a <m <a +4.(1)若p 是q 的充分不必要条件,求实数a 的取值范围;(2)若a =2,p q ∧为假,p q ∨为真,求实数m 的取值范围.【正确答案】(1)[-1,1](2)(][)1,23,6⋃【分析】(1)根据充分不必要条件的定义推理计算;(2)由条件可知,p 与q 一真一假,分类讨论.【小问1详解】由方程22113x y m m +=--表示焦点在x 轴上的双曲线,可得10,1330m m m ->⎧<<⎨-<⎩,∵p 是q 的充分不必要条件,∴1,1143a a a ≤⎧-≤≤⎨+≥⎩,经检验,11a -≤≤满足题意,∴实数a 的取值范围为:[-1,1];【小问2详解】易得p :1<m <3,q :2<m <6,又p q ∧假,p q ∨为真,∴p ,q 一真一假,当p 真q 假时有1326m m m <<⎧⎨≤≥⎩或,得12m <≤,当p 假q 真时有,1326m m m ≤≥⎧⎨<<⎩或,得36m ≤<,所以实数m 的取值范围为:(][)1,23,6⋃;综上,(1)[]1,1a ∈-,(2)(][)1,23,6m ∈ 19.世界对中国的印象很多,让很多人印象深刻的肯定包括“吃”,中国有句话叫民以食为天,中国人认为吃对于人来说是一件很重要的事情,不但要能吃,也要会吃.我们四川更是遍地美食,四川人很多也是“好吃嘴”,但是好吃不等于健康,有人对不同类型的某些食品做了一次调查,制作了下表.其中x 表示某种食品所含热量的百分比,y 表示一些“好吃嘴”以百分制给出的对应的评分.x 1520253035y6878808292附:相关系数r 可以衡量两个变量x 和y 之间线性关系的强弱,当r 为正时,x 和y 正相关,当r 为负时,x 和y 负相关,统计学认为如果[]0.75,1r ∈相关性很强,如果[)0.30,0.75r ∈相关性一般,如果[]0.25,0.25r ∈-相关性较弱.()()ni i x x y y r --=∑,()()()121ˆniii ni i x x y y bx x ==--=-∑∑,ˆˆa y bx=-.13.60≈.(1)试用r 对两个变量x ,y 的相关性进行分析(r 的结果保留两位小数);(2)求回归方程.【正确答案】(1)答案见解析;(2)ˆ 1.0454yx =+.【分析】(1)由已知条件求出r 公式中的相关数值,代入即可求出0.96r ≈,即可得出结果;(2)根据(1)问中所求的数据可求出ˆ 1.04b=,进而得到ˆ54a =,即可得出回归方程.【小问1详解】解:易得1520253035255x ++++==,6878808292805y ++++==,()()()522222211050510250i i x x =-=-+-+++=∑,()()()522222211220212296i i y y =-=-+-+++=∑,()()()()()511012520521012260iii x x y y =--=-⨯-+-⨯-++⨯+⨯=∑,所以()()5iix x y y r --=∑==130.9613.60≈≈,0.96[0.75,1]∈,即r 为正且接近于1,所以两个变量x ,y 之间成正相关,并且有相当强的相关性.【小问2详解】解:由(1)易得()()()2155126026ˆ 1.0425025iii i i x x y y bx x ==--====-∑∑,4ˆˆ80 1.04255ay bx =⨯==--,所以,回归方程为ˆ 1.0454yx =+.20.已知椭圆E :22221x y a b+=(0a b >>)的左、右焦点分别为()1F ,)2F ,且过点12P ⎫⎪⎭.(1)求椭圆E 的标准方程;(2)过椭圆E 的左焦点1F 且斜率为1的直线与椭圆E 交于A ,B 两点,求PAB 的面积.【正确答案】(1)2214x y +=(2)4625【分析】(1)由椭圆定义列方程求得参数a ,由a 、b 、c 关系求得b .(2)写出直线方程,联立椭圆与直线方程,由弦长公式及点线距离求得高,即可求得面积.【小问1详解】由椭圆定义得1224a PF PF =+==,∴2a =,又c =1b ==,∴椭圆E 的标准方程为:2214x y +=;【小问2详解】过椭圆E 的左焦点1F且斜率为1的直线方程为y x =,由2244y x x y ⎧=+⎪⎨+=⎪⎩,得2580x ++=.设()11,A x y ,()22,B x y ,有12835x x +=-,1285x x =,∴85AB ==,又点P 到直线AB 的距离4d ==,∴PAB面积125S AB d ==.21.四川新高考于2022年启动,2025年整体实施,2025年参加高考的学生将面临“3+1+2”高考新模式.其中的“3”指“语、数、外”三个必选学科,“1”是指“物理、历史”两个学科二选一,“2”是指“化学、政治、生物、地理”这四个再选学科中选两科,对于再选学科会通过等级赋分的办法计入总成绩.等级赋分以30分作为赋分起点,满分为100分,将考生每门的原始成绩从高到低划定为A 、B 、C 、D 、E 五等,各等级人数所占比例分别为15%、35%、35%、13%、2%.现在高2022级新高一学生已经开始使用新教材,并且新高一的学生也参加了进高中以来的第一次期中考试,成都市某高中为了调研新高一学生在此次期中考试中政治学科的学情,随机抽取了100名新高一学生的政治成绩,统计了如下表格:分数范围[)50,60[)60,70[)70,80[)80,90[]90,100学生人数52535305(1)根据统计表格画出频率分布直方图;(2)根据统计数据估计该学校新高一学生在此次期中考试中政治成绩的平均分;(3)根据统计数据结合等级赋分的办法,预估此次考试政治赋分等级至少为B 的大致分数线(取整数).【正确答案】(1)作图见解析;(2)75.5;(3)76.【分析】(1)根据统计表格求出各分组的频率,画出图即可;(2)根据频率分布图,估算样本平均数即可;(3)由已知,可得大致分数线即为数据的中位数.根据频率分布图列出700.050.250.350.58070x -++⨯=-,解出x 即为所求.【小问1详解】解:由已知可得,分数范围在[)50,60的频率为50.05100=;分数范围在[)60,70的频率为250.25100=;分数范围在[)70,80的频率为350.35100=;分数范围在[)80,90的频率为300.30100=;分数范围在[]90,100的频率为50.05100=.则画出频率分布图如下图:【小问2详解】根据频率分布直方图可估计:该学校新高一学生在此次期中考试中政治成绩的平均分为550.05650.25750.35850.30950.0575.5⨯+⨯+⨯+⨯+⨯=.【小问3详解】由题设条件可知A 、B 两等级人数占比为50%,所以,赋分等级至少为B 的大致分数线即为数据的中位数.由频率分布直方图可知,大致位于[)70,80,设中位数为x ,由700.050.250.350.58070x -++⨯=-可得,得75.7x ≈,所以,此次考试政治赋分等级至少为B 的大致分数线为76分.22.已知抛物线C :22y px =(p >0)的焦点为F ,过抛物线的焦点F 且斜率为1的直线l 与抛物线交于A ,B 两点,线段AB 的中点为P (3,2).(1)求抛物线C 的方程;(2)证明:抛物线过A ,B 两点的切线的交点Q 在抛物线的准线上.【正确答案】(1)24y x=(2)证明见解析【分析】(1)根据条件,建立方程组求出p ;(2)设A ,B 两点的切线方程,联立抛物线与切线方程,利用Δ0=,求出相应的代数关系,再利用直线AB 的方程即可求解.【小问1详解】()11,A x y ,()22,B x y ,∵线段AB 的中点为P (3,2),直线AB 的斜率为1,∴124y y +=,21211y y x x -=-,又A ,B 两点在抛物线上,∴有2112y px =,2222y px =,相减整理得:()()()21212124y y y y p x x -+==-,∴抛物线C 的方程为24y x =;【小问2详解】易得过A ,B 两点的抛物线的切线不与坐标轴垂直,不妨设过()11,A x y 的抛物线的切线方程为:()11x x m y y -=-,即11x my x my =+-,由1124x my x my y x=+-⎧⎨=⎩,有2114440y my x my --+=,切线与抛物线只有1个交点,∴2111616160m x my ∆=+-=,又2114y x =,整理得221104y m my -+=,解得12y m =,∴过()11,A x y 的抛物线的切线方程为:()1112y x x y y -=-,整理得()112x x y y +=,同理可得过()22,B x y 的抛物线的切线方程为:()222x x y y +=,设两切线的交点为()00,Q x y ,由()()112222x x y y x x y y ⎧+=⎪⎪⎨+⎪=⎪⎩可得()()2221212121211212012121244444y x x y y x x y y y y y y y x y y y y y y ---====---,易得直线AB 的方程为:x =y +1,由214x y y x=+⎧⎨=⎩有2440y y --=,∴124y y =-,∴01x =-,即两切线的交点Q 在抛物线的准线上;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省高二上学期期末数学试卷(a卷)
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共24分)
1. (2分)下列命题正确的是()
A . 四条线段顺次首尾连接,所得的图形一定是平面图形
B . 一条直线和两条平行直线都相交,则三条直线共面
C . 两两平行的三条直线一定确定三个平面
D . 和两条异面直线都相交的直线一定是异面直线
2. (2分)已知直线ax+y﹣1﹣a=0与直线x﹣ y=0平行,则a的值是()
A . 1
B . ﹣1
C . 2
D . ﹣2
3. (2分)已知三个平面α,β,γ,一条直线l,要得到α∥β,必须满足下列条件中的()
A . l∥α,l∥β且l∥γ
B . l⊂γ,且l∥α,l∥β
C . α∥γ,且β∥γ
D . 以上都不正确
4. (2分)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()
A . 2x+y+5=0或2x+y-5=0
B . 2x+y+=0或2x+y-=0
C . 2x-y+5=0或2x-y-5=0
D . 2x-y+=0或2x-y-=0
5. (2分)已知正四棱锥S﹣ABCD的侧棱长与底面边长都等于2,点E是棱SB的中点,则直线AE与直线SD 所成的角的余弦值为()
A .
B .
C .
D .
6. (2分) (2019高二上·北京月考) 已知m和n是两条不同的直线,和是两个不重合的平面,下面给出的条件中一定能推出的是()
A . 且
B . 且
C . 且
D . 且
7. (2分)已知动点M(x,y)到点F(4,0)的距离比到直线x+5=0的距离小1,则点M的轨迹方程为()
A . y2=16x
B . y2=8x
C . x﹣4=0
D . x+4=0
8. (2分) (2020高二上·会昌月考) 已知点为直线上的一点,分别为圆
与圆上的点,则的最大值为()
A . 4
B . 5
C . 6
D . 7
9. (2分) (2017高一下·扶余期末) 在正方体中,直线与平面所成的角的余弦值等于()
A .
B .
C .
D .
10. (2分)(2017·郎溪模拟) 某三棱锥的三视图如图所示,其侧(左)视图为直角三角形,则该三棱锥外接球的表面积为()
A . 50π
B . 50 π
C . 40π
D . 40 π
11. (2分)已知圆的圆心为抛物线的焦点,直线与圆C相切,则
该圆的方程为()
A .
B .
C .
D .
12. (2分) (2020高三上·天津月考) 设所有棱长都为2的正三棱柱的顶点都在一个球面上,则该球的表面积为().
A .
B .
C .
D .
二、填空题 (共5题;共5分)
13. (1分)(2017·广州模拟) 已知A,B,C三点都在体积为的球O的表面上,若,
∠ACB=60°,则球心O到平面ABC的距离为________.
14. (1分)对于任给的实数m,直线(m﹣1)x+(2m﹣1)y=m﹣5都通过一定点,则该定点坐标为________
15. (1分)四边形ABCD是矩形,AB=2,BC=1,PC⊥平面AC,PC=2,则点P到直线BD的距离为________.
16. (1分)(2017·福州模拟) 已知直线3x+4y+c=0与圆心为C的圆x2+(y﹣1)2=2相交于A,B两点,且△ABC为直角三角形,则实数c等于________.
17. (1分) (2018高一上·张掖期末) 如图所示,正方形的边长为,已知,将
沿边折起,折起后点在平面上的射影为点,则翻折后的几何体中有如下描述:① 与
所成角的正切值为;② ;③ ;④平面平面,其中正确的命题序号为________.
三、解答题 (共6题;共51分)
18. (10分) (2018高一下·黑龙江期末) 如图,是边长为3的正方形,平面,
平面, .
(1)证明:平面平面;
(2)在上是否存在一点,使平面将几何体分成上下两部分的体积比为?若存在,求出点的位置;若不存在,请说明理由.
19. (10分) (2019高二上·青岛期中)
(1)已知圆经过和点,圆心在直线上,求圆的方程。
(2)求圆心在原点且圆周被直线分成两部分的圆的方程。
20. (1分) (2019高二下·凤城月考) 长方体的长,宽,高分别为3,2,1,其顶点都在球O的球面上,则球O的表面积为________.
21. (10分)根据下列条件求圆的方程:
(1)求经过点A(5,2),B(3,2),圆心在直线2x﹣y﹣3=0 上的圆的方程;
(2)求以O(0,0),A(2,0),B(0,4)为顶点的三角形OAB外接圆的方程.
22. (15分) (2020高二上·厦门月考) 已知方程.
(1)若此方程表示的曲线是圆C,求m的取值范围;
(2)若(1)中的圆C与直线相交于P,Q两点,且(O为原点),求圆C的方程;
(3)在(2)的条件下,过点作直线与圆C交于M,N两点,若,求直线MN的方程.
23. (5分) (2017高二上·张家口期末) 如图四棱锥E﹣ABCD中,四边形ABCD为平行四边形,△BCE为等边三角形,△ABE是以∠A为直角的等腰直角三角形,且AC=BC.
(Ⅰ)证明:平面ABE⊥平面BCE;
(Ⅱ)求二面角A﹣DE﹣C的余弦值.。