2019年中考数学专题复习第二十五讲旋转与对称(含详细参考答案).doc
初中数学旋转经典习题【含详细答案】

旋转经典习题1.(2019四川绵阳中考)下列图案中,属于轴对称图形的是(A)2.(2019天津中考)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( C )3.(2019内蒙古呼和浩特中考)图中序号①②③④对应的四个三角形,都是△ABC 这个图形进行了一次变换之后得到的,其中是通过轴对称得到的是(:A)A.①B.②C.③D.④解析:∵轴对称是沿着某条直线翻转得到新图形,∴通过轴对称得到的是①.故选A.4.(2019西宁中考)下列图形中,是轴对称图形但不是中心对称图形的是(A)A.等边三角形B.平行四边形C.正六边形D.圆5.(2019江苏淮安中考)点P(1,-2)关于y轴对称的点的坐标是(C)A.(1,2)B.(-1,2)C.(-1,-2)D.(-2,1)解析:P(1,-2)关于y轴对称的点的坐标是(-1,-2),故选C.6.(2019四川宜宾中考)如图,在矩形ABCD中,BC=8,CD=6,将△ABE沿BE折叠,使点A恰好落在对角线BD上的点F处,则DE的长是(C)A.3B.C.5D.解析:∵在矩形ABCD中,∠BAE=90°,且由折叠可得△BEF≌△BEA,∴∠BFE=90°,AE=EF,AB=BF,在Rt△ABD中,AB=CD=6,BC=AD=8,根据勾股定理得BD=10,即FD=10-6=4,设EF=AE=x,则有ED=8-x,根据勾股定理得x2+42=(8-x)2,解得x=3,所以DE=8-3=5,故选C.7.(2019山东枣庄中考)如图,把正方形纸片ABCD先沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE.若AB的长为2,则FM的长为( B )A.2B.C.D.1解析:∵四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上的点F 处,∴FB=AB=2,BM=1,则在Rt△BMF中,FM=,故选B.8.(2017湖南长沙中考)如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为(B )A. B. C. D.随H点位置的变化而变化解析:设CH=x,DE=y,则DH=-x,EH=EA=-y,∵∠EHG=90°,∴∠DHE+∠CHG=90°.∵∠DHE+∠DEH=90°,∴∠DEH=∠CHG,又∵∠D=∠C=90°,△DEH∽△CHG,∴,即,∴CG=,HG=,△CHG的周长n=CH+CG+HG=,在Rt△DEH中,DH2+DE2=EH2,即+y2=,整理得-x2=,∴n=CH+HG+CG=.故.故选B.8.下列标志中,可以看作是中心对称图形的是(D)9.下列图形中,是轴对称图形,但不是中心对称图形的是(B)10.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B',AB'与DC 相交于点E,则下列结论一定正确的是( D )A.∠DAB'=∠CAB'B.∠ACD=∠B'CDC.AD=AED.AE=CE答案:D11.如图,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点把平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是(D)A.正三角形B.正方形C.正五边形D.正六边形解析:根据第一次对折以及三等分平角可知将360°进行6等分,即多边形的中心角为60°,由最后的剪切可知所得图形符合正六边形特征.故选D.5.如图,直线l是四边形ABCD的对称轴.若AB=CD,有下面的结论:①AB∥CD;②AC⊥BD;③AO=OC;④AB⊥BC.其中正确的结论有.(填序号)答案:①②③12.如图,在四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=95°.解析:∵FN∥DC,∴∠BNF=∠C=70°.∵MF∥AD,∴∠BMF=∠A=100°.由翻折知,∠F=∠B.又∵∠BMF+∠B+∠BNF+∠F=360°,∴100°+∠B+70°+∠F=360°,∴∠F=∠B==95°.13.如图,在平面直角坐标系中,若△ABC与△A1B1C1关于点E成中心对称,则对称中心点E的坐标是(3,-1)14.在Rt△ABC中,∠BAC=90°,AB=3,M为边BC上的点,连接AM(如图).如果△ABM沿直线AM翻折后,点B恰好落在边AC的中点处,那么点M到AC的距离是2.解析:如图,过点M作MN⊥AC于N,由折叠性质可知,∠BAM=∠CAM=45°.∵点B恰好落在边AC的中点处,∴AC=2AB=6.∵∠ANM=90°,∴∠CAM=∠AMN=45°.∴MN=AN.由Rt△CNM∽Rt△CAB,得,∴.∴MN=2.15.△ABC在平面直角坐标系中的位置如图.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△A1B1C1与△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.解:(1)△A1B1C1如图,A1(0,4),B1(2,2),C1(1,1).(2)△A2B2C2如图.A2(6,4),B2(4,2),C2(5,1).(3)△A1B1C1与△A2B2C2关于直线x=3对称.如图.。
2019年全国中考数学真题分类汇编:平移旋转与对称(含解析)

平移旋转与对称一.选择题1. (2019?江苏无锡?3分)下列图案中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A、不是中心对称图形,是轴对称图形,故此选项错误;B、是中心对称图形,也是轴对称图形,故此选项错误;C、是中心对称图形,不是轴对称图形,故此选项正确;D、不是中心对称图形,也不是轴对称图形,故此选项错误;故选:C.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2. (2019?江苏扬州?3分)下列图案中,是中心对称图形的是( D )A. B. C. D.【考点】:中心对称图形【解析】:中心对称图形绕某一点旋转180°与图形能够完全重合【答案】:D.3. (2 019·江苏盐城·3分)下列图形中,既是轴对称图形又是中心对称图形的是( )【答案】B【解析】考查对轴对称和中心对称的理解,故选 B.4. (2019?天津?3分)在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看做是轴对称图形的是【答案】A【解析】美、丽、校、园四个汉子中,“美”可以看做轴对称图形。
故选 A5.(2019?四川自贡?4分)下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】直接利用轴对称图形和中心对称图形的概念求解.【解答】解:A、是轴对称图形,但不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、既是中心对称图形也是轴对称图形,故此选项正确.故选:D.【点评】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.6.(2019?河南?3分)如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为()A.(10,3)B.(﹣3,10)C.(10,﹣3)D.(3,﹣10)【分析】先求出AB=6,再利用正方形的性质确定D(﹣3,10),由于70=4×17+2,所以第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转2次,每次旋转90°,此时旋转前后的点D关于原点对称,于是利用关于原点对称的点的坐标特征可出旋转后的点D的坐标.【解答】解:∵A(﹣3,4),B(3,4),∴AB=3+3=6,∵四边形ABCD为正方形,∴AD=AB=6,∴D(﹣3,10),∵70=4×17+2,∴每4次一个循环,第70次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O 顺时针旋转2次,每次旋转90°,∴点D的坐标为(3,﹣10).故选:D.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.7.(2019?天津?3分)如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论一定正确的是A.AC=ADB.AB⊥EBC. BC=DED.∠A=∠EBC【答案】D【解析】由旋转性质可知,AC=CD,AC≠AD,∴A错由旋转性质可知,BC=EC,BC≠DE,∴C错由旋转性质可知,∠ACB=∠DCE,∵∠ACB=∠ACD+∠DCB,∠DCE=∠ECB+∠DCB ∴∠ACD=∠ECB ,∵AC=CD ,BC=CE ,∴∠A=∠CDA=21(180°-∠ECB ),∠EBC=∠CEB=21(180°-∠ECB ),∴D 正确,由于由题意无法得到∠ABE=90°,∴B 选项错误. 故选D 。
(完整word版)2019年中考数学专题复习第二十五讲对称(含详细参考答案)

2019年中考数学专题复习第六章图形与变换第二十五讲对称【基础知识回顾】1、轴对称:把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形那么就说这两个图形成轴对称,这条直线叫2、轴对称图形:如果把一个图形沿着某条直线对折,直线两旁的部分能够互相那么这个图形叫做轴对称图形3、轴对称性质:⑴关于某条直线对称的两个图形⑵对应点连接被对称轴【名师提醒:1、轴对称是指个图形的位置关系,而轴对称图形是指个具有特殊形状的图形;2、对称轴是而不是线段,轴对称图形的对称轴不一定只有一条】【重点考点例析】考点一:轴对称图形例1(2018•邵阳)下列图形中,是轴对称图形的是()A.B.C.D.【思路分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.【点评】本题考查的是轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.考点二:关于x、y轴的对称点的坐标例2(2018•湘潭)如图,点A的坐标(-1,2),则点A关于y轴的对称点的坐标为()A.(1,2)B.(-1,-2)C.(1,-2) D.(2,-1)【思路分析】直接利用关于y轴对称点的性质分析得出答案.【解答】解:如图,点A的坐标(—1,2),点A关于y轴的对称点的坐标为:(1,2).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.考点三:最短路径问题例3(2018•东营)在平面直角坐标系内有两点A、B,其坐标为A(-1,—1),B(2,7),点M考点四:图形的折叠(翻折问题)例4 (2018•常州)如图,把△ABC沿BC翻折得△DBC.(2)不在原图中添加字母和线段,只加一个条件使四边形ABDC是平行四边形,写出添加的条件,并说明理由.【思路分析】(1)先由折叠知,AB=BD,∠ACB=∠DBC,进而判断出△AOB≌△DOB,最后用平角的定义即可得出结论;(2)由折叠得出∠ABC=∠DBC,∠ACB=∠DCB,再判断出∠ABC=∠ACB,进而得出∠ACB=∠DBC=∠ABC=∠DCB,最后用两边分别平行的四边形是平行四边形.【解答】解:(1)如图,连接AD交BC于O,由折叠知,AB=BD,∠ACB=∠DBC,∵BO=BO,∴△ABO≌△DBO(SAS),∴∠AOB=∠DOB,OA=OD∵∠AOB+∠DOB=180°,∴∠AOB=∠DOB=90°,∴BC⊥AD,故答案为:BC垂直平分AD;(2)添加的条件是AB=AC,理由:由折叠知,∠ABC=∠DBC,∠ACB=∠DCB,∵AB=AC,∴∠ABC=∠ACB,∴∠ACB=∠DBC=∠ABC=∠DCB,∴AC∥BD,AB∥CD,∴四边形ABDC是平行四边形.【点评】此题主要考查了折叠的性质,平行四边形的判定,等腰三角形的性质,全等三角形的判定和性质,判断出△ABO≌△DBO(SAS)是解本题的关键.备考真题过关一、选择题1.(2018•淄博)下列图形中,不是轴对称图形的是()A.B.C.D.2. (2018•河北)图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l43。
2019年全国中考试题解析版分类汇编-旋转,旋转对称,中心对称

2019年全国中考试题解析版分类汇编-旋转,旋转对称,中心对称注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!1.〔2017•南通〕下面的图形中,既是轴对称图形又是中心对称图形的是〔〕A、B、C、D、考点:中心对称图形;轴对称图形。
分析:结合轴对称图形与中心对称图形的定义进行分析解答:解:A项是中心对称图形,不是轴对称图形,故本项错误,B项为中心对称图形,不是轴对称图形,故本项错误,C项为中心对称图形,也是轴对称图形,故本项正确,D项为轴对称图形,不是中心对称图形,故本项错误故答案选择C、点评:此题主要考察轴对称图象的定义和中心对称图形的定义,解题的关键是找到图形是否符合轴对称图形和中心对称图形的定义2.〔2017江苏扬州,8,3分〕如图,在Rt△ABC中,∠ACB=90º,∠A=30º,BC=2,将△ABC绕点C按顺时针方向旋转n度后,得到△EDC,此时,点D在AB边上,斜边DE交AC边于点F,那么n的大小和图中阴影部分的面积分别为〔〕A.30,2B.60,2C.60,D.60,3考点:旋转的性质;含30度角的直角三角形。
专题:创新题型;探究型。
分析:先根据条件求出AC的长及∠B的度数,再根据图形旋转的性质及等边三角形的判定定理判断出△BCD的形状,进而得出∠DCF的度数,由直角三角形的性质可判断出DF 是△ABC的中位线,由三角形的面积公式即可得出结论、解答:解:∵△ABC是直角三角形,,∠ACB=90°,∠A=30°,BC=2,∴∠B=60°,AC=BC×cot∠A=2×3=23,AB=2BC=4,∵△EDC是△ABC旋转而成,∴BC=CD=BD=1AB=2,2∵∠B=60°,∴△BCD是等边三角形,∴∠BCD=60°,∴∠DCB=30°,∠DFC=90°,即DE⊥AC,∴DE∥BC,∵BD=21AB=2,∴DF 是△ABC 的中位线,∴DF=21BC=21×2=1,CF=21AC=21×23=3,∴S 阴影=21DF ×CF=21×3=、应选C 、点评:此题考查的是图形旋转的性质及直角三角形的性质、三角形中位线定理及三角形的面积公式,熟知图形旋转的性质是解答此题的关键,即:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等、3.〔2017•宁夏,8,3分〕如图,△ABO 的顶点坐标分别为A 〔1,4〕、B 〔2,1〕、O 〔0,0〕,如果将△ABO 绕点O 按逆时针方向旋转90°,得到△A ′B ′O ′,那么点A ′、B ′的对应点的坐标是〔〕A 、A ′〔﹣4,2〕,B ′〔﹣1,1〕 B 、A ′〔﹣4,1〕,B ′〔﹣1,2〕C 、A ′〔﹣4,1〕,B ′〔﹣1,1〕D 、A ′〔﹣4,2〕,B ′〔﹣1,2〕 考点:坐标与图形变化-旋转。
2019年中考数学专题复习第二十五讲旋转与对称(含详细参考答案)(可编辑修改word版)

2019 年中考数学专题复习第六章图形与变换第二十五讲平移与旋转【基础知识回顾】一、图形的平移与旋转:1、平移:⑴定义:在平面内,把某个图形沿着某个移动一定的这样的图形运动称为平移⑵性质:Ⅰ、平移不改变图形的与,即平移前后的图形Ⅱ、平移前后的图形对应点所连的线段平行且【名师提醒:平移作图的关键是确定平移的和】2、旋转:⑴定义:在平面内,将一个图形绕一个定点沿某个方向旋转一个,这样的图形运动称为旋转,这个点称为转动的称为旋转角⑵旋转的性质:Ⅰ、旋转前后的图形Ⅱ、旋转前后的两个圆形中,对应点到旋转中心的距离都,每对对应点与旋转中心的连线所成的角度都是旋转角都【名师提醒:1、旋转作用的关键是确定、和,2、一个图形旋转一定角度后如果能与自身重合,那么这个图形就是旋转对称图形】二、中心对称与中心对称图形:1、中心对称:在平面内,一个图形绕某一点旋转1800 能与自身重合它能与另一个图形就说这两个图形关于这个点成中心对称,这个点叫做2、中心对称图形:一个图形绕着某点旋转后能与自身重合,这种图形叫中心对称图形,这个点叫做3、性质:在中心对称的两个图形中,对称点的连线都经过且被平分【名师提醒:1、中心对称是指个图形的位置关系,而中心对称图形是指个具有特殊形状的图形2 、常见的轴对称有、、、、、等,常见的中心对称图形有、、、、、等3、所有的正n 边形都是对称图形,且有条对称轴,边数为偶数的正多边形,又是对称图形,4、注意圆形的各种变换在平面直角坐标系中的运用】【重点考点例析】考点一:平移例1 (2018•海南)如图,在平面直角坐标系中,△ABC 位于第一象限,点A 的坐标是(4,3),把△ABC 向左平移6 个单位长度,得到△A1B1C1,则点B1的坐标是()A.(-2,3)B.(3,-1)C.(-3,1)D.(-5,2)【思路分析】根据点的平移的规律:向左平移a 个单位,坐标P(x,y)⇒P(x-a,y),据此求解可得.【解答】解:∵点B 的坐标为(3,1),∴向左平移6 个单位后,点B1的坐标(-3,1),故选:C.【点评】本题主要考查坐标与图形的变化-平移,解题的关键是掌握点的坐标的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.考点二:旋转的性质例2 (2018•宁波)如图,在△ABC 中,∠ACB=90°,AC=BC,D 是AB 边上一点(点D 与A,B不重合),连结C D,将线段CD 绕点C 按逆时针方向旋转90°得到线段CE,连结DE 交BC 于点F,连接BE.(1)求证:△ACD≌△BCE;⎨ ⎩(2) 当 AD=BF 时,求∠BEF 的度数.【思路分析】(1)由题意可知:CD=CE ,∠DCE=90°,由于∠ACB=90°,所以∠ ACD=∠ACB-∠DCB ,∠BCE=∠DCE-∠DCB ,所以∠ACD=∠BCE ,从而可证明△ACD ≌△BCE (SAS )(2)由△ACD ≌△BCE (SAS )可知:∠A=∠CBE=45°,BE=BF ,从而可求出∠BEF 的度数.【解答】解:(1)由题意可知:CD=CE ,∠DCE=90°, ∵∠ACB=90°,∴∠ACD=∠ACB-∠DCB , ∠BCE=∠DCE-∠DCB , ∴∠ACD=∠BCE , 在△ACD 与△BCE 中, ⎧ AC =BC ⎪∠ACD =∠BCE , ⎪CD =CE∴△ACD ≌△BCE (SAS ) (2)∵∠ACB=90°,AC=BC , ∴∠A=45°,由(1)可知:∠A=∠CBE=45°, ∵AD=BF , ∴BE=BF , ∴∠BEF=67.5°【点评】本题考查全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质,本题属于中等题型.考点三:中心对称图形例3 (2018•潍坊)在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O 称为极点;从点O 出发引一条射线Ox 称为极轴;线段OP 的长度称为极径.点P 的极坐标就可以用线段OP 的长度以及从Ox 转动到OP 的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,- 300°)或P(3,420°)等,则点P 关于点O 成中心对称的点Q 的极坐标表示不正确的是()A.Q(3,240°)B.Q(3,-120°)C.Q(3,600°)D.Q(3,-500°)【思路分析】根据中心对称的性质解答即可.【解答】解:∵P(3,60°)或P(3,-300°)或P(3,420°),由点P 关于点O 成中心对称的点Q 可得:点Q 的极坐标为(3,240°),(3,- 120°),(3,600°),故选:D.【点评】此题考查中心对称的问题,关键是根据中心对称的性质解答.考点四:坐标与图形变换——旋转例4 (2018•宜昌)如图,在平面直角坐标系中,把△ABC 绕原点O 旋转180°得到△CDA,点A,B,C 的坐标分别为(-5,2),(-2,-2),(5,-2),则点D 的坐标为()A.(2,2)B.(2,-2)C.(2,5)D.(-2,5)【思路分析】依据四边形ABCD 是平行四边形,即可得到BD 经过点O,依据B的坐标为(-2,-2),即可得出 D 的坐标为(2,2).【解答】解:∵点A,C 的坐标分别为(-5,2),(5,-2),∴点O 是AC 的中点,∵AB=CD,AD=BC,∴四边形ABCD 是平行四边形,∴BD 经过点O,∵B 的坐标为(-2,-2),∴D 的坐标为(2,2),故选:A.【点评】本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.考点五:作图——旋转变换例5(2018•眉ft)在边长为1 个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC 的顶点都在格点上,请解答下列问题:(1)作出△ABC 向左平移4 个单位长度后得到的△A1B1C1,并写出点C1的坐标;(2)作出△ABC 关于原点O 对称的△A2B2C2,并写出点C2的坐标;(3)已知△ABC 关于直线l 对称的△A3B3C3的顶点A3的坐标为(-4,-2),请直接写出直线l 的函数解析式.【思路分析】(1)利用网格特点和平移的性质写出点A、B、C 的对应点A1、B1、C1的坐标,然后描点得到△A1B1C1;(2)根据关于原点中心对称的点的坐标特征写出点A2、B2、C2的坐标,然后描点即可;(3)根据对称的特点解答即可.【解答】解:(1)如图,△A1B1C1为所作,C1(-1,2);(2)如图,△A2B2C2为所作,C2(-3,-2);(3)因为 A 的坐标为(2,4),A3的坐标为(-4,-2),所以直线l 的函数解析式为y=-x,【点评】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换和平移变换.备考真题过关一、选择题1.(2018•抚顺)已知点A 的坐标为(1,3),点B 的坐标为(2,1).将线段AB 沿某一方向平移后,点A 的对应点的坐标为(-2,1).则点B 的对应点的坐标为()A.(5,3)B.(-1,-2)C.(-1,-1)D.(0,-1)3 3 3 3 3 2. (2018•黄石)如图,将“笑脸”图标向右平移4 个单位,再向下平移 2 个单位, 点 P 的对应点 P'的坐标是( )A .(-1,6)B .(-9,6)C .(-1,2)D .(-9,2)3. (2018•温州)如图,已知一个直角三角板的直角顶点与原点重合,另两个顶 点 A ,B 的坐标分别为(-1,0),(0,).现将该三角板向右平移使点 A 与点 O 重合,得到△OCB′,则点 B 的对应点 B′的坐标是( )A .(1,0)B .( , )C .(1, )D .(-1, )4. (2018•相ft 区四模)下列四张扑克牌图案,属于中心对称的是()A .B .C .D .5. (2018•吉林)如图,将木条 a ,b 与 c 钉在一起,∠1=70°,∠2=50°,要使木条a 与b 平行,木条a 旋转的度数至少是()A.10°B.20°C.50°D.70°6.(2018•香坊区)如图,△ABC 为钝角三角形,将△ABC 绕点A 按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为()A.45°B.60°C.70°D.90°7.(2018•大连)如图,将△ABC 绕点B 逆时针旋转α,得到△EBD,若点A 恰好在ED 的延长线上,则∠CAD 的度数为()A.90°-αB.αC.180°-αD.2α8.(2018•金华)如图,将△ABC 绕点C 顺时针旋转90°得到△EDC.若点A,D,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是()A.55°B.60°C.65°D.70°9.(2018•黑龙江)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.10.(2018•泰安)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC 经过平移后得到△A1B1C1,若AC 上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6)B.(-2.8,-3.6)C.(3.8,2.6)D.(-3.8,-2.6)二、填空题11.(2018•长沙)在平面直角坐标系中,将点A(-2,3)向右平移3 个单位长度,再向下平移2 个单位长度,那么平移后对应的点A′的坐标是.12.(2018•宿迁)在平面直角坐标系中,将点(3,-2)先向右平移2 个单位长度,再向上平移3 个单位长度,则所得点的坐标是.13.(2018•曲靖)如图:图象①②③均是以P0为圆心,1 个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③ 的圆心依次为P4P5P6…,依次规律,P0P2018= 个单位长度.14.(2018•衡阳)如图,点A、B、C、D、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按顺时针方向旋转而得到的,则旋转的角度为.15.(2018•贺州)如图,将Rt△ABC 绕直角顶点C 顺时针旋转90°,得到△A′B′C,连接BB',若∠A′B′B=20°,则∠A 的度数是.16.(2018•张家界)如图,将△ABC 绕点A 逆时针旋转150°,得到△ADE,这时点B,C,D 恰好在同一直线上,则∠B 的度数为.三、解答题18.(2018•枣庄)如图,在4×4 的方格纸中,△ABC 的三个顶点都在格点上.(1)在图1 中,画出一个与△ABC 成中心对称的格点三角形;(2)在图2 中,画出一个与△ABC 成轴对称且与△ABC 有公共边的格点三角形;(3)在图3 中,画出△ABC 绕着点C 按顺时针方向旋转90°后的三角形.19.(2018•吉林)如图是由边长为1 的小正方形组成的8×4 网格,每个小正方形的顶点叫做格点,点A,B,C,D 均在格点上,在网格中将点D 按下列步骤移动:第一步:点D 绕点A 顺时针旋转180°得到点D1;第二步:点D1绕点B 顺时针旋转90°得到点D2;第三步:点D2绕点C 顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D 经过的路径;(2)所画图形是对称图形;(3)求所画图形的周长(结果保留π).20.(2018•临沂)将矩形ABCD 绕点A 顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E 在BD 上时.求证:FD=CD;(2)当α 为何值时,GC=GB?画出图形,并说明理由.备考真题过关一、选择题2019 年中考数学专题复习第六章图形与变换第二十五讲平移与旋转3 3 1. 【思路分析】根据点 A 、点 A 的对应点的坐标确定出平移规律,然后根据规律 求解点 B 的对应点的坐标即可.【解答】解:∵A (1,3)的对应点的坐标为(-2,1),∴平移规律为横坐标减 3,纵坐标减 2,∵点 B (2,1)的对应点的坐标为(-1,-1). 故选:C .【点评】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右 移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.2. 【思路分析】根据平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减即可解决问题;【解答】解:由题意 P (-5,4),向右平移 4 个单位,再向下平移 2 个单位, 点 P 的对应点 P'的坐标是(-1,2),故选:C .【点评】本题考查坐标与平移,解题的关键是记住平移规律:横坐标,右移加, 左移减;纵坐标,上移加,属于中考常考题型.3. 【思路分析】根据平移的性质得出平移后坐标的特点,进而解答即可.【解答】解:因为点 A 与点 O 对应,点 A (-1,0),点 O (0,0), 所以图形向右平移 1 个单位长度,所以点 B 的对应点 B'的坐标为(0+1, ),即(1, ),故选:C .【点评】此题考查坐标与图形变化,关键是根据平移的性质得出平移后坐标的特点.4. 【思路分析】根据中心对称图形的概念和各扑克牌的花色排列特点的求解.【解答】解:A 、是中心对称图形,符合题意;B 、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:A.【点评】本题考查中心对称的知识,掌握好中心对称图形的概念是解题的关键.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.5.【思路分析】根据同位角相等两直线平行,求出旋转后∠2 的同位角的度数,然后用∠1 减去即可得到木条a 旋转的度数.【解答】解:如图.∵∠AOC=∠2=50°时,OA∥b,∴要使木条a 与b 平行,木条a 旋转的度数至少是70°-50°=20°.故选:B.【点评】本题考查了旋转的性质,平行线的判定,根据同位角相等两直线平行求出旋转后∠2 的同位角的度数是解题的关键.6.【思路分析】先根据旋转的性质得到∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质易得∠AB′B=30°,再根据平行线的性质由AC′∥BB′得∠C′AB′=∠AB′B=30°,然后利用∠CAB′=∠CAC′-∠C′AB′进行计算.【解答】解:∵将△ABC 绕点A 按逆时针方向旋转l20°得到△AB′C′,∴∠BAB′=∠CAC′=120°,AB=AB′,∴∠AB′B= 1(180°-120°)=30°,2∵AC′∥BB′,∴∠C′AB′=∠AB′B=30°,∴∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故选:D.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.7.【思路分析】根据旋转的性质和四边形的内角和是360°,可以求得∠CAD 的度数,本题得以解决.【解答】解:由题意可得,∠CBD=α,∠ACB=∠EDB,∵∠EDB+∠ADB=180°,∴∠ADB+∠ACB=180°,∵∠ADB+∠DBC+∠BCA+∠CAD=360°,∠CBD=α,∴∠CAD=180°-α,故选:C.【点评】本题考查旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.8.【思路分析】根据旋转的性质和三角形内角和解答即可.【解答】解:∵将△ABC 绕点C 顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵点A,D,E 在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC 中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.9.【思路分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故此选项错误.故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180 度后与原图重合.10.【思路分析】由题意将点P 向下平移5 个单位,再向左平移4 个单位得到P1,再根据P1与P2关于原点对称,即可解决问题;【解答】解:由题意将点P 向下平移5 个单位,再向左平移4 个单位得到P1,∵P(1.2,1.4),∴P1(-2.8,-3.6),∵P1与P2关于原点对称,∴P2(2.8,3.6),故选:A.【点评】本题考查坐标与图形变化,平移变换,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.二、填空题11.【思路分析】直接利用平移的性质分别得出平移后点的坐标得出答案.【解答】解:∵将点A′(-2,3)向右平移3 个单位长度,∴得到(1,3),∵再向下平移 2 个单位长度,∴平移后对应的点A′的坐标是:(1,1).故答案为:(1,1).【点评】此题主要考查了平移,正确掌握平移规律是解题关键.12.【思路分析】直接利用平移的性质得出平移后点的坐标即可.【解答】解:∵将点(3,-2)先向右平移2 个单位长度,∴得到(5,-2),∵再向上平移 3 个单位长度,∴所得点的坐标是:(5,1).故答案为:(5,1).【点评】此题主要考查了平移变换,正确掌握平移规律是解题关键.13.【思路分析】根据P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;可知每移动一次,圆心离中心的距离增加1 个单位,依据2018=3×672+2,即可得到点P2018在正南方向上,P0P2018=672+1=673.【解答】解:由图可得,P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;∵2018=3×672+2,∴点P2018在正南方向上,∴P0P2018=672+1=673,故答案为:673.【点评】本题主要考查了坐标与图形变化,应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.14.【思路分析】由△COD 是由△AOB 绕点O 按顺时针方向旋转而得到,再结合已知图形可知旋转的角度是∠BOD 的大小,然后由图形即可求得答案.【解答】解:∵△COD 是由△AOB 绕点O 按顺时针方向旋转而得,∴OB=OD,∴旋转的角度是∠BOD 的大小,∵∠BOD=90°,∴旋转的角度为90°.故答案为:90°.【点评】此题考查了旋转的性质.解此题的关键是理解△COD 是由△AOB 绕点O 按顺时针方向旋转而得的含义,找到旋转角.15.【思路分析】根据旋转的性质可得BC=B′C,然后判断出△BCB′是等腰直角三角形,根据等腰直角三角形的性质可得∠CBB′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠B′A′C,然后根据旋转的性质可得∠A=∠ B′A′C.【解答】解:∵Rt△ABC 绕直角顶点C 顺时针旋转90°得到△A′B′C,∴BC=B′C,∴△BCB′是等腰直角三角形,∴∠CBB′=45°,∴∠B′A′C=∠A′B′B+∠CBB′=20°+45°=65°,由旋转的性质得∠A=∠B′A′C=65°.故答案为:65°.【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.16.【思路分析】先判断出∠BAD=150°,AD=AB,再判断出△BAD 是等腰三角形,最后用三角形的内角和定理即可得出结论.【解答】解:∵将△ABC 绕点A 逆时针旋转150°,得到△ADE,∴∠BAD=150°,AD=AB,∵点B,C,D 恰好在同一直线上,∴△BAD 是顶角为150°的等腰三角形,∴∠B=∠BDA,∴∠B= 1(180°-∠BAD)=15°,2故答案为:15°.【点评】此题主要考查了旋转的性质,等腰三角形的判定和性质,三角形的内角和定理,判断出三角形ABD 是等腰三角形是解本题的关键.三、解答题18.【思路分析】(1)根据中心对称的性质即可作出图形;(2)根据轴对称的性质即可作出图形;(3)根据旋转的性质即可求出图形.【解答】解:(1)如图所示,△DCE 为所求作(2)如图所示,△ACD 为所求作(3)如图所示△ECD 为所求作【点评】本题考查图形变换,解题的关键是正确理解图形变换的性质,本题属于基础题型.19.【思路分析】(1)利用旋转变换的性质画出图象即可;(2)根据轴对称图形的定义即可判断;(3)利用弧长公式计算即可;【解答】解:(1)点D→D1→D2→D 经过的路径如图所示:(2)观察图象可知图象是轴对称图形,故答案为轴对称.90 •• 4(3)周长= 4 ⨯= 8.180【点评】本题考查作图-旋转变换,弧长公式、轴对称图形等知识,解题的关键是理解题意,正确画出图形,属于中考常考题型.20.【思路分析】(1)先运用SAS 判定△AED≌△FDE,可得DF=AE,再根据AE=AB=CD,即可得出CD=DF;(2)当GB=GC 时,点G 在BC 的垂直平分线上,分两种情况讨论,依据∠ DAG=60°,即可得到旋转角α 的度数.【解答】解:(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC 时,点G 在BC 的垂直平分线上,分两种情况讨论:①当点G 在AD 右侧时,取BC 的中点H,连接GH 交AD 于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM 是矩形,∴1 1AM=BH= AD= AG,2 2∴GM 垂直平分AD,∴GD=GA=DA,∴△ADG 是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G 在AD 左侧时,同理可得△ADG 是等边三角形,∴∠DAG=60°,∴旋转角α=360°-60°=300°.【点评】本题主要考查了旋转的性质,全等三角形的判定与性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.。
初三数学图形的对称平移与旋转试题答案及解析

初三数学图形的对称平移与旋转试题答案及解析1.下列电视台的台标,是中心对称图形的是()【答案】D.【解析】A、不是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项错误;D、是中心对称图形,故D选项正确.故选D.【考点】中心对称图形.2.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC和△DEF的顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)画出△ABC向上平移4个单位长度后所得到的△A1B1C1;(2)画出△DEF绕点O按顺时针方向旋转90°后所得到的△D1E1F1;(3)△A1B1C1和△D1E1F1组成的图形是轴对称图形吗?如果是,请直接写出对称轴所在直线的解析式.【答案】(1)作图见解析;(2)作图见解析;(3)是,y=x.【解析】(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点D、E、F绕点O按顺时针方向旋转90°后的对应点D1、E1、F1的位置,然后顺次连接即可;(3)根据轴对称的性质确定出对称轴的位置,然后写出直线解析式即可.试题解析:(1)△A1B1C1如图所示;(2)△D1E1F1如图所示;(3)△A1B1C1和△D1E1F1组成的图形是轴对称图形,对称轴为直线y=x.【考点】1.作图-旋转变换;2.待定系数法求一次函数解析式;3.作图-平移变换.3.下列图形一定是轴对称图形的是()A.平行四边形B.正方形C.三角形D.梯形【答案】B【解析】A、不一定是轴对称图形.故本选项错误;B、是轴对称图形.故本选项正确;C、不一定是轴对称图形.故本选项错误;D、不一定是轴对称图形.故本选项错误.故选B.【考点】轴对称图形4.如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为()A.B.C.D.【答案】C.【解析】∵将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,∴∠ECN=75°,∵∠ECD=45°,∴∠NCO=180°﹣75°﹣45°=60°,∵AO⊥OB,∴∠AOB=90°,∴∠ONC=30°,设OC=a,则CN=2a,∵等腰直角三角形DCE旋转到△CMN,∴△CMN也是等腰直角三角形,设CM=MN=x,则由勾股定理得:x2+x2=(2a)2,x=a,即CD=CM=a,∴=.故选C.【考点】1.旋转的性质2.含30度角的直角三角形3.等腰直角三角形.5.下列图形中,既是轴对称图形,又是中心对称图形的为()【答案】B.【解析】A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,也是中心对称图形,符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、不是轴对称图形,也不是中心对称图形,不符合题意.故选B.【考点】1.中心对称图形;2.轴对称图形.6.下列几何体中,其主视图不是中心对称图形的是()【答案】B【解析】本题考查了简单几何体的三视图及中心对称的知识,判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.先判断出各图形的主视图,然后结合中心对称的定义进行判断即可.解:A、主视图是矩形,矩形是中心对称图形,故本选项错误;B、主视图是三角形,三角形不是中心对称图形,故本选项正确;C、主视图是圆,圆是中心对称图形,故本选项错误;D、主视图是正方形,正方形是中心对称图形,故本选项错误;故选B.7.如图,A(,1),B(1,),将∆AOB绕点O旋转1500后,得到∆A’OB’,则此时点A 的对应点A’的坐标为()A.(-,1)B.(-2,0)C.(-1,-)或(-2,0)D.(-,-1)或(-2,0)【答案】C.【解析】∵A(,1),B(1,),∴tanα=,∴OA与x轴正半轴夹角为30°,OB与y轴正半轴夹角为30°,∴∠AOB=90°-30°-30°=30°,根据勾股定理,,,①如图1,顺时针旋转时,∵150°+30°=180°,∴点A′、B关于原点O成中心对称,∴点A′(-1,-);②如图2,逆时针旋转时,∵150°+30°=180°,∴点A′在x轴负半轴上,∴点A′的坐标是(-2,0).综上所述,点A′的坐标为(-1,-)或(-2,0).故选C.考点: 坐标与图形变化-旋转.8.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是 ()【答案】A【解析】这是一道较容易的题目,主要考查了轴对称图形的概念:对折后直线两侧的部分完全重合,其中B、D显然不是轴对称图形,易产生错误的是C,正确的答案应选A.本题渗透了保护环境思想,这也是出题人指出的方向.9.如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是 ()A.①B.②C.⑤D.⑥【答案】A【解析】如图,球最后落入①球洞:10.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()【解析】A、是轴对称图形,又是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项错误;C、既不是中心对称图形也不是轴对称图形,故此选项正确;D、是轴对称图形,又是中心对称图形,故此选项错误.故选C.【考点】1.轴对称图形2.中心对称图形.11.如图,在平面直角坐标系中,将四边形ABCD称为“基本图形”,且各点的坐标分别为A(4,4),B (1,3),C(3,3),D(3,1).(1)画出“基本图形”关于原点O对称的四边形A1B1C1D1,并求出A1,B1,C1,D1的坐标.A1( , ),B1( , ),C1( , ),D1( , ) ;(2)画出“基本图形”关于x轴的对称图形A2B2C2D2;(3)画出四边形A3B3C3D3,使之与前面三个图形组成的图形既是中心对称图形又是轴对称图形.【答案】(1)(﹣4,﹣4),(﹣1,﹣3),(﹣3,﹣3),(﹣3,﹣1);(2)(3)图形见解析.【解析】(1)根据已坐标系中点关于原点对称的坐标特点,横纵坐标互为相反数,即可得出答案; (2)关于x轴对称的;两个点的坐标特点是:横坐标相等,纵坐标互为相反数,根据坐标关系画图,写坐标.(3)将图形顶点逆时针旋转90度即可得出答案.试题解析:(1)根据已坐标系中点关于原点对称的坐标特点,即可得出答案:(﹣4,﹣4),(﹣1,﹣3),(﹣3,﹣3),(﹣3,﹣1);(2)如图:图形A2B2C2D2;(3如图:图形A3B3C3D3.画的三个图形与原“基本图形”组成的整体图案既是中心对称图形又是轴对称图形..【考点】旋转变换与轴对称变换.12.下列图形中,是中心对称图形的是 ( )A.B.C.D.【解析】中心对称图形是图形沿对称中心旋转180度后与原图重合,因此符合的是选项C.故选C.【考点】中心对称图形.13.如图,C在线段BD上,△ABC和△CDE都是等边三角形,BE与AD有什么关系?请用旋转的性质证明你的结论。
新初中数学图形的平移,对称与旋转的知识点总复习含答案解析
新初中数学图形的平移,对称与旋转的知识点总复习含答案解析一、选择题1.在下列图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、既是轴对称图形,又是中心对称图形,故本选项正确;B、是轴对称图形,不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选A.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.下列四个交通标志图中,是轴对称图形的是()A.B.C.D.【答案】B【解析】【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【详解】A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【点睛】.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重本题考查了轴对称图形的概念合.3.在Rt△ABC中,∠BAC=90°,AD是△ABC的中线,∠ADC=45°,把△ADC沿AD对折,使点C落在C′的位置,C′D交AB于点Q,则BQAQ的值为()A.2B.3C.2D.3【答案】A【解析】【分析】根据折叠得到对应线段相等,对应角相等,根据直角三角形的斜边中线等于斜边一半,可得出AD=DC=BD,AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,进而求出∠C、∠B的度数,求出其他角的度数,可得AQ=AC,将BQAQ转化为BQAC,再由相似三角形和等腰直角三角形的边角关系得出答案.【详解】解:如图,过点A作AE⊥BC,垂足为E,∵∠ADC=45°,∴△ADE是等腰直角三角形,即AE=DE=22AD,在Rt△ABC中,∵∠BAC=90°,AD是△ABC的中线,∴AD=CD=BD,由折叠得:AC=AC′,∠ADC=∠ADC′=45°,CD=C′D,∴∠CDC′=45°+45°=90°,∴∠DAC=∠DCA=(180°﹣45°)÷2=67.5°=∠C′AD,∴∠B=90°﹣∠C=∠CAE=22.5°,∠BQD=90°﹣∠B=∠C′QA=67.5°,∴AC′=AQ=AC,由△AEC∽△BDQ得:BQAC=BDAE,∴BQAQ=BQAC=ADAE=2AEAE=2.故选:A.【点睛】考查直角三角形的性质,折叠轴对称的性质,以及等腰三角形与相似三角形的性质和判定等知识,合理的转化是解决问题的关键.4.如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60︒得到线段AQ,连接BQ.若6PA=,8PB=,10PC=,则四边形APBQ的面积为()A.2493+B.483+C.243+D.48183+【答案】A【解析】【分析】连结PQ,先根据等边三角形的性质和旋转的性质证明△APQ为等边三角形,则P Q=AP=6,再证明△APC≌△AQB,可得PC=QB=10,然后利用勾股定理的逆定理证明△PBQ为直角三角形,再根据三角形面积公式求出面积,最后利用S四边形APBQ=S△BPQ+S△APQ即可解答.【详解】解:如图,连结PQ,∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵线段AP绕点A顺时针旋转60°得到线段AQ,∴AP=PQ=6,∠PAQ=60°,∴△APQ为等边三角形,∴PQ=AP=6,∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ,∵在△APC和△ABQ中,AC=AB,∠CAP=∠BAQ,AP=AQ∴△APC≌△AQB,∴PC=QB=10,在△BPQ中, PB2=82=64,PQ2=62=36,BQ2=102=100,∴PB2+PQ2=BQ2,∴△PBQ为直角三角形,∴∠BPQ=90°,∴S四边形APBQ=S△BPQ+S△APQ=12×6×8+34×623故答案为A..【点睛】本题考查了旋转的性质和勾股定理的逆定理,掌握旋转的定义、旋转角以及旋转前、后的图形全等是解答本题的关键.5.在平行四边形、菱形、矩形、正方形这四种图形中,是轴对称图形的有( )A.1个 B.2个 C.3个 D.4个【答案】C【解析】【分析】根据轴对称图形的概念求解.【详解】解:平行四边形不是轴对称图形,菱形、矩形、正方形都是轴对称图形.故选:C.【点睛】本题考查轴对称图形的概念,解题关键是寻找轴对称图形的对称轴,图形两部分沿对称轴折叠后可重合.6.如图,△ABC绕点A逆时针旋转使得点C落在BC边上的点F处,则以下结论:①AC=AF;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC.其中正确的结论有()A.4个B.3个C.2个D.1个【答案】B【解析】【分析】根据旋转的性质,旋转前后对应线段相等、对应角相等即可解答.【详解】由旋转可知△ABC≌△AEF,∴AC=AF,EF=BC,①③正确,∠EAF=∠BAC,即∠EAB+∠BAF=∠BAF+∠FAC,∴∠EAB=∠FAC,④正确,②错误,综上所述,①③④正确.故选B.【点睛】本题考查了旋转的性质,属于简单题,熟悉旋转的性质,利用旋转的性质找到对应角之间的关系是解题关键.7.下列说法正确的是()A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.在成中心对称的两个图形中,连结对称点的线段都被对称中心平分C.在平面直角坐标系中,一点向右平移2个单位,纵坐标加2D.在平移和旋转图形中,对应角相等,对应线段相等且平行【答案】B【解析】【分析】分别利用图形的平移以及中心对称图形的性质和旋转的性质分别判断得出即可.【详解】A、平移不改变图形的形状和大小,旋转也不改变图形的形状和大小,故此选项错误;B、在成中心对称的两个图形中,连结对称点的线段都被对称中心平分,此选项正确;C、在平面直角坐标系中,一点向右平移2个单位,横坐标加2,故此选项错误;D、在平移中,对应角相等,对应线段相等且平行,旋转则对应线段有可能不平行,故此选项错误.故选B.8.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.【答案】D【解析】【分析】根据平移只改变图形的位置,不改变图形的形状和大小,逐项进行分析即可得.【详解】A、不能通过平移得到,故不符合题意;B、不能通过平移得到,故不符合题意;C、不能通过平移得到,故不符合题意;D、能够通过平移得到,故符合题意,故选D.【点睛】本题考查了图形的平移,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解题的关键.9.如图,紫荆花图案旋转一定角度后能与自身重合,则旋转的角度可能是( )A.30°B.60°C.72°D.90°【答案】C【解析】【分析】紫荆花图案是一个旋转不变图形,根据这个图形可以分成几个全等的部分,即可计算出旋转的角度.【详解】解:紫荆花图案可以被中心发出的射线分成5个全等的部分,因而旋转的角度是360÷5=72度,故选:C.【点睛】正确认识旋转对称图形的性质,能够根据图形的特点观察得到一个图形可以看作几个全等的部分.Y的顶点O,A,C的坐标分别为(0,0),(4,0),(1,3),则顶点B 10.如图,若OABC的坐标为()A.(4,1)B.(5,3)C.(4,3)D.(5,4)【答案】B【解析】【分析】根据平行四边形的性质,以及点的平移性质,即可求出点B的坐标.【详解】解:∵四边形OABC是平行四边形,∴OC∥AB,OA∥BC,∴点B的纵坐标为3,∵点O向右平移1个单位,向上平移3个单位得到点C,∴点A向右平移1个单位,向上平移3个单位得到点B,∴点B的坐标为:(5,3);故选:B.【点睛】本题考查了平行四边形的性质,点坐标平移的性质,解题的关键是熟练掌握平行四边形的性质进行解题.11.下列图形中,不一定是轴对称图形的是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形【答案】C【解析】A.等腰三角形是轴对称图形,不符合题意;B.等边三角形是轴对称图形,不符合题意;C.直角三角形不一定是轴对称图形,符合题意;D.等腰直角三角形是轴对称图形,不符合题意.故选C.12.如图,若将线段AB平移至A1B1,则a+b的值为( )A.﹣3 B.3 C.﹣2 D.0【答案】A【解析】【分析】根据点的平移规律即点A平移到A1得到平移的规律,再按此规律平移B点得到B1,从而得到B1点的坐标,于是可求出a、b的值,然后计算a+b即可.【详解】解:∵点A(0,1)向下平移2个单位,得到点A 1(a ,﹣1),点B(2,0)向左平移1个单位,得到点B 1(1,b),∴线段AB 向下平移2个单位,向左平移1个单位得到线段A 1B 1,∴A 1(﹣1,﹣1),B 1(1,﹣2),∴a =﹣1,b =﹣2,∴a+b =﹣1﹣2=﹣3.故选:A.【点睛】本题考查了直角坐标系中点的平移规律,解决本题的关键是熟知坐标平移规律上加下减、右加左减.13.如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块( )A .向右平移1格,向下3格B .向右平移1格,向下4格C .向右平移2格,向下4格D .向右平移2格,向下3格【答案】C【解析】 分析:找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可. 解答:解:上面的图案的最右边需向右平移2格才能与下面图案的最右边在一条直线上,最下边需向下平移4格才能与下面图案的最下面重合,故选C .14.如图,将ABC V 沿BC 方向平移1个单位长度后得到DEF V ,若ABC V 的周长等于9,则四边形ABFD 的周长等于( )A .13B .12C .11D .10【答案】C【解析】【分析】 先利用平移的性质求出AD 、CF ,进而完成解答.【详解】解:将△ABC沿BC方向平移1个单位得到△DEF,∴AD=CF=1,AC=DF,又∵△ABC的周长等于9,∴四边形ABFD的周长等于9+1+1=11.故答案为C.【点睛】本题主要考查了平移的性质,通过平移确定AD=CF=1是解答本题的关键.15.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】A. 是中心对称图形,不是轴对称图形,选项不符合题意;B. 是轴对称图形,不是中心对称图形,选项不符合题意;C. 不是中心对称图形,也不是轴对称图形,选项不符合题意;D. 是中心对称图形,也是轴对称图形,选项符合题意,故选D.【点睛】本题考查轴对称图形和中心对称图形,解题的关键是掌握轴对称图形和中心对称图形的定义.,若将△ABO绕点O沿顺时针方向旋转90°16.如图,平面直角坐标系中,已知点B(3,2)后得到△A1B1O,则点B的对应点B1的坐标是( )A.(3,1)B.(3,2)C.(1,3)D.(2,3)【答案】D【解析】【分析】根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B1的坐标即可.【详解】解:△A1B1O如图所示,点B1的坐标是(2,3).故选D.【点睛】本题考查了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键.17.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、是轴对称图形,不是中心对称的图形,故本选项不符合题意;B、不是轴对称图形,是中心对称的图形,故本选项不符合题意;C、既是轴对称图形,又是中心对称的图形,故本选项符合题意;D、是轴对称图形,不是中心对称的图形,故本选项不符合题意.故选:C.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.18.下列图形中,是轴对称图形不是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】轴对称图形是指平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;而在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,据此进一步判断求出答案即可.【详解】A:是轴对称图形,但不是中心对称图形,符合题意;B:是轴对称图形,也是中心对称图形,不符合题意;C:是中心对称图形,但不是轴对称图形,不符合题意;D:是轴对称图形,也是中心对称图形,不符合题意;故选:A.【点睛】本题主要考查了轴对称图形与中心对称图形的识别,熟练掌握相关概念是解题关键.19.下列图形中,不是轴对称图形的是()A.有两个内角相等的三角形 B.有一个内角为45°的直角三角形C.有两个内角分别为50°和80°的三角形 D.有两个内角分别为55°和65°的三角形【答案】D【解析】A.有两个内角相等的三角形是等腰三角形,等腰三角形是轴对称图形;B.有一个内角为45度的直角三角形是等腰直角三角形,也是等腰三角形,是轴对称图形;C.有两个内角分别为50度和80度的三角形,第三个角是50度,故是等腰三角形,是轴对称图形;D.有两个内角分别为55度和65度的三角形,不是等腰三角形,不是轴对称图形.故选:D.20.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣7b ,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】∵且|a-c=0,∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.。
中考数学专题训练:图形的对称、平移与旋转(附参考答案)
中考数学专题训练:图形的对称、平移与旋转(附参考答案)1.下列图形:其中轴对称图形的个数是( )A.4 B.3C.2 D.12.某小区的圆形花园中间有两条互相垂直的小路,园丁在花园中栽种了8棵桂花,如图所示.若A,B两处桂花的位置关于小路对称,在分别以两条小路为x,y 轴的平面直角坐标系内,若点A的坐标为(-6,2),则点B的坐标为( )A.(6,2) B.(-6,-2)C.(2,6) D.(2,-6)3.如图是用七巧板拼成的一个轴对称图形(忽略拼接线),小亮改变①的位置,将①分别摆放在图中左、下、右的位置(摆放时无缝隙不重叠),还能拼接成不同轴对称图形的个数为( )A.2 B.3C.4 D.54.在以“矩形的折叠”为主题的数学活动课上,某位同学进行了如下操作:第一步:将矩形纸片的一端,利用图1的方法折出一个正方形,然后把纸片展平;第二步:将图1中的矩形纸片折叠,使点C恰好落在点F处,得到折痕MN,如图2.根据以上的操作,若AB=8,AD=12,则线段BM的长是( )A.3 B.√5C.2 D.15.如图,已知矩形纸片ABCD,其中AB=3,BC=4,现将纸片进行如下操作:第一步,如图1将纸片对折,使AB与DC重合,折痕为EF,展开后如图2;第二步,再将图2中的纸片沿对角线BD折叠,展开后如图3;第三步,将图3中的纸片沿过点E的直线折叠,使点C落在对角线上的点H处,如图4.则DH的长为( )A.32B.85C.53D.956.在平面直角坐标系中,把点P(-3,2)向右平移2个单位长度后,得到对应点的坐标是( )A.(-5,2) B.(-1,4)C.(-3,4) D.(-1,2)7.如图,在平面直角坐标系中,等边三角形OAB的边长为4,点A在第二象限内,将△OAB沿射线AO平移,平移后点A′的横坐标为4√3,则点B′的坐标为( )A.(-6√3,2) B.(6√3,-2√3)C.(6,-2) D.(6√3,-2)8.如图,在平面直角坐标系中,△ABC各点坐标分别为A(-2,1),B(-1,3),C(-4,4).先作△ABC关于x轴成轴对称的△A1B1C1,再把△A1B1C1平移后得到△A 2B2C2.若B2(2,1),则点A2的坐标为( )A.(1,5) B.(1,3)C.(5,3) D.(5,5)9.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=10,DO=4,平移的距离为6,则阴影部分的面积为( )A.24 B.40C.42 D.4810.如图,△ABC沿BC方向平移后的图形为△DEF,已知BC=5,EC=2,则平移的距离是( )A.1 B.2C.3 D.411.如图,在方格纸中,将Rt△AOB绕点B按顺时针方向旋转90°后得到Rt△A′O′B,则下列四个图形中正确的是( )A BC D12.如图,在△ABC中,∠ACB=90°,∠BAC=α,将△ABC绕点C顺时针旋转90°得到△A′B′C,点B的对应点B′在边AC上(不与点A,C重合),则∠AA′B′的度数为( )A.αB.α-45°C.45°-αD.90°-α13.如图,将直角三角尺ABC绕顶点A顺时针旋转到△AB′C′,点B′恰好落在CA的延长线上,∠B=30°,∠C=90°,则∠BAC′的度数为( )A.90°B.60°C.45°D.30°14.如图,在△ABC中,AB=AC,若M是边BC上任意一点,将△ABM绕点A逆时针旋转得到△ACN,点M的对应点为点N,连接MN,则下列结论一定正确的是( )A.AB=ANB.AB∥NCC.∠AMN=∠ACND.MN⊥AC15.如图,在△ABC中,AC=BC,∠B=38°,点D是边AB上一点,点B关于直线CD的对称点为B′,当B′D∥AC时,∠BCD的度数为________.16.如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,√3),(4,0).把△OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,√3),则点E的坐标为____________.17.如图,在平面直角坐标系中,点A的坐标为(0,3),点B的坐标为(4,0),连接AB,若将△ABO绕点B顺时针旋转90°,得到△A′BO′,则点A′的坐标为______________.18.如图,在□ABCD中,∠B=60°,BC=2AB,将AB绕点A逆时针旋转角α(0°<α<360°)得到AP,连接PC,PD.当△PCD为直角三角形时,旋转角α的度数为______________________.参考答案1.B2.A3.B4.C5.D6.D7.D8.B9.D 10.C 11.B 12.C 13.B 14.C15.33° 16.(7,0) 17.(7,4) 18.90°或180°或270°。
人教版初中数学图形的平移,对称与旋转的知识点总复习有答案
人教版初中数学图形的平移,对称与旋转的知识点总复习有答案一、选择题1.如图,在R t △ABC 中,∠ACB=90°,∠B=60°,BC=2,∠A ′B ′C ′可以由△ABC 绕点C 顺时针旋转得到,其中点A′与点A 是对应点,点B′与点B 是对应点,连接AB′,且A 、B′、A′在同一条直线上,则AA′的长为( )A .3B .6C .3D .3【答案】B【解析】【分析】【详解】 试题分析:∵在Rt △ABC 中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A ′B ′C 可以由△ABC 绕点C 顺时针旋转得到,其中点A′与点A 是对应点,点B′与点B 是对应点,连接AB′,且A 、B′、A′在同一条直线上,∴AB=A ′B ′=4,AC=A′C ,∴∠CAA ′=∠A ′=30°,∴∠ACB ′=∠B ′AC=30°,∴AB ′=B ′C=2,∴AA ′=2+4=6.故选B .考点:1、旋转的性质;2、直角三角形的性质2.在平面直角坐标系中,把点(5,2)P -先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是( )A .(8,4)-B .(8,0)-C .(2,4)-D .(2,0)-【答案】A【解析】【分析】根据平移变换与坐标变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减,可得答案.【详解】∵点P (-5,2),∴先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是(-5-3,2+2),即(-8,4),故选:A .【点睛】此题考查坐标与图形的变化,解题关键是掌握点的坐标的变化规律.3.如图,在ABC ∆中,5AB =,3AC =,4BC =,将ABC ∆绕一逆时针方向旋转40︒得到ADE ∆,点B 经过的路径为弧BD ,则图中阴影部分的面积为( )A .1463π- B .33π+ C .3338π- D .259π 【答案】D【解析】【分析】 由旋转的性质可得△ACB ≌△AED ,∠DAB=40°,可得AD=AB=5,S △ACB =S △AED ,根据图形可得S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,再根据扇形面积公式可求阴影部分面积.【详解】∵将△ABC 绕A 逆时针方向旋转40°得到△ADE ,∴△ACB ≌△AED ,∠DAB=40°,∴AD=AB=5,S △ACB =S △AED ,∵S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,∴S 阴影=4025360π⨯=259π, 故选D.【点睛】本题考查了旋转的性质,扇形面积公式,熟练掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.4.已知点A 的坐标为(1,3),点B 的坐标为(2,1).将线段AB 沿某一方向平移后,点A 的对应点的坐标为(﹣2,1).则点B 的对应点的坐标为( )A .(5,3)B .(﹣1,﹣2)C .(﹣1,﹣1)D .(0,﹣1)【答案】C【解析】【分析】根据点A 、点A 的对应点的坐标确定出平移规律,然后根据规律求解点B 的对应点的坐标即可.【详解】∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B(2,1)的对应点的坐标为(﹣1,﹣1),故选C.【点睛】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.5.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.【答案】D【解析】【分析】根据平移只改变图形的位置,不改变图形的形状和大小,逐项进行分析即可得.【详解】A、不能通过平移得到,故不符合题意;B、不能通过平移得到,故不符合题意;C、不能通过平移得到,故不符合题意;D、能够通过平移得到,故符合题意,故选D.【点睛】本题考查了图形的平移,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解题的关键.6.如图,在平面直角坐标系中,AOB∆的顶点B在第一象限,点A在y轴的正半轴上,2AO AB==,120OAB∠=o,将AOB∠绕点O逆时针旋转90o,点B的对应点'B的坐标是()A.3(23)2--B.33(2222---C.3(3,22--D .(3,3)- 【答案】D 【解析】 【分析】 过点'B 作x 轴的垂线,垂足为M ,通过条件求出'B M ,MO 的长即可得到'B 的坐标.【详解】解:过点'B 作x 轴的垂线,垂足为M ,∵2AO AB ==,120OAB ∠=︒,∴'''2A O A B ==,''120OA B ∠=︒,∴'0'6M B A ∠=︒,在直角△''A B M 中,3==2=B'M B'M 'sin B A M B '''A ∠ , 1==22=A'M A'M 'cos B A M B '''A ∠, ∴'3B M =,'1A M =,∴OM=2+1=3,∴'B 的坐标为(3,3)-.故选:D.【点睛】本题考查坐标与图形变化-旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.7.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°【答案】C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=12∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;故选C.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.8.下列图案中既是轴对称又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】A、不是轴对称图形,是中心对称图形,故本选项错误;B、不是轴对称图形,也不是中心对称图形,故本选项错误;C、是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选C.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.9.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【答案】A【解析】A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误,故选A.【点睛】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.10.直角坐标系内,点P(-2,3)关于原点的对称点Q的坐标为()A.(2,-3)B.(2,3)C.(-2,3)D.(-2,-3)【答案】A【解析】试题解析:根据中心对称的性质,得点P(-2,3)关于原点对称点P′的坐标是(2,-3).故选A.点睛:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).11.下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()A.5 B.4 C.6 D.7【答案】D【解析】从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形.故选:D.12.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()A13B5C.22D.4【答案】A【解析】试题分析:由题意易知:∠CAB=45°,∠ACD=30°.若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt △ABC 中,AB=4,则AO=OC=2.在Rt △AOD 1中,OD 1=CD 1-OC=3,由勾股定理得:AD 1=13.故选A.考点: 1.旋转;2.勾股定理.13.如图,ABC V 的三个顶点都在方格纸的格点上,其中点A 的坐标是()1,0-.现将ABC V 绕点A 顺时针旋转90︒,则旋转后点C 的坐标是( )A .()3,3B .()2,1C .()4,1--D .()2,3【答案】B【解析】【分析】 在网格中绘制出CA 旋转后的图形,得到点C 旋转后对应点.【详解】如下图,绘制出CA 绕点A 顺时针旋转90°的图形由图可得:点C 对应点的坐标为(2,1)故选:B【点睛】本题考查旋转,需要注意题干中要求顺时针旋转还是逆时针旋转.14.如图,将ABC V 沿射线BC 方向平移2 cm 得到DEF V .若ABC V 的周长为13 cm ,则四边形ABFD 的周长为( )A .12 cmB .15 cmC .17 cmD .21 cm【答案】C【解析】【分析】 根据平移的特点得AD=BE=CF=2,将四边形ABFE 的周长分解为AB+BC+DF+AD+CF 的形式,其中AB+BC+DF=AB+BC+AC 为△ABC 的周长.【详解】∵△DEF 是△ABC 向右平移2个单位得到∴AD=CF=BE=2,AC=DF四边形ABFD 的周长为:AB+BC+DF+AD+CF=(AB+BC+AC)+(AD+CF)=13+2+2=17故选:C .【点睛】本题考查平移的性质,需要注意,平移前后的图形是完全相同的,且对应点之间的线段长即为平移距离.15.如图,在ABC ∆中,2AB =,=3.6BC ,=60B ∠o ,将ABC ∆绕点A 顺时针旋转度得到ADE ∆,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .1.6B .1.8C .2D .2.6【答案】A【解析】【分析】 由将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上,可得AD=AB ,又由∠B=60°,可证得△ABD 是等边三角形,继而可得BD=AB=2,则可求得答案.【详解】由旋转的性质可知,AD AB =,∵60B ∠=o ,AD AB =,∴ADB ∆为等边三角形,∴2BD AB ==,∴ 1.6CD CB BD =-=,故选:A .【点睛】此题考查旋转的性质,解题关键在于利用旋转的性质得出AD=AB16.如图,点E 是正方形ABCD 的边DC 上一点,把ADE ∆绕点A 顺时针旋转90︒到ABF ∆的位置.若四边形AECF 的面积为20,DE=2,则AE 的长为( )A .4B .25C .6D .26【答案】D【解析】【分析】 利用旋转的性质得出四边形 AECF 的面积等于正方形 ABCD 的面积,进而可求出正方形的边长,再利用勾股定理得出答案.【详解】ADE ∆Q 绕点A 顺时针旋转90︒到ABF ∆的位置.∴四边形AECF 的面积等于正方形ABCD 的面积等于20,25AD DC ∴==,2DE =Q ,Rt ADE ∴∆中,2226AE AD DE =+=故选:D .【点睛】本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应 边关系是解题关键.17.下列图形中,是轴对称图形的是( )A .B .C .D .【答案】D【解析】【分析】根据轴对称图形的概念逐一判断即可.【详解】A、B、C都不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意;D、是轴对称图形,符合题意.【点睛】本题考查轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.18.在等边三角形ABC中,CD是∠ACB的平分线,过D作DE∥BC交AC于E,若△ABC的边长为a,则△ADE的周长为()A.2a B.4 3 aC.1.5a D.a【答案】C【解析】解:△ABC是等边三角形,由折叠可知,AD=BD=0.5AB=0.5a,易得△ADE是等边三角形.故周长是1.5a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年中考数学专题复习第六章图形与变换第二十五讲平移与旋转【基础知识回顾】一、图形的平移与旋转:1、平移:⑴定义:在平面内,把某个图形沿着某个移动一定的这样的图形运动称为平移⑵性质:Ⅰ、平移不改变图形的与,即平移前后的图形Ⅱ、平移前后的图形对应点所连的线段平行且【名师提醒:平移作图的关键是确定平移的和】2、旋转:⑴定义:在平面内,将一个图形绕一个定点沿某个方向旋转一个,这样的图形运动称为旋转,这个点称为转动的称为旋转角⑵旋转的性质:Ⅰ、旋转前后的图形Ⅱ、旋转前后的两个圆形中,对应点到旋转中心的距离都,每对对应点与旋转中心的连线所成的角度都是旋转角都【名师提醒:1、旋转作用的关键是确定、和,2、一个图形旋转一定角度后如果能与自身重合,那么这个图形就是旋转对称图形】二、中心对称与中心对称图形:1、中心对称:在平面内,一个图形绕某一点旋转1800能与自身重合它能与另一个图形就说这两个图形关于这个点成中心对称,这个点叫做2、中心对称图形:一个图形绕着某点旋转后能与自身重合,这种图形叫中心对称图形,这个点叫做3、性质:在中心对称的两个图形中,对称点的连线都经过且被平分【名师提醒:1、中心对称是指个图形的位置关系,而中心对称图形是指个具有特殊形状的图形2、常见的轴对称有、、、、、等,常见的中心对称图形有、、、、、等3、所有的正n边形都是对称图形,且有条对称轴,边数为偶数的正多边形,又是对称图形,4、注意圆形的各种变换在平面直角坐标系中的运用】【重点考点例析】考点一:平移例1 (2018•海南)如图,在平面直角坐标系中,△ABC位于第一象限,点A 的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(-2,3)B.(3,-1)C.(-3,1)D.(-5,2)【思路分析】根据点的平移的规律:向左平移a个单位,坐标P(x,y)⇒P(x-a,y),据此求解可得.【解答】解:∵点B的坐标为(3,1),∴向左平移6个单位后,点B1的坐标(-3,1),故选:C.【点评】本题主要考查坐标与图形的变化-平移,解题的关键是掌握点的坐标的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.考点二:旋转的性质例2 (2018•宁波)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.【思路分析】(1)由题意可知:CD=CE ,∠DCE=90°,由于∠ACB=90°,所以∠ACD=∠ACB-∠DCB ,∠BCE=∠DCE-∠DCB ,所以∠ACD=∠BCE ,从而可证明△ACD ≌△BCE (SAS )(2)由△ACD ≌△BCE (SAS )可知:∠A=∠CBE=45°,BE=BF ,从而可求出∠BEF 的度数.【解答】解:(1)由题意可知:CD=CE ,∠DCE=90°,∵∠ACB=90°,∴∠ACD=∠ACB-∠DCB ,∠BCE=∠DCE-∠DCB ,∴∠ACD=∠BCE ,在△ACD 与△BCE 中,AC BC ACD BCE CD CE ⎪∠⎪⎩∠⎧⎨=== ,∴△ACD ≌△BCE (SAS )(2)∵∠ACB=90°,AC=BC ,∴∠A=45°,由(1)可知:∠A=∠CBE=45°,∵AD=BF ,∴BE=BF ,∴∠BEF=67.5°【点评】本题考查全等三角形的判定与性质,解题的关键是熟练运用旋转的性质以及全等三角形的判定与性质,本题属于中等题型.考点三:中心对称图形例3 (2018•潍坊)在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,-300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是()A.Q(3,240°)B.Q(3,-120°)C.Q(3,600°)D.Q(3,-500°)【思路分析】根据中心对称的性质解答即可.【解答】解:∵P(3,60°)或P(3,-300°)或P(3,420°),由点P关于点O成中心对称的点Q可得:点Q的极坐标为(3,240°),(3,-120°),(3,600°),故选:D.【点评】此题考查中心对称的问题,关键是根据中心对称的性质解答.考点四:坐标与图形变换——旋转例4 (2018•宜昌)如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(-5,2),(-2,-2),(5,-2),则点D的坐标为()A.(2,2)B.(2,-2)C.(2,5)D.(-2,5)【思路分析】依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B 的坐标为(-2,-2),即可得出D的坐标为(2,2).【解答】解:∵点A,C的坐标分别为(-5,2),(5,-2),∴点O是AC的中点,∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴BD经过点O,∵B的坐标为(-2,-2),∴D的坐标为(2,2),故选:A.【点评】本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.考点五:作图——旋转变换例5(2018•眉山)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:(1)作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(-4,-2),请直接写出直线l的函数解析式.【思路分析】(1)利用网格特点和平移的性质写出点A、B、C的对应点A1、B1、C1的坐标,然后描点得到△A1B1C1;(2)根据关于原点中心对称的点的坐标特征写出点A2、B2、C2的坐标,然后描点即可;(3)根据对称的特点解答即可.【解答】解:(1)如图,△A1B1C1为所作,C1(-1,2);(2)如图,△A2B2C2为所作,C2(-3,-2);(3)因为A的坐标为(2,4),A3的坐标为(-4,-2),所以直线l的函数解析式为y=-x,【点评】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换和平移变换.备考真题过关一、选择题1.(2018•抚顺)已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(-2,1).则点B的对应点的坐标为()A.(5,3)B.(-1,-2)C.(-1,-1)D.(0,-1)2.(2018•黄石)如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是()A.(-1,6)B.(-9,6)C.(-1,2)D.(-9,2)3.(2018•温州)如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0),(0,3).现将该三角板向右平移使点A 与点O重合,得到△OCB′,则点B的对应点B′的坐标是()A.(1,0)B.(3,3)C.(1,3)D.(-1,3)4.(2018•相山区四模)下列四张扑克牌图案,属于中心对称的是()A.B.C.D.5.(2018•吉林)如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°6.(2018•香坊区)如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为()A.45°B.60°C.70°D.90°7.(2018•大连)如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A.90°-αB.αC.180°-αD.2α8.(2018•金华)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°9.(2018•黑龙江)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.10.(2018•泰安)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6)B.(-2.8,-3.6)C.(3.8,2.6)D.(-3.8,-2.6)二、填空题11.(2018•长沙)在平面直角坐标系中,将点A(-2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是.12.(2018•宿迁)在平面直角坐标系中,将点(3,-2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是.13.(2018•曲靖)如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依次规律,P0P2018= 个单位长度.14.(2018•衡阳)如图,点A、B、C、D、O都在方格纸的格点上,若△COD 是由△AOB绕点O按顺时针方向旋转而得到的,则旋转的角度为.15.(2018•贺州)如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接BB',若∠A′B′B=20°,则∠A的度数是.16.(2018•张家界)如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,则∠B的度数为.三、解答题18.(2018•枣庄)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.19.(2018•吉林)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是对称图形;(3)求所画图形的周长(结果保留π).20.(2018•临沂)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.2019年中考数学专题复习第六章图形与变换第二十五讲平移与旋转备考真题过关一、选择题1.【思路分析】根据点A、点A的对应点的坐标确定出平移规律,然后根据规律【点评】此题考查坐标与图形变化,关键是根据平移的性质得出平移后坐标的特点.4.【思路分析】根据中心对称图形的概念和各扑克牌的花色排列特点的求解.【解答】解:A、是中心对称图形,符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选:A.【点评】本题考查中心对称的知识,掌握好中心对称图形的概念是解题的关键.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.5.【思路分析】根据同位角相等两直线平行,求出旋转后∠2的同位角的度数,然后用∠1减去即可得到木条a旋转的度数.【解答】解:如图.∵∠AOC=∠2=50°时,OA∥b,∴要使木条a与b平行,木条a旋转的度数至少是70°-50°=20°.故选:B.【点评】本题考查了旋转的性质,平行线的判定,根据同位角相等两直线平行求出旋转后∠2的同位角的度数是解题的关键.6.【思路分析】先根据旋转的性质得到∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质易得∠AB′B=30°,再根据平行线的性质由AC′∥BB′得∠C′AB′=∠AB′B=30°,然后利用∠CAB′=∠CAC′-∠C′AB′进行计算.∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.9.【思路分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、不是轴对称图形,是中心对称图形,故此选项错误.故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.【思路分析】由题意将点P向下平移5个单位,再向左平移4个单位得到P1,再根据P1与P2关于原点对称,即可解决问题;【解答】解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,∵P(1.2,1.4),∴P1(-2.8,-3.6),∵P1与P2关于原点对称,∴P2(2.8,3.6),故选:A.【点评】本题考查坐标与图形变化,平移变换,旋转变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.二、填空题11.【思路分析】直接利用平移的性质分别得出平移后点的坐标得出答案.【解答】解:∵将点A′(-2,3)向右平移3个单位长度,∴得到(1,3),∵再向下平移2个单位长度,∴平移后对应的点A′的坐标是:(1,1).故答案为:(1,1).【点评】此题主要考查了平移,正确掌握平移规律是解题关键.12.【思路分析】直接利用平移的性质得出平移后点的坐标即可.【解答】解:∵将点(3,-2)先向右平移2个单位长度,∴得到(5,-2),∵再向上平移3个单位长度,∴所得点的坐标是:(5,1).故答案为:(5,1).【点评】此题主要考查了平移变换,正确掌握平移规律是解题关键.13.【思路分析】根据P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;可知每移动一次,圆心离中心的距离增加1个单位,依据2018=3×672+2,即可得到点P2018在正南方向上,P0P2018=672+1=673.【解答】解:由图可得,P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;∵2018=3×672+2,∴点P2018在正南方向上,∴P0P2018=672+1=673,故答案为:673.【点评】本题主要考查了坐标与图形变化,应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.14.【思路分析】由△COD是由△AOB绕点O按顺时针方向旋转而得到,再结合已知图形可知旋转的角度是∠BOD的大小,然后由图形即可求得答案.【解答】解:∵△COD是由△AOB绕点O按顺时针方向旋转而得,∴OB=OD,∴旋转的角度是∠BOD的大小,∵∠BOD=90°,∴旋转的角度为90°.故答案为:90°.【点评】此题考查了旋转的性质.解此题的关键是理解△COD是由△AOB绕点O 按顺时针方向旋转而得的含义,找到旋转角.15.【思路分析】根据旋转的性质可得BC=B′C,然后判断出△BCB′是等腰直角三角形,根据等腰直角三角形的性质可得∠CBB′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠B′A′C,然后根据旋转的性质可得∠A=∠B′A′C.【解答】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴BC=B′C,∴△BCB′是等腰直角三角形,∴∠CBB′=45°,∴∠B′A′C=∠A′B′B+∠CBB′=20°+45°=65°,由旋转的性质得∠A=∠B′A′C=65°.故答案为:65°.【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.16.【思路分析】先判断出∠BAD=150°,AD=AB,再判断出△BAD是等腰三角形,最后用三角形的内角和定理即可得出结论.【解答】解:∵将△ABC绕点A逆时针旋转150°,得到△ADE,∴∠BAD=150°,AD=AB,∵点B,C,D恰好在同一直线上,∴△BAD是顶角为150°的等腰三角形,∴∠B=∠BDA,∴∠B=12(180°-∠BAD)=15°,故答案为:15°.【点评】此题主要考查了旋转的性质,等腰三角形的判定和性质,三角形的内角和定理,判断出三角形ABD是等腰三角形是解本题的关键.三、解答题18.【思路分析】(1)根据中心对称的性质即可作出图形;(2)根据轴对称的性质即可作出图形;(3)根据旋转的性质即可求出图形.【解答】解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作【点评】本题考查图形变换,解题的关键是正确理解图形变换的性质,本题属于基础题型.19.【思路分析】(1)利用旋转变换的性质画出图象即可;(2)根据轴对称图形的定义即可判断;(3)利用弧长公式计算即可;【解答】解:(1)点D→D1→D2→D经过的路径如图所示:(2)观察图象可知图象是轴对称图形,故答案为轴对称.(3)周长=90?•448180ππ⨯=.【点评】本题考查作图-旋转变换,弧长公式、轴对称图形等知识,解题的关键是理解题意,正确画出图形,属于中考常考题型.20.【思路分析】(1)先运用SAS判定△AED≌△FDE,可得DF=AE,再根据AE=AB=CD,即可得出CD=DF;(2)当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.【解答】解:(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=12AD=12AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°-60°=300°.【点评】本题主要考查了旋转的性质,全等三角形的判定与性质的运用,解题时注意:对应点与旋转中心所连线段的夹角等于旋转角.。