高二数学抛物线试题答案及解析
高二数学抛物线试题

高二数学抛物线试题1.由抛物线y=x2-x,直线x=-1及x轴围成的图形的面积为()A.B.1C.D.【答案】B【解析】令,得,因此围成的面积.【考点】利用定积分求平面图形的面积.2.抛物线的焦点坐标是_____________.【答案】【解析】焦点坐标,所以【考点】抛物线焦点坐标.3.对抛物线,下列描述正确的是A.开口向上,焦点为B.开口向上,焦点为C.开口向右,焦点为D.开口向右,焦点为【答案】A【解析】由抛物线的定义可知:开口向上,焦点坐标为,所以C为正确答案.【考点】抛物线的定义.4.已知抛物线:,为坐标原点,为的焦点,是上一点. 若是等腰三角形,则 .【答案】或【解析】由抛物线方程可知,则。
设点坐标为,当时,由抛物线的定义可知,则,此时点与原点重合故舍。
当时,。
当时,由抛物线的定义可知,所以,解得。
所以。
综上可得或。
【考点】1抛物线的定义;2抛物线的焦点坐标。
5.已知F为抛物线的焦点,M为其上一点,且,则直线MF的斜率为().A.-B.±C.-D.±【答案】B【解析】表示抛物线上点到焦点的距离,这让我们想到抛物线的焦半径公式,点的坐标为,对抛物线有,于是由题意,,,,.【考点】抛物线的焦半径或抛物线的定义.6.抛物线的焦点坐标是 .【答案】【解析】抛物线的开口向上,所以其焦点在轴的正半轴,因为,所以,则其焦点坐标为.【考点】本题的考查的知识点是抛物线的焦点坐标的求解方法.7.抛物线的焦点坐标是()A.(0,1)B.(0,-1)C.(0, )D.(0,-)【答案】C【解析】抛物线化为标准方程,根据抛物线的几何性质,知焦点坐标为,选C.【考点】抛物线的性质.8.若直线与抛物线交于、两点,则线段的中点坐标是______.【答案】【解析】设,联立直线与抛物线整理得,所以中点为【考点】直线与抛物线相交的位置关系点评:直线与圆锥曲线相交时常联立方程组,将所求问题转化为与两交点坐标相关的问题9.给定直线动圆M与定圆外切且与直线相切.(1)求动圆圆心M的轨迹C的方程;(2)设A、B是曲线C上两动点(异于坐标原点O),若求证直线AB过一定点,并求出定点的坐标.【答案】(1)(2)【解析】解:(1)由已知可得:定圆的圆心为(-3,0),且M到(-3,0)的距离比它到直线的距离大1,∴M到(-3,0)的距离等于它到直线的距离,∴动圆圆心M的轨迹为以F(-3,0)为焦点,直线为准线的抛物线,开口向左,,∴动圆圆心M的轨迹C的方程为:(也可以用直接法:,然后化简即得:);(2)方法一:经分析:OA,OB的斜率都存在,都不为0,设OA:,则OB:,联立和的方程求得A(,),同理可得B(,),∴, 即: ,令,则,∴,∴直线AB与x轴交点为定点,其坐标为。
高考数学专题《抛物线》习题含答案解析

专题9.5 抛物线1.(2020·全国高考真题(理))已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2 B .3 C .6 D .9【答案】C 【解析】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p=+,解得6p.故选:C.2.(2020·北京高三二模)焦点在x 轴的正半轴上,且焦点到准线的距离为4的抛物线的标准方程是( ) A .x 2=4y B .y 2=4x C .x 2=8y D .y 2=8x【答案】D 【解析】根据题意,要求抛物线的焦点在x 轴的正半轴上, 设其标准方程为22(0)y px p =>, 又由焦点到准线的距离为4,即p =4, 故要求抛物线的标准方程为y 2=8x , 故选:D.3.(全国高考真题)设F 为抛物线2:4C y x =的焦点,曲线()0ky k x=>与C 交于点P ,PF x ⊥轴,则k =( )A .12B .1C .32D .2【答案】D 【解析】由抛物线的性质可得(1,2)221kP y k ⇒==⇒=,故选D. 4.(2020·全国高考真题(文))设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫ ⎪⎝⎭C .(1,0)D .(2,0)练基础【答案】B 【解析】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B.5.(2019·四川高三月考(文))若抛物线22y px =的准线为圆2240x y x ++=的一条切线,则抛物线的方程为( ) A.216y x =- B.28y x =-C.216y x =D.24y x =【答案】C 【解析】∵抛物线22y px =的准线方程为x=2p-,垂直于x 轴. 而圆2240x y x ++=垂直于x 轴的一条切线为4x =-, 则42p=,即8p =. 故抛物线的方程为216y x =. 故选:C .6.(2019·北京高考真题(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________. 【答案】(x -1)2+y 2=4. 【解析】抛物线y 2=4x 中,2p =4,p =2, 焦点F (1,0),准线l 的方程为x =-1, 以F 为圆心,且与l 相切的圆的方程为 (x -1)2+y 2=22,即为(x -1)2+y 2=4.7.(2019·山东高三月考(文))直线l 与抛物线22x y =相交于A ,B 两点,当AB 4=时,则弦AB 中点M 到x 轴距离的最小值为______. 【答案】32【解析】由题意,抛物线22x y =的焦点坐标为(0,12),根据抛物线的定义如图,所求d=111A B AF BF 113M 2222A B AB M ++--==≥= 故答案为:32. 8.(2021·沙湾县第一中学(文))设过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,且直线AB 的倾斜角为4π,则线段AB 的长是____,焦点F 到A ,B 两点的距离之积为_________.【答案】8 8 【分析】由题意可得直线AB 的方程为1y x =-,然后将直线方程与抛物线方程联立方程组,消去y 后,利用根与系数的关系,结合抛物线的定义可求得答案 【详解】解:由题意得(1,0)F ,则直线AB 的方程为1y x =-,设1122(,),(,)A x y B x y ,由241y x y x ⎧=⎨=-⎩,得2610x x -+=, 所以12126,1x x x x +==, 所以12628AB x x p =++=+=,因为11221,122=+=+=+=+p pAF x x BF x x , 所以()()1212121116118AF BF x x x x x x ⋅=+⋅+=+++=++=, 故答案为:8,89.(2021·全国高三专题练习)已知抛物线顶点在原点,焦点在坐标轴上,又知此抛物线上的一点(),3A m -到焦点F 的距离为5,则m 的值为__________;抛物线方程为__________. 【答案】答案见解析 答案见解析 【分析】由于抛物线的开口方向未定,根据点(),3A m -在抛物线上这一条件,抛物线开口向下,向左、向右均有可能,以此分类讨论,利用焦半径公式列方程可得p 的值,根据点(),3A m -在抛物线上可得m 的值. 【详解】根据点(),3A m -在抛物线上,可知抛物线开口向下,向左、向右均有可能, 当抛物线开口向下时,设抛物线方程为22x py =-(0p >), 此时准线方程为2py =,由抛物线定义知(3)52p --=,解得4p =.所以抛物线方程为28x y ,这时将(),3A m -代入方程得m =±当抛物线开口向左或向右时,可设抛物线方程为22y ax (0a ≠),从p a =知准线方程为2ax =-,由题意知()25232am am⎧+=⎪⎨⎪-=⎩,解此方程组得11192a m =⎧⎪⎨=⎪⎩,22192a m =-⎧⎪⎨=-⎪⎩,33912a m =⎧⎪⎨=⎪⎩,44912a m =-⎧⎪⎨=-⎪⎩,综合(1)、(2)得92m =,22y x =; 92m =-,22y x =-;12m =,218y x =; 12m =-,218y x =-;m =±28xy .故答案为:92,92-,12,12-,±22y x =,22y x =-,218y x =,218y x =-,28x y .10.(2019·广东高三月考(理))已知F 为抛物线2:4T x y =的焦点,直线:2l y kx =+与T 相交于,A B 两点.()1若1k =,求FA FB +的值;()2点(3,2)C --,若CFA CFB ∠=∠,求直线l 的方程.【答案】(1)10(2)3240x y +-= 【解析】(1)由题意,可得()0,1F ,设221212,,,44x x A x B x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,联立方程组224y kx x y=+⎧⎨=⎩,整理得2480x kx --=,则124x x k +=,128x x =-,又由22121144x x FA FB +++=+()2121222104x x x x +-=+=.(2)由题意,知211,14x FA x ⎛⎫=- ⎪⎝⎭,222,14x FB x ⎛⎫=- ⎪⎝⎭,()3.3FC =--, 由CFA CFB ∠=∠,可得cos ,cos ,FA FC FB FC =又2114x FA =+,2214x FB =+,则FA FC FB FC FA FC FB FC =, 整理得()1212420x x x x ++-=,解得32k =-, 所以直线l 的方程为3240x y +-=.1.(2021·吉林长春市·高三(理))已知M 是抛物线24y x =上的一点,F 是抛物线的焦点,若以Fx 为始边,FM 为终边的角60xFM ∠=,则FM 等于( ) A .2 B C .D .4【答案】D 【分析】设点200,4y M y ⎛⎫ ⎪⎝⎭,取()1,0a =,可得1cos ,2FM a <>=,求出20y 的值,利用抛物线的定义可求练提升得FM 的值. 【详解】设点()00,M x y ,其中2004y x =,则()1,0F ,2001,4y FM y ⎛⎫=- ⎪⎝⎭,取()1,0a =,则211cos ,2y FM a FM a FM a-⋅<>===⋅⎛,可得4200340480y y -+=,因为20104y ->,可得204y >,解得2012y =,则20034y x ==,因此,014MF x=+=. 故选:D.2.(2017·全国高考真题(文))过抛物线2:4C y x =的焦点F 的直线交C 于点M (在x 轴上方),l 为C 的准线,点N 在l 上且MNl ⊥,则点M 到直线NF 的距离为()A. B. D.【答案】A 【解析】设直线l 与x 轴相交于点P ,与直线MN 相交于点Q ,(1,0)F ,设||||MN MF m ==,因为||2,30PF NQM =∠=,所以||4,||2QF QM m ==, 所以42m m +=,解得:4m =,设00(,)M x y ,由焦半径公式得:014x +=, 所以03x=,0y =,所以sin sin 42NP MNF NFP NF ∠=∠===,所以点M 到直线NF 的距离为||sin 4NM MNF ⋅∠=⋅=3.(2020·广西南宁三中其他(理))已知抛物线28C y x =:的焦点为F ,P 是抛物线C 的准线上的一点,且P 的纵坐标为正数,Q 是直线PF 与抛物线C 的一个交点,若PQ =,则直线PF 的方程为( )A .20x y --=B .20x y +-=C .20x y -+=D .20x y ++=【答案】B 【解析】过Q 点作QH PM ⊥于H ,因为PQ =,由抛物线的定义得PQ =,所以在Rt PQH ∆中,4PQH π∠=,所以4PFM π∠=,所以直线PF 的斜率为1k =-,所以直线PF 的方程为()()012y x -=--, 即20x y +-=, 故选B.4.(2020·浙江高三月考)如图,已知抛物线21:4C y x =和圆222:(1)1C x y -+=,直线l 经过1C 的焦点F ,自上而下依次交1C 和2C 于A ,B ,C ,D 四点,则AB CD ⋅的值为( )A .14B .12C .1D .2【答案】C 【解析】因为抛物线21:4C y x =的焦点为(1,0)F ,又直线l 经过1C 的焦点F ,设直线:(1)l y k x =-,由24(1)y x y k x ⎧=⎨=-⎩得2222(24)0k x k x k -++=, 设1122(,),(,)A x y B x y ,则121=x x由题意可得:1111=-=+-=AB AF BF x x , 同理2=CD x ,所以12cos01︒⋅=⋅⋅==AB CD AB CD x x . 故选C5.【多选题】(2022·全国高三专题练习)已知抛物线21:C y mx =与双曲线222:13y C x -=有相同的焦点,点()02,P y 在抛物线1C 上,则下列结论正确的有( )A .双曲线2C 的离心率为2B .双曲线2C 的渐近线为y x = C .8m =D .点P 到抛物线1C 的焦点的距离为4【答案】ACD 【分析】由双曲线方程写出离心率、渐近线及焦点,即可知A 、B 、C 的正误,根据所得抛物线方程求0y ,即知D 的正误. 【详解】双曲线2C 的离心率为2e ==,故A 正确;双曲线2C 的渐近线为y =,故B 错误; 由12,C C 有相同焦点,即24m=,即8m =,故C 正确; 抛物线28y x =焦点为()2,0,点()02,P y 在1C 上,则04y =±,故()2,4P 或()2,4P -,所以P 到1C 的焦点的距离为4,故D 正确. 故选:ACD .6.【多选题】(2021·海南鑫源高级中学)在下列四个命题中,真命题为( )A .当a 为任意实数时,直线(a -1)x -y +2a +1=0恒过定点P ,则过点P 且焦点在y 轴上的抛物线的标准方程是243x y =B .已知双曲线的右焦点为(5,0),一条渐近线方程为2x -y =0,则双曲线的标准方程为221205x y -= C .抛物线y =ax 2(a ≠0)的准线方程14y a=-D .已知双曲线2214x y m +=,其离心率()1,2e ∈,则m 的取值范围(-12,0)【答案】ACD 【分析】求出直线定点设出抛物方程即可判断A ;根据渐近线方程与焦点坐标求出,a b 即可判断B ;根据抛物线方程的准线方程公式即可判断C ;利用双曲线离心率公式即可判断D . 【详解】对A 选项,直线(a -1)x -y +2a +1=0恒过定点为()2,3P -,则过点P 且焦点在y 轴上的抛物线的标准方程设为22x py =,将点()2,3P -代入可得23p =,所以243x y =,故A 正确;对B 选项,知5,2bc a==,又22225a b c +==,解得225,20a b ==,所以双曲线的标准方程为221520x y -=,故B 错; 对C 选项,得21x y a =,所以准线方程14y a=-,正确;对D 选项,化双曲线方程为2214x y m-=-,所以()1,2e =,解得()12,0m ∈-,故正确.故选:ACD7.(2021·全国高二课时练习)已知点M 为抛物线2:2(0)C y px p =>上一点,若点M 到两定点(,)A p p ,,02p F ⎛⎫⎪⎝⎭的距离之和最小,则点M 的坐标为______.【答案】,2p p ⎛⎫⎪⎝⎭【分析】过点M 作抛物线准线的垂线,垂足为B ,根据抛物线的定义可得||||MF MB =, 易知当A ,B ,M 三点共线时||MB MA +取得最小值且为||AB ,进而可得结果. 【详解】过点M 作抛物线准线的垂线,垂足为B ,由抛物线的定义,知点M 到焦点,02p F ⎛⎫⎪⎝⎭的距离与点M 到准线的距离相等,即||||MF MB =,所以||||||||MF MA MB MA +=+, 易知当A ,B ,M 三点共线时,||MB MA +取得最小值, 所以min 3(||||)||2p MF MA AB +==,此时点M 的坐标为,2p p ⎛⎫⎪⎝⎭. 故答案为:2p p ⎛⎫⎪⎝⎭,8.(2021·全国高二课时练习)抛物线()220y px p =>的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒,过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则MN AB的最大值为______.【分析】设=AF a ,=BF b ,根据中位线定理以及抛物线定义可得()12MN a b =+,在AFB △中,由余弦定理以及基本不等式可得)AB a b ≥+,即可求得MN AB 的最大值.【详解】设=AF a ,=BF b ,作AQ 垂直抛物线的准线于点Q ,BP 垂直抛物线的准线于点P .由抛物线的定义,知AF AQ =,BF BP =.由余弦定理得()2222222cos120AB a b ab a b ab a b ab =+=︒=++=+-.又22a b ab +⎛⎫≤ ⎪⎝⎭,∴()()()()22221344a b ab a b a b a b +-≥+-+=+,当且仅当a b =时,等号成立,∴)AB a b ≥+,∴()1a b MN AB +≤=MN AB9.(2020·山东济南外国语学校高三月考)抛物线C :22y x =的焦点坐标是________;经过点()4,1P 的直线l 与抛物线C 相交于A ,B 两点,且点P 恰为AB 的中点,F 为抛物线的焦点,则AF BF +=________.【答案】1,02⎛⎫⎪⎝⎭9【解析】抛物线C :22y x =的焦点1,02F ⎛⎫⎪⎝⎭. 过A 作AM ⊥准线交准线于M ,过B 作BN ⊥准线交准线于N ,过P 作PK ⊥准线交准线 于K ,则由抛物线的定义可得AM BN AF BF +=+. 再根据P 为线段AB 的中点,119(||||)||4222AM BN PK +==+=, ∴9AF BF +=,故答案为:焦点坐标是1,02⎛⎫ ⎪⎝⎭,9AF BF +=.10.(2019·四川高考模拟(文))抛物线C :()220x py p =>的焦点为F ,抛物线过点(),1P p .(Ⅰ)求抛物线C 的标准方程与其准线l 的方程;(Ⅱ)过F 点作直线与抛物线C 交于A ,B 两点,过A ,B 分别作抛物线的切线,证明两条切线的交点在抛物线C 的准线l 上.【答案】(Ⅰ)抛物线的标准方程为24x y =,准线l 的方程为1y =-;(Ⅱ)详见解析. 【解析】(Ⅰ)由221p p =⨯,得2p =,所以抛物线的标准方程为24x y =,准线l 的方程为1y =-.(Ⅱ)根据题意直线AB 的斜率一定存在,又焦点()0,1F ,设过F 点的直线方程为1y kx =+,联立241x yy kx ⎧=⎨=+⎩,得,2440x kx --=. 设()11,A x y ,()22,B x y ,则124x x k +=,124x x =-.∴()22221212122168x x x x x x k +=+-=+.由214y x =得,1'2y x =,过A ,B 的抛物线的切线方程分别为 ()()1112221212y y x x x y y x x x ⎧-=-⎪⎪⎨⎪-=-⎪⎩, 即21122211241124y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩,两式相加,得()()2212121148y x x x x x =+-+,化简,得()221y kx k =-+,即()21y k x k =--, 所以,两条切线交于点()2,1k -,该点显然在抛物线C 的准线l :1y =-上.1.(2021·全国高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+,则p =( ) A .1 B .2 C .D .4【答案】B 【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【详解】抛物线的焦点坐标为,02p ⎛⎫ ⎪⎝⎭,其到直线10x y -+=的距离:d == 解得:2p =(6p =-舍去). 故选:B.2.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB .则双曲线的离心率为( ) A B C .2D .3练真题【答案】A 【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解. 【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c ya b-=,解得2b y a =±,所以22b AB a =, 又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a c ,所以222212a cbc =-=,所以双曲线的离心率ce a== 故选:A.3.(2020·北京高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ). A .经过点O B .经过点P C .平行于直线OP D .垂直于直线OP【答案】B 【解析】如图所示:.因为线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P .故选:B.4.(2021·全国高考真题)已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______. 【答案】32x =-【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果. 【详解】抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直, 所以P 的横坐标为2p,代入抛物线方程求得P 的纵坐标为p ±, 不妨设(,)2pP p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =, (6,0),(6,)2pQ PQ p ∴+∴=- 因为PQ OP ⊥,所以PQ OP ⋅=2602pp ⨯-=, 0,3p p >∴=,所以C 的准线方程为32x =-故答案为:32x =-.5.的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.【答案】163【解析】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F ,又∵直线AB 过焦点F AB 的方程为:1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=, 解法一:解得121,33x x ==所以12116||||3|33AB x x =-=-= 解法二:10036640∆=-=> 设1122(,),(,)A x y B x y ,则12103x x +=, 过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示.12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:1636.(2020·浙江省高考真题)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116=p ,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.【答案】(Ⅰ)1(,0)32;【解析】 (Ⅰ)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x y B x y M x y I x y m λ=+,由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩, 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++, 由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++, 又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222mx p m λλ∴=+-+.由2222142,?22x y x px y px ⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-222221822228162p p p m p p p λλλλλ+⇒-=+⋅=++≥+,18p ≥,21160p ≤,p ≤ 所以,p,此时A . 法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=,所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m xm+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当m t ==p .。
抛物线(考题猜想,易错必刷25题4种题型)(解析版)—高二数学上学期期中

抛物线(易错必刷25题4种题型专项训练)➢抛物线的定义➢抛物线的方程➢抛物线的焦半径➢直线与抛物线的位置关系一.抛物线的定义(共5小题)1.已知抛物线214y x =上一点A 的纵坐标为4,则点A 到抛物线焦点的距离为( )A .1716B .5C .6D .【答案】B【详解】依题意,由抛物线的定义知,点A 到抛物线焦点的距离即点A 到准线1y=-的距离,即4(1)5--=.故选:B.2.(多选)已知抛物线的焦点在y 轴上,抛物线上一点(),3M m -到焦点的距离为5,则m 的值为( )A .B .-C .D .-3.,P Q 分别是抛物线 22x y = 和 x 轴上的动点, ()2,1M - ,则 PM PQ + 的最小值为( )A .5B .52C D .24.已知点()01,P y 是抛物线2:2(0)C y px p =>上一点,且点P 到C 的焦点距离为2,则p = .【答案】2【详解】抛物线准线方程为故答案为:2.5.已知抛物线2:4C y x =的焦点为F ,点M 在C 上,且点M 到直线2x =-的距离为6,则MF = .二.抛物线的方程(共3小题)6.已知曲线()2024log 3y x =-过抛物线2:C y mx =的焦点,则C 的准线方程为( )A .14=-x B .4y =-C .4x =-D .14y =-【答案】C【详解】易知函数()2024log 3y x =-过x 轴上定点()4,0,即为C 的焦点,故C 的准线方程为4x =-.故选:C.7.过抛物线C :22y px =(0p >)的顶点O ,且倾斜角为60°的直线与抛物线的另一个交点为A ,若8OA =,则抛物线的方程为 .由题意可知4,OB AB ==代入抛物线方程得488p =故答案为:212y x=8.抛物线()220y px p =>的焦点为F ,其准线与双曲线22142x y-=的渐近线相交于A 、B 两点,若ABF △的周长为42,则抛物线方程是 .故答案为:24y x=三.抛物线的焦半径(共8小题)9.设F 为抛物线2:8C y x =的焦点,点()00,P x y 为C 上一点,过P 作y 轴的垂线,垂足为A ,若3PF PA =,则cos FPA Ð=( )A .223B .2-C .13D .13-所以022,y O =为原点,10.已知抛物线24x y =的焦点为F ,过F 的直线l 交抛物线于A 、B 两点,若4AF BF =,则AF = .11.已知M 是抛物线28y x =上一点,F 是抛物线的焦点,O 为坐标原点.若120MFO Ð=o ,则线段MF 的长为 .【答案】8【详解】如图所示:设MF a =,易求(F 因为 120MFO Ð=o 所以在Rt MEF V ,ME 所以 132,22M a æ+ççè12.已知抛物线216y x =,的焦点为F ,P 点在抛物线上,Q 点在圆C :()()22624x y -+-=上,则PQ PF +的最小值为 .13.已知抛物线C :24y x =的焦点为F ,点A 、B 是抛物线C 上不同的两点,且A 、B 中点的横坐标为2,则AF BF += .【答案】6【详解】设()()1122,,,A x y B x y ,由A ,B 中点的横坐标为2,可得124x x +=,所以||||+=AF BF 12116x x +++=.故答案为:6.14.直线l 经过抛物线24y x =的焦点F ,且与抛物线交于A ,B 两点.若3AF BF =,则AB =( )A .83B .3C .163D .32设1122()A x y B x y ,,(,),则由3AF BF =,得1y 由3AF BF =,得1x 联立解得3x =,x =15.(多选)设抛物线24y x =,F 为其焦点,P 为抛物线上一点,则下列结论正确的是( )A .抛物线的准线方程是=1x -B .焦点到准线的距离为4C .若()2,1A ,则PA PF +的最小值为3D .以线段PF 为直径的圆与y 轴相切由抛物线的定义,得PF因此,以PF 为直径的圆与故选:ACD16.(多选)已知抛物线24y x =的焦点为F ,过原点O 的动直线l 交抛物线于另一点P ,交抛物线的准线于点Q ,下列说法正确的是.( )A .若O 为线段PQ 中点,则l 的斜率为±2B .若4PF =,则OP =C .存在直线l ,使得PF QF ^D .PFQ △面积的最小值为2若O 为PQ 中点,则OHP △即H 与焦点F 重合,所以x 代入方程24y x =,得P y =±所以直线l 的斜率为2PPy x =±B 项,若4=PF ,则PF =四.直线与抛物线的位置关系(共9小题)17.(多选)在平面直角坐标系中,过抛物线C :24y x =的焦点F 作一条与坐标轴不平行的直线l ,与C 交于()11,A x y ,()22,B x y 两点,则下列说法正确的是( )A .若直线OB 与准线交于点D ,则0AD k =B .对任意的直线l ,121x x =C .2AF BF +的最小值为3+D .以AF 为直径的圆与y 轴的公共点个数为偶数【答案】ABC【详解】对于A ,点A (x 1,y 1),B (x 2,y 2)在抛物线C :24y x =上,18.已知抛物线2:4C y x =的焦点为,,F A B 为C 上的两点.若直线FA 的斜率为12,且0FA FB ×=,延长,AF BF 分别交C 于,P Q 两点,则四边形ABPQ 的面积为.【答案】50【详解】由题可知,抛物线的焦点坐标为119.斜率为2的直线l 与抛物线2y px =相交于A 、B 两点,若A 、B 两点的中点为()2,1M ,则p 的值是 20.已知抛物线24C y x =:的焦点为F ,过F 的直线l 交C 于,A B 两点,y 轴被以AB 为直径的圆所截得的弦长为6,则AB = .【答案】10【详解】抛物线C :24y x =的焦点故设直线AB 的方程为y 设A (x 1,y 1),B (x 2,y 2).则()24,1,y x y k x ì=ïí=-ïî即22k x ()2222Δ244k k k =+-×21.已知椭圆C :()222210+=>>x y a b a b 的左、右焦点分别为1F ,2F ,椭圆C 的右焦点与抛物线24y x =的焦点重合,两曲线在第一象限的交点为P ,12PF F V (1)求椭圆C 的方程;(2)过点P 的直线l 交椭圆C 于另一点A ,若212PAF PF F S S =△△,求l 的方程.直线()1:261AF y x =-+,联立()22261143y x x y ì=-+ïí+=ïî,消去y 得,23364280x x ++=,解得23x =-或1411x =-,当23x =-时,22626133y æö=--+=-ç÷èø,22.已知椭圆22221(0)x y a b a b +=>>的离心率为12,抛物线24x y =的焦点为点F ,过点F 作y 轴的垂线交椭圆于P ,Q 两点,||PQ =.(1)求椭圆的标准方程;(2)过抛物线上一点A 作抛物线的切线l 交椭圆于B ,C 两点,设l 与x 轴的交点为D ,BC 的中点为E ,BC 的中垂线交x 轴于点G ,若GED V ,FOD V 的面积分别记为1S ,2S ,且121849S S =,点A 在第一象限,求点A 的坐标.23.已知椭圆2222:1(0)x y C a b a b +=>>过点,且其一个焦点与抛物线28y x =的焦点重合.(1)求椭圆C 的方程;(2)设直线AB 与椭圆C 交于A ,B 两点,若点(2,1)M -是线段AB 的中点,求直线AB 的方程.24.已知抛物线21:3C y x =及抛物线22:2(0)C y px p =>,过2C 的焦点F 的直线与1C 交于A ,B 两点,O 为坐标原点,OA OB ^.过F 的两条直线MN ,PQ 与2C 交于M ,N ,P ,Q 四点,其中M ,P 在第一象限,若直线MP 与x 轴的交点为(),0T t .(1)求2C 的方程;(2)若2t=-,求直线NQ与x轴的交点的坐标;(3)是否存在点T,使得M,N,P,Q四点共圆?若存在,求出t的值;若不存在,请说明理由.(2)由(1)可得设直线MN的方程为由2123y xx myì=í=+î,得(3)由(2)可得1y y 若M ,N ,P ,Q 四点共圆,则有即2212331212y y æöæö++=ç÷ç÷èøèø即22223124y y y y +=+,所以25.已知直线210x y -+=与抛物线2:2(0)C y px p =>交于,A B 两点,且||AB =(1)求p ;(2)设F 为C 的焦点,M ,N 为C 上两点,且90MFN Ð=°,求MFN △面积的最小值.【答案】(1)2p =;∵F(1,0),显然直线MN的斜率不可能为零,设直线MN:x my n=+,M由24y xx my nì=í=+î可得,24y-。
高二数学抛物线试题答案及解析

高二数学抛物线试题答案及解析1.已知点,直线,动点到点的距离等于它到直线的距离.(Ⅰ)求点的轨迹的方程;(Ⅱ)是否存在过的直线,使得直线被曲线截得的弦恰好被点所平分?【答案】(1);(2)即【解析】(1)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置,开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数,只需一个条件就可以确定抛物线的标准方程,或根据定义来求抛物线方程.(2)在解决与抛物线性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此;(3)求双曲线的标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即先确定双曲线标准方程的形式,求出的值.试题解析:(Ⅰ)因点到点的距离等于它到直线的距离,所以点的轨迹是以为焦点、直线为准线的抛物线,其方程为.(Ⅱ)解法一:假设存在满足题设的直线.设直线与轨迹交于,依题意,得.①当直线的斜率不存在时,不合题意.②当直线的斜率存在时,设直线的方程为,联立方程组,消去,得,(*)∴,解得.此时,方程(*)为,其判别式大于零,∴存在满足题设的直线且直线的方程为:即.解法二:假设存在满足题设的直线.设直线与轨迹交于,依题意,得.∵在轨迹上,∴有,将,得.当时,弦的中点不是,不合题意,∴,即直线的斜率,注意到点在曲线的张口内(或:经检验,直线与轨迹相交)∴存在满足题设的直线且直线的方程为:即.【考点】(1)抛物线的标准方程;(2)直线与抛物线的综合问题.2.如图,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1,y1),B(x2,y2)均在抛物线上.(1)写出该抛物线的标准方程及其准线方程;(2)当直线与的斜率存在且倾斜角互补时,求的值及直线的斜率.【答案】(1)所求抛物线的方程是,准线方程是.(2).且由①-②得直线AB的斜率为-1.【解析】(1)设出抛物线的方程,把点P代入抛物线求得p,即求出抛物线的方程,进而求得抛物线的准线方程;(2)设直线的斜率为,直线的斜率为,则可分别表示、,根据倾斜角互补可得,进而得出与之间的等式关系,最后把点A、B代入抛物线的方程并将两式相减后即可求得直线AB的斜率.试题解析:(1)由已知条件,可设抛物线的方程为.因为点P(1,2)在抛物线上,所以,解得.故所求抛物线的方程是,准线方程是.(2)设直线的斜率为,直线的斜率为,则,.因为与的斜率存在且倾斜角互补,所以.又由,均在抛物线上,得①②所以,所以.且由①-②得直线AB的斜率为-1.【考点】抛物线的应用.3.如图,已知某探照灯反光镜的纵切面是抛物线的一部分,光源安装在焦点上,且灯的深度等于灯口直径,且为64 ,则光源安装的位置到灯的顶端的距离为____________.【答案】.【解析】先以反射镜定点为原点,以顶点和焦点所在直线为轴,建立直角坐标系.设抛物线方程为,依题意可点在抛物线上,代入抛物线方程得,求得,进而可求得焦距为,即为所求.【考点】抛物线的应用.4.已知抛物线上的任意一点到该抛物线焦点的距离比该点到轴的距离多1.(1)求的值;(2)如图所示,过定点(2,0)且互相垂直的两条直线、分别与该抛物线分别交于、、、四点.(i)求四边形面积的最小值;(ii)设线段、的中点分别为、两点,试问:直线是否过定点?若是,求出定点坐标;若不是,请说明理由.【答案】(1)(2)(i)四边形面积的最小值是48(ii)【解析】(1)直接利用抛物线的定义(2)(i)S四边形ABCD,,利用弦长公式,以及基本不等式,二次函数在闭区间上的最值问题的解法求解(ii)恒过定点问题的常规解法试题解析:(1)由已知∴(2)(i)由题意可设直线的方程为(),代入得设则,∴6分同理可得 7分S四边形ABCD8分设则∴S四边形ABCD∵函数在上是增函数∴S四边形ABCD ,当且仅当即即时取等号∴四边形面积的最小值是48. 9分(ii)由①得∴∴∴, 11分同理得 12分∴直线的方程可表示为即当时得∴直线过定点(4,0). 14分注:第(2)中的第(i)问:S四边形ABCD(当且仅当时取等号)也可.【考点】本题主要考查抛物线标准方程,简单几何性质,直线与抛物线的位置关系,弦长公式,基本不等式,二次函数在闭区间上的最值问题等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.5.已知过曲线上任意一点作直线的垂线,垂足为,且.⑴求曲线的方程;⑵设、是曲线上两个不同点,直线和的倾斜角分别为和,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标.【答案】⑴⑵当时,直线恒过定点,当时直线恒过定点.【解析】⑴要求曲线方程,但是不知道是哪种曲线,所以只能设点.根据,转化为求曲线方程即可;⑵要证明直线恒过定点,必须得有直线方程,所以首先设出直线方程.又因为两个角是直线和的倾斜角,所以点也得设出来.利用韦达定理,然后讨论的范围变化,证明并得出定点坐标. 试题解析:⑴设,则,由得,;即;所以轨迹方程为;⑵设,由题意得(否则)且,所以直线的斜率存在,设其方程为,因为在抛物线上,所以,将与联立消去,得;由韦达定理知①;(1)当时,即时,,所以,,所以.由①知:,所以因此直线的方程可表示为,即.所以直线恒过定点(2)当时,由,得==将①式代入上式整理化简可得:,所以,此时,直线的方程可表示为,即,所以直线恒过定点;所以由(1)(2)知,当时,直线恒过定点,当时直线恒过定点. 12分【考点】相关点法求曲线方程;分类讨论.6.抛物线的准线方程是()A.B.C.D.【答案】C【解析】由抛物线方程可知,,焦点在轴正半轴,所以其准线方程为。
高二数学抛物线试题答案及解析

高二数学抛物线试题答案及解析1.抛物线截直线所得弦长等于()A.B.C.D.【答案】A【解析】设直线与抛物线交点坐标分别为,将直线方程代入抛物线方程并化简的,由根与系数的关系可知,由弦长公式可知弦长,答案选A.【考点】直线与抛物线相交弦长公式2.设抛物线的焦点为,经过点的直线交抛物线于、两点,分别过、两点作抛物线的两条切线交于点,则有()A.B.C.D.【答案】A.【解析】设出过点F的直线方程即,联立方程组,化简整理得,设,,则由韦达定理得,.,.由可得,,所以,所以抛物线在A,B两点处的切线的斜率分别为,.所以在点A处的切线方程为,即.同理在点B处的切线方程为.于是解方程组可得,,所以点C的坐标为.所以故答案应选A.【考点】直线与抛物线的位置关系;向量的数量积.3.抛物线()的焦点为,已知点,为抛物线上的两个动点,且满足.过弦的中点作抛物线准线的垂线,垂足为,则的最大值为()A.B.1C.D.2【答案】A.【解析】设,连接AF、BF,由抛物线的定义知,,在梯形ABPQ中,;应用余弦定理得,配方得,又因为,所以,得到.所以,即的最大值为,故选A.【考点】抛物线的简单性质.4.已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点,若点到该抛物线焦点的距离为3,则=()A.B.C.4D.【答案】B.【解析】由题意可设抛物线方程为,因为点到该抛物线焦点的距离为3,所以,即,即抛物线方程为,又因为点在抛物线上,所以,所以,故选B.【考点】抛物线的简单性质.5.设抛物线的焦点为,经过点的直线与抛物线相交于两点且点恰为的中点,则【答案】8【解析】设,因为是的中点,所以,由点在抛物线上,所以所以所以答案填:8.【考点】抛物线的定义与标准方程.6.如图,已知某探照灯反光镜的纵切面是抛物线的一部分,光源安装在焦点上,且灯的深度等于灯口直径,且为64 ,则光源安装的位置到灯的顶端的距离为____________.【答案】.【解析】先以反射镜定点为原点,以顶点和焦点所在直线为轴,建立直角坐标系.设抛物线方程为,依题意可点在抛物线上,代入抛物线方程得,求得,进而可求得焦距为,即为所求.【考点】抛物线的应用.7.已知过抛物线的焦点的直线交抛物线于,两点.求证:(1)为定值;(2) 为定值.【答案】(1);(2).【解析】(1)设过焦点的直线方程与联立,利用韦达定理,即可得出结论;(2)利用,及根与系数的关系即可得出.(1)抛物线的焦点为,设直线的方程为.由消去,得.由根与系数的关系,得(定值).当轴时,,,也成立.(2)由抛物线的定义,知,.(定值).当轴时,,上式仍成立.【考点】抛物线的简单性质.8.已知抛物线过点.(1)求抛物线的方程,并求其准线方程;(2)过焦点且斜率为的直线与抛物线交于两点,求的面积.【答案】(1)抛物线的方程为,准线方程为;(2).【解析】(1)先由抛物线过点得到,进而解出的值,这样即可确定该抛物线的方程,进而再根据抛物线的几何性质得到准线方程;(2)由(1)中抛物线的方程先确定,进而根据点斜式可写出直线的方程,设点,联立直线与抛物线的方程,消去得到,进而根据二次方程根与系数的关系得到,进而可根据弦长计算公式计算出弦长,然后由点到直线的距离公式算出原点到直线的距离,进而可求出的面积.(1)根据抛物线过点可得,解得从而抛物线的方程为,准线方程为 5分(2)抛物线焦点坐标为,所以直线 6分设点联立得:,即 8分则由韦达定理有: 9分则弦长 11分而原点到直线的距离 12分故 13分.【考点】1.抛物线的标准方程及其几何性质;2.直线与抛物线的位置关系;3.点到直线的距离公式.9.抛物线的焦点坐标为()A.B.C.D.【答案】A【解析】根据抛物线的性质可知抛物线的焦点坐标为【考点】抛物线的性质.10.在平面直角坐标系中,已知动点到点的距离为,到轴的距离为,且.(1)求点的轨迹的方程;(2)若直线斜率为1且过点,其与轨迹交于点,求的值.【答案】(1)(2).【解析】(1)方法一:由抛物线的定义直接得到结果;方法二:根据题中所给数据直接列出等式,化简即可得到结果.(2)将直线,与,联立,得,利用弦长公式得,将韦达定理代入即可得到结果.(1)方法一:由抛物线的定义可知,;方法二:,.可得,.(2)直线,联立,得,【考点】1.抛物线的定义;2.直线与抛物线的位置关系.11.点是抛物线上一动点,则点到点的距离与到直线的距离和的最小值是 .【答案】【解析】∵P点到直线x=-1的距离等于P点到抛物线y2=4x焦点F的距离故当P点位于AF上时,点P到点A(0,-1)的距离与到直线x=-1的距离和最小此时|PA|+|PF|=|AF|=.【考点】抛物线的简单性质.12.在平面直角坐标系xOy中,焦点为F(5,0)的抛物线的标准方程是.【答案】y2=20x【解析】焦点为F(5,0),所以抛物线开口向右,标准方程可设为,又所以,抛物线的标准方程是y2=20x【考点】抛物线的焦点坐标与方程关系13.抛物线上的一点M到焦点的距离为1,则点M到y轴的距离是( )A.B.C.1D.【答案】D【解析】抛物线的准线方程为,根据抛物线的定义可知点到准线的距离为1,所以点到的距离为。
第05讲 抛物线-2023年高二数学(人教A版2019选择性必修第一册)(解析版)

第05讲抛物线【考点目录】【知识梳理】知识点1 抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.注:①在抛物线定义中,若去掉条件“l不经过点F”,点的轨迹还是抛物线吗?不一定是,若点F在直线l上,点的轨迹是过点F且垂直于直线l的直线.②定义的实质可归纳为“一动三定”一个动点M;一个定点F(抛物线的焦点);一条定直线(抛物线的准线);一个定值(点M到点F的距离与它到定直线l的距离之比等于1).知识点2抛物线的标准方程和几何性质焦点在x轴上时,方程的右端为±2px,左端为y2;焦点在y轴上时,方程的右端为±2py,左端为x2.p的几何意义:焦点F到准线l的距离.标准方程y 2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)图形顶点O(0,0)知识点3 直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km -p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个交点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.注:(1)直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.(2)研究直线与抛物线的关系时要注意直线斜率不存在的情况.知识点4 弦长问题过抛物线y2=2px(p>0)的焦点的直线交抛物线于A(x1,y1),B(x2,y2)两点,那么线段AB叫做焦点弦,如图:设AB是过抛物线y2=2px(p>0)焦点F的弦,若A(x1,y1),B(x2,y2),则|AB|=x1+x2+p.注:(1)x 1·x 2=p 24.(2)y 1·y 2=-p 2.(3)|AB |=x 1+x 2+p =2psin 2α (α是直线AB 的倾斜角).(4)1|AF |+1|BF |=2p 为定值(F 是抛物线的焦点). (5)求弦长问题的方法①一般弦长:|AB |=1+k 2|x 1-x 2|,或|AB |=1+1k2|y 1-y 2|. ②焦点弦长:设过焦点的弦的端点为A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p .考点一 抛物线的标准方程(一)求抛物线的标准方程1.(2022春·北京海淀·高二校考阶段练习)抛物线的焦点在x 轴正半轴上,且准线与焦点轴间的距离为3,则此抛物线的标准方程为( ) A .26y x = B .23y x = C .26x y = D .23x y =【答案】A【分析】利用抛物线的性质,求出p ,然后求得抛物线方程即可.【详解】解:焦点在x 轴正半轴上的抛物线标准方程为()220y px p =>,又准线与焦点轴间的距离为3,可得3p =,所以抛物线的标准方程为26y x =.故选:A.2.(2022春·辽宁本溪·高二校考阶段练习)以坐标轴为对称轴,焦点在直线45100x y -+=上的抛物线的标准方程为( ) A .210x y =或28y x =-B .210x y =-或28y x =【考点剖析】C .210y x =或28x yD .210y x =-或28x y =【答案】D【分析】直线45100x y -+=与坐标轴的交点即为焦点,根据焦点可求出p ,可得答案. 【详解】直线45100x y -+=与坐标轴的交点为()5,0,0,22⎛⎫- ⎪⎝⎭,当抛物线的焦点为5,02⎛⎫- ⎪⎝⎭时,其标准方程为210y x =-;当抛物线的焦点为()0,2时,其标准方程为28x y =. 故选:D.3.(2022秋·上海黄浦·高二上海市向明中学校考期末)过点1,2,且焦点在y 轴上的抛物线的标准方程是( ) A .24y x = B .24y x =-C .212=-x yD .212x y =【答案】C【分析】设抛物线方程为2x my =,代入点的坐标,即可求出m 的值,即可得解; 【详解】解:依题意设抛物线方程为2x my =,因为抛物线过点1,2, 所以()212m =⨯-,解得12m =-,所以抛物线方程为212=-x y ;故选:C(二)抛物线的几何性质的应用4.(2022·全国·高二假期作业)抛物线26y x =的准线方程为( ) A .124y =-B .112y =-C .y =-6D .=3y -【答案】A【分析】先把抛物线化成标准方程,求出p ,即可得到准线方程.【详解】抛物线26y x =的标准方程为:216x y =,令2126x y py ==,得112p =,于是该抛物线的准线为:124y =-.5.(2022春·山东临沂·高二临沂第四中学校考阶段练习)若抛物线22y px =的焦点与双曲线221x y -=的右焦点重合,则p =( )A .2B .4C .D 【答案】C【分析】先求出双曲线221x y -=的右焦点,此焦点是抛物线22y px =的焦点,求出.p【详解】在双曲线221x y -=中,2112c =+=,所以右焦点)2F ,2F 是抛物线22y px =的焦点,2pp ∴== 故选:C6.(2022春·黑龙江哈尔滨·高二哈九中校考阶段练习)已知圆22:(1)1C x y -+=与抛物线22(0)y px p =>的准线相切,则p =( )A .18B .14C .8D .2【答案】A【分析】根据给定条件,求出抛物线的准线方程,再利用点到直线距离公式求解作答.【详解】圆22:(1)1C x y -+=的圆心(1,0)C ,半径1,抛物线212x y p =的准线为18y p=-, 依题意,118p =,解得18p =, 所以18p =. 故选:A7.(2022·全国·高二假期作业)已知抛物线()2:0C x ay a =≠,则抛物线C 的焦点坐标为( )A .1,04a ⎛⎫ ⎪⎝⎭B .1,04a ⎛⎫± ⎪⎝⎭C .()0,4aD .()0,4a ±【答案】A【分析】将抛物线方程化为标准方程,判断焦点的位置,求出p ,即可得焦点坐标.【详解】已知()20x ay a =≠,则标准方程为21y x a=,焦点在x 轴上, 所以1122p p a a=⇒=, 所以焦点坐标为1,04a ⎛⎫⎪⎝⎭,8.(2022春·江苏泰州·高二统考期中)若抛物线2y mx =上一点(),2t 到其焦点的距离等于4,则( ) A .14m =B .18m =C .4m =D .8m =【答案】B【分析】由抛物线的定义求解即可【详解】因为抛物线2y mx =的标准方程为21x y m=,其准线方程为14y m =-,由于抛物线上一点(),2t 到其焦点的距离等于4, 由抛物线的定义可得,1244m +=,解得18m =. 故选:B9.(2022秋·湖北咸宁·高二统考期末)已知O 是坐标原点,F 是抛物线C :()220y px p =>的焦点,()0,4P x 是C 上一点,且4=PF ,则POF 的面积为( ) A .8 B .6 C .4 D .2【答案】C【分析】根据条件求出p 的值,然后可算出答案.【详解】由题可知0042162p x px ⎧+=⎪⎨⎪=⎩,解得024x p =⎧⎨=⎩,所以POF 的面积为12442⨯⨯=,故选:C考点二 抛物线定义的应用(一)利用抛物线的定义求距离或点的坐标10.(2022秋·新疆乌鲁木齐·高二乌市八中校考期末)抛物线26y x =上一点()11,M x y 到其焦点的距离为92,则点M 到坐标原点的距离为( ) A.B.CD .2【答案】A【分析】由抛物线方程求得焦点坐标及准线方程,再由()11,M x y 到其焦点的距离求得M 横坐标,进一步求得M 纵坐标,则答案可求.【详解】由题意知,焦点坐标为3,02⎛⎫⎪⎝⎭,准线方程为32x =-,由()11,M x y 到焦点距离等于到准线距离,得13922x +=,则13x =,2118y ∴=故选:A.11.(2022·高二单元测试)已知曲线C 上任意一点P 到定点()2,0F 的距离比点P 到直线3x =-的距离小1,M ,N 是曲线C 上不同的两点,若10MF NF +=,则线段MN 的中点Q 到y 轴的距离为( ) A .3 B .4C .5D .6【答案】A【分析】根据抛物线的定义求出曲线C 的方程,再根据抛物线的性质计算可得;【详解】解:依题意曲线C 上任意一点P 到定点()2,0F 的距离和点P 到直线2x =-的距离相等, 由抛物线的定义可知:曲线C 是以()2,0F 为焦点,2x =-为准线的抛物线,所以曲线C 的方程为28y x =.分别设点M 、N 、Q 到准线2x =-的距离分别为1d ,2d ,d , 则12522MF NFd d d ++===,所以中点Q 到y 轴的距离为3, 故选:A .12.(2022·高二课时练习)若()00,P x y 是抛物线232y x =-上一点,F 为抛物线的焦点,则PF =( ). A .08x + B .08x -C .08x -D .016x +【答案】C【分析】根据抛物线定义,得到PF 等于点00(,)P x y 到准线的距离,即PF PM =,即可求解. 【详解】由抛物线232y x =-,可得其焦点在x 轴上,且8p =,准线方程为8x =, 因为点00(,)P x y 是抛物线232y x =-上一点,F 为抛物线的焦点,根据抛物线定义,可得PF 等于点00(,)P x y 到准线的距离,即PF PM =, 如图所示,所以08PF x =-.故选:C13.(2022·高二课时练习)已知抛物线C :22y x =的焦点为F ,()00,A x y 是C 上一点,054AF x =,则0x =( ) A .1 B .2C .4D .5【答案】B【分析】先求出抛物线的准线方程,进而将点到焦点的距离转化为到准线的距离即可求得答案.【详解】由抛物线C :22y x =可得1p =,则准线方程为12x =-,于是00015224p AF x x x =+=+=,解得02x =.故选:B .14.(2022秋·新疆喀什·高二新疆维吾尔自治区喀什第二中学校考期中)已知A ()4,2-,F 为抛物线28y x =的焦点,点M 在抛物线上移动,当MA MF +取最小值时,点M 的坐标为( )A .()0,0B .(1,-C .()2,2-D .1,22⎛⎫- ⎪⎝⎭【答案】D【分析】过M 点作准线l 的垂线,垂足为E ,由抛物线定义,知MF ME =,当M 在抛物线上移动时,当,,A M E 三点共线时,ME MA +最小,由此即可求出结果.【详解】如图所示,过M 点作准线l 的垂线,垂足为E ,由抛物线定义,知MF .ME =当M 在抛物线上移动时,ME MA +的值在变化,显然M 移动到M '时,,,A M E 三点共线,ME MA +最小,此时//AM Ox ',把=2y -代入28y x =,得12x =,所以当MA MF +取最小值时,点M 的坐标为1,22⎛⎫- ⎪⎝⎭.故选:D.15.(2022春·湖北武汉·高二华中师大一附中阶段练习)已知抛物线2:2(0)C y px p =>的焦点为F ,点M 在抛物线C 的准线l 上,线段MF 与y 轴交于点A ,与抛物线C 交于点B ,若||3||3MA AB ==,则p =( ) A .1 B .2C .3D .4【答案】C【分析】由题知点A 为MF 的中点,结合已知得||6,||2,||4MF BF BM ===,过点B 作BQ l ⊥,由抛物线的定义即可求解.【详解】设l 与x 轴的交点为H ,由O 为FH 中点,知点A 为MF 的中点, 因为||3||3MA AB ==,所以||6,||2,||4MF BF BM ===.过点B 作BQ l ⊥,垂足为Q ,则由抛物线的定义可知||||2BQ BF ==, 所以||2||BM BQ =,则||2||6MF FH ==,所以||3p FH ==. 故选:C16.(2022春·福建·高二福建师大附中校考期末)如图,过抛物线()220y px p =>的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,准线与对称轴交于点M ,若3BC BF=,且3AF =,则p 为( )A .1B .2C .3D .4【答案】B【分析】分别过点A 、B 作准线的垂线,垂足分别为点E 、D ,设BF a =,根据抛物线的定义以及图象可得sin sin sin BCD ACE FCM ∠=∠=∠,结合已知条件求得,a p ,即可. 【详解】如图,分别过点A 、B 作准线的垂线,垂足分别为点E 、D ,设BF a =,则由己知得3BC a =,由抛物线的定义得BD a =, 故1sin 33BD a BCD BC a ∠===, 在直角三角形ACE 中,3AF =,34AC a =+, 又因为31sin sin 343AE BCD ACE AC a ∠=∠===+, 则349a +=,从而得32a =, 又因为1sin sin 463MF p p BCD FCM FC a ∠=∠====, 所以2p =. 故选:B.(二)与抛物线定义有关的最大(小)值问题17.(2022·高二单元测试)已知圆C 经过点()1,0P ,且与直线=1x -相切,则其圆心到直线30x y -+=距离的最小值为( )A .3B .2 CD【答案】D【分析】利用已知可推出圆心C 的轨迹为抛物线,利用抛物线的几何性质求解即可.【详解】解:依题意,设圆C 的圆心(),C x y ,动点C 到点P 的距离等于到直线=1x -的距离, 根据抛物线的定义可得圆心C 的轨迹方程为24y x =, 设圆心C 到直线30x y -+=距离为d,d ====当2y =时,min d ,故选:D .18.(2022春·四川泸州·高二四川省泸县第一中学校考期末)已知抛物线C :212y x =-的焦点为F ,抛物线C 上有一动点P ,()4,2Q -,则PF PQ +的最小值为( )A .5B .6C .7D .8 【答案】C【分析】抛物线的准线l 的方程为3x =,过P 作PM l ⊥于M ,根据抛物线的定义可知PF PM =,则当,,Q P M 三点共线时,可求PM PQ +得最小值,答案可得.【详解】解:抛物线C :212y x =-的焦点为()3,0F -,准线l 的方程为3x =,如图,过P作PM l ⊥于M ,由抛物线的定义可知PF PM =,所以PF PQ PM PQ +=+则当,,Q P M 三点共线时,PM PQ +最小为()347--=. 所以PF PQ +的最小值为7.故选:C.19.(2022秋·江西赣州·高二校联考期中)已知抛物线216y x =的焦点为F ,P 点在抛物线上,Q 点在圆()()22:624C x y -+-=上,则PQ PF +的最小值为( ) A .4B .6C .8D .10【答案】C 【分析】利用抛物线定义,将抛物线上的点到焦点的距离转化为点到准线的距离,再根据三点共线求最小距离.【详解】如图,过点P 向准线作垂线,垂足为A ,则PF PA =,当CP 垂直于抛物线的准线时,CP PA +最小,此时线段CP 与圆C 的交点为Q ,因为准线方程为4x =-,()6,2C ,半径为2,所以PQ PF +的最小值为21028AQ CA =-=-=.故选:C20.(2022春·黑龙江哈尔滨·高二哈尔滨三中校考期中)设点P 是抛物线1C :24x y =上的动点,点M 是圆2C :22(5)(4)4x y -++=上的动点,d 是点P 到直线=2y -的距离,则||d PM +的最小值是( )A .2B .1C .D .1【答案】B 【分析】根据题意画出图像,将d 转化为抛物线上点到准线的距离再加1,也即是抛物线上点到焦点的距离加1,若求||d PM +的最小值,转化为抛物线上点到焦点距离和到圆上点的距离再加1即可,根据三角形两边之和大于第三边,即当112,,,F P M C 共线时,||d PM +取最小值为21FC r +-,算出结果即可.【详解】解:由题知圆2C :22(5)(4)4x y -++=,()25,4,2C r ∴-=()0,1F 为抛物线焦点,1y =-为抛物线准线,则过点P 向1y =-作垂线垂足为D ,如图所示:则1d PD =+, 根据抛物线定义可知=PD PF ,1d PF ∴=+,||d PM ∴+=1PF PM ++,若求||d PM +的最小值,只需求PF PM +的最小值即可,连接2FC 与抛物线交于点1P ,与圆交于点1M ,如图所示,此时PF PM +最小,为2FC r -,()2min 1d PM FC r +=+-,()()220,1,5,4,F C FC -∴=()2min 11d PM FC r ∴+=+-=.故选:B21.(2022春·北京·高二人大附中校考期末)已知直线1:4360l x y -+=和直线2:1l x =-,则抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是( )A .3716B .115C .2D .74【答案】C【分析】由=1x -是抛物线24y x =的准线,推导出点P 到直线1:4360l x y -+=的距离和到直线2:1l x =-的距离之和的最小值即为点P 到直线1:4360l x y -+=的距离和点P 到焦点的距离之和,利用几何法求最值.【详解】1x =-是抛物线24y x =的准线,P ∴到=1x -的距离等于PF .过P 作1PQ l ⊥于 Q ,则P 到直线1l 和直线2l 的距离之和为PF PQ +抛物线24y x =的焦点(1,0)F∴过F 作11Q F l ⊥于1Q ,和抛物线的交点就是1P , ∴111PF PQ PF PQ +≤+(当且仅当F 、P 、Q 三点共线时等号成立)∴点P 到直线1:4360l x y -+=的距离和到直线2:1l x =-的距离之和的最小值就是(1,0)F 到直线4360x y -+=距离,∴最小值1FQ 2==.故选:C .考点三 抛物线的轨迹问题22.(2022·高二课时练习)已知点(2,2)M ,直线:10l x y --=,若动点P 到l 的距离等于PM ,则点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .直线【答案】C【分析】由抛物线的定义求解即可.【详解】由抛物线的定义(平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线)可知,点P 的轨迹是抛物线.故选:C23.(2022春·四川成都·高二成都七中校考阶段练习)已知圆22:1O x y +=,点00(,0),(0)A x x ≥,动圆M 经过点A 且与圆O 相切,记动圆圆心M 的轨迹为E ,有下列几个命题:①00x =,则轨迹E 表示圆,②001x <<,则轨迹E 表示椭圆,③01x =,则轨迹E 表示抛物线,④01x >,则轨迹E 表示双曲线,其中,真命题的个数为( )A .1B .2C .3D .4【答案】C【分析】设动圆M 圆心(),M x y ,半径为r ,根据圆与圆内切和外切两种情况,结合圆,抛物线,椭圆和双曲线的定义,依次判断每个选项得到答案.【详解】设动圆M 圆心(),M x y ,半径为r ,当00x =时,动圆M 与圆O 内切,故1MO r =-,即1MO MO =-,12MO =,轨迹为圆,①正确; 当001x <<时,动圆M 与圆O 内切,故1MO r =-,即1MO MA AO +=>,故轨迹为椭圆,②正确; 当01x =时,动圆M 与圆O 内切时,1MO r =-,1MO MA AO +==,轨迹为线段OA ;动圆M 与圆O 外切时,1MO r =+,1MO MA AO -==,轨迹为射线,③错误;当01x >时,动圆M 与圆O 外切,1MO r =+,即1MO MA AO -=<,故轨迹为双曲线,④正确. 故选:C24.(2022秋·福建福州·高二统考期中)在平面直角坐标系xOy 中,动点(),P x y 到直线1x =的距离比它到定点()2,0-的距离小1,则P 的轨迹方程为( )A .22y x =B .24y x =C .24y x =-D .28y x =-【答案】D【分析】根据抛物线的定义判断轨迹,再由抛物线焦点、准线得到方程即可.【详解】由题意知动点(),P x y 到直线2x =的距离与定点()2,0-的距离相等,由抛物线的定义知,P 的轨迹是以()2,0-为焦点,2x =为准线的抛物线,所以4p =,轨迹方程为28y x =-,故选:D25.(2022春·广东江门·高二新会陈经纶中学校考阶段练习)已知点()1,0F ,过直线=1x -上一动点P 作与y 轴垂直的直线,与线段PF 的中垂线交于点Q ,则Q 点的轨迹方程为( )A .221x y +=B .221x y -=C .22y x =D .24y x = 【答案】D 【分析】根据中垂线性质得到QF QP =,结合抛物线的定义判断出Q 点的轨迹是抛物线,由此求解出轨迹方程.【详解】设(),Q x y ,因为PF 的中垂线经过点Q ,所以QF QP =,又因为PQ y ⊥轴,所以QP 表示Q 到直线=1x -的距离, 且QF 表示Q 点到F 点的距离,F 点不在直线=1x -上,由抛物线的定义可知:Q 点的轨迹是以F 为焦点,以直线=1x -为准线的抛物线,设轨迹方程为()220y px p =>,所以12p =,所以2p =, 所以轨迹方程为24y x =.故选:D.26.(2022秋·山东青岛·高二青岛二中校考阶段练习)已知动圆M 与直线y =2相切,且与定圆2231()C x y =:++ 外切,则动圆圆心M 的轨迹方程为( )A .212x y =-B .212x y =C .212y x =D .212y x =-【答案】A 【分析】根据动圆M 与直线y =2相切,且与定圆2231()C x y =:++外切,可得动点M 到C (0,-3)的距离与到直线y =3的距离相等,由抛物线的定义知,点M 的轨迹是抛物线,由此易得轨迹方程.【详解】设动圆圆心为M (x ,y ),半径为r ,由题意可得M 到C (0,-3)的距离与到直线y =3的距离相等, 由抛物线的定义可知,动圆圆心的轨迹是以C (0,-3)为焦点,以y =3为准线的一条抛物线, 所以3,2122p p ==,其方程为212.x y =-, 故选:A27.(2022·高二课时练习)若动点(,)M x y 满足3412x y =-+,则点M 的轨迹是( ) A .圆B .椭圆C .双曲线D .抛物线 【答案】D34125x y -+=,结合抛物线的定义,即可求解.【详解】由题意,动点(,)M x y 满足3412x y -+,34125x y -+=, 即动点(,)M x y 到定点(1,2)的距离等于动点(,)M x y 到定直线34120x y -+=的距离,又由点(1,2)不在直线34120x y -+=上,根据抛物线的定义,可得动点M 的轨迹为以(1,2)为焦点,以34120x y -+=的抛物线.故选:D.考点四 直线与抛物线的位置关系(一)直线与抛物线位置关系的判断及应用28.(2022春·上海浦东新·高二上海市建平中学校考阶段练习)过定点()0,1P 且与抛物线28y x =有且仅有一个公共点的直线有( )A .1条B .2条C .3条D .4条【答案】C【分析】根据题意,考虑直线斜率不存在和存在两种情况,由直线与抛物线位置关系,联立直线与抛物线方程求解,即可得出结果.【详解】当斜率不存在时,直线方程为0x =,只有一个公共点,符合题意;当斜率存在时,设为k ,则直线方程为1y kx =+,联立218y kx y x=+⎧⎨=⎩,得22(28)10k x k x +-+=, ①当0k =时,直线方程为1y =,只有一个公共点,符合题意;②当0k ≠时,令22(28)40k k ∆=--=,解得2k =,即直线与抛物线有一个公共点.所以满足题意的直线有3条.故选:C29.(2022·高二课时练习)直线()12y k x =-+与抛物线24x y =的位置关系为( )A .相交B .相切C .相离D .不能确定【答案】A【分析】直线()12y k x =-+过定点()1,2,在抛物线24x y =内部,即可得出结论.【详解】直线()12y k x =-+过定点()1,2,∴2142<⨯,∴()1,2在抛物线24x y =内部,∴直线()12y k x =-+与抛物线24x y =相交,故选:A .30.(2022春·江苏连云港·高二期末)已知直线l 过点()1,2且与抛物线24y x =只有一个公共点,则直线l 的方程是( )A .2y =B .10x y -+=C .1x =D .2y =或10x y -+= 【答案】D【分析】先判断点()1,2在抛物线上,再分直线的斜率不存在,直线的斜率为0和直线的斜率存在且不为0,三种情况讨论求解即可.【详解】将点(1,2)的坐标代入抛物线方程得2241=⨯,即该点在抛物线上.①若直线的斜率不存在,直线l 的方程为:1l x =,当直线l 与抛物线有两个交点,不合题意; ②若直线的斜率为0,则直线:2l y =平行于x 轴,则满足题意;③若直线的斜率存在且不为0,设()():210l y k x k -=-≠,联立方程组22(1)4y k x y x -=-⎧⎨=⎩, 将21y x k k =-+代入24y x =化简得24840y y k k-+-=, 则248Δ()4(4)01k k k =---=⇒=,此时:2110l y x x y -=-⇒-+=.综上,直线l 的方程为2y =或10x y -+=.故选:D .31.(2022春·江苏南京·高二校联考阶段练习)过抛物线24x y =的焦点F 作直线交抛物线于,A B 两点,且点A 在第一象限,则当2AF FB =时,直线AB 的斜率为( )AB.C.D.±【答案】A【分析】首先设直线AB ,把直线与抛物线联立,结合2AF FB =,找到12x x + 与12x x 关系式,计算即可得到斜率.【详解】由题意知()0,1F ,设直线AB :1y kx =+,()()1122,,,A x y B x y联立方程214y kx x y =+⎧⎨=⎩, 可得2440x kx --=,即得121244x x k x x +=⎧⎨=-⎩ ① 又因为2AF FB =,可得122x x =-,②结合①②()212122x x x x =-+,24216k -=-⨯ 可得21=8k , 因为122x x =-,1>0x ,20x <又因12=4x x k +所以0k >即可得k 故选:A .32.(2022春·江苏连云港·高二校考期中)过抛物线2:C y x =上定点(P 作圆()22:21M x y -+=的两条切线,分别交抛物线C 于另外两点A 、B ,则直线AB 的方程为( ) A.10x -+= B.10x ++= C.20x -+= D.20x ++=【答案】B【分析】设过点P 且与圆M相切的直线的方程为()2y k x =-,根据该直线与圆M 相切求出k 的值,设点()211,A y y 、()222,B y y ,求出1y 、2y 的值,求出直线AB 的斜率,利用点斜式可得出所求直线的方程.【详解】圆M 的圆心为()2,0M ,半径为1,易知PM x ⊥轴,所以,直线PA 、PB 的斜率必然存在, 设过点P 且与圆M相切的直线的方程为()2y k x =-,即20kx y k -+=,1=,解得1k =±,设点()211,A y y 、()222,B y y ,不妨设直线PA 、PB 的斜率分别为1、1-,则11PA k ==,可得11y =同理1PB k ==-,可得21y =-直线AB的斜率为122212121AB y y k y y y y -===-+ 易知点A的坐标为(3-, 所以,直线AB的方程为(13y x -=-+,即10x ++=. 故选:B.33.(2022秋·安徽·高二校联考期末)已知抛物线2:12C x y =的焦点为F ,其准线与y 轴的交点为A ,点B 为抛物线上一动点,当AB FB取得最大值时,直线AB 的倾斜角为( )A .4π B .3π C .6π或56π D .4π或34π【答案】D【分析】过点B 作抛物线C 的准线的垂线BM ,垂足为点M ,分析可得cos BF BAF AB =∠,当AB FB取得最大值时,BAF ∠最大,此时AB 与抛物线C 相切,设出直线AB 的方程,将抛物线C 的方程,由Δ0=可求得直线AB 的斜率,即可求得直线AB 的倾斜角.【详解】抛物线C 的准线为2:12l x y =,焦点为()0,3F ,易知点()0,3A -,过点B 作BM l ⊥,垂足点为M ,由抛物线的定义可得BM BF =,易知//BM y 轴,则BAF ABM ∠=∠,所以,cos cos BF BMABM BAF AB AB==∠=∠, 当AB FB取得最大值时,cos BAF ∠取最小值,此时BAF ∠最大,则直线AB 与抛物线C 相切,由图可知,直线AB 的斜率存在,设直线AB 的方程为3y kx =-,联立2123x yy kx ⎧=⎨=-⎩可得212360x kx -+=,则21441440k ∆=-=,解得1k =±,因此,直线AB 的倾斜角为4π或34π. 故选:D.(二)弦长问题34.(2022春·四川成都·高二树德中学校考阶段练习)已知抛物线2:8C y x =的焦点为F ,过点F 且倾斜角为π4的直线l 与抛物线C 交于A ,B 两点,则AB =( ).A .8B .C .16D .32【分析】根据过抛物线焦点的弦长公式求得正确答案. 【详解】焦点()2,0F ,直线l 的方程为2y x =-,由228y x y x=-⎧⎨=⎩,消去y 并化简得21240,144161280x x -+=∆=-=>, 设()()1122,,,A x y B x y ,所以1212x x +=, 所以1212416AB x x p =++=+=. 故选:C35.(2022春·湖北·高二校联考阶段练习)根据抛物线的光学性质,从抛物线的焦点发出的光,经抛物线反射后光线都平行于抛物线的轴,已知抛物线22y x =,若从点()3,2Q 发射平行于x 轴的光射向抛物线的A 点,经A 点反射后交抛物线于B 点,则AB =( ) A .258B .2516C .259D .2518【答案】A【分析】由题意求出A 点的坐标,由于直线AB 过焦点,利用点斜式方程求出直线AB 为4320x y --=,联立抛物线方程,得23102y y --=,根据韦达定理求出B 点坐标,利用两点间距离公式可求出AB . 【详解】由条件可知AQ 与x 轴平行,令2y =,可得2A x =,故A 点坐标为()2,2, 因为AB l 经过抛物线焦点1,02F ⎛⎫⎪⎝⎭,所以AB l 为20101222y x -⎛⎫-=- ⎪⎝⎭-,整理得4320x y --=, 联立224320y x x y ⎧=⎨--=⎩,得23102y y --=,()2325411024⎛⎫∆=--⨯⨯-=> ⎪⎝⎭,所以32A B y y +=,又2A y =,所以12B y =-,2111228B x ⎛⎫=⨯-= ⎪⎝⎭,所以258AB =,36.(2022春·山东济南·高二山东省济南市莱芜第一中学校考阶段练习)已知椭圆22154x y +=的右焦点F 是抛物线()220y px p =>的焦点,则过F 作倾斜角为45°的直线分别交抛物线于A ,B (A 在x 轴上方)两点,则AFBF的值为( )A.3+B .2+C .3D .4【答案】A【分析】先根据椭圆方程求抛物线的方程,分别过A ,B 作准线的垂线,得到直角梯形11AA B B ,结合抛物线的定义在梯形中求2ABAP ,即得结果.【详解】依题意,()1,0F 是抛物线()220y px p =>的焦点,故12p=,则2p =,24y x =. 根据已知条件如图所示,A 在x 轴上方,分别过A ,B 作准线的垂线,垂足为11,A B , 过B 作1AA 的垂线,垂足为P ,设,BF x AF kx ==,根据抛物线的定义知11,BB x AA kx ==,所以直角梯形11AA B B 中1A P x =,()111AP AA A P k x =-=-,()1AB k x =+,又直线AB 的倾斜角45,故121k xk x ,解得3k =+3AFBF=+ 故选:A.37.(2022·山东青岛·高二山东省莱西市第一中学学业考试)设F 为抛物线2:3C y x =的焦点,过F 且倾斜角为30°的直线交抛物线C 于A ,B 两点,O 为坐标原点,则OAB 的面积为( )A .94B C .98D【分析】联立直线与抛物线方程消去x 得1212,y y y y +, 121||||2OAB OAF OFB S S S OF y y =+=-△△△代入计算可得结果.【详解】由题意知,3(,0)4F∴过A 、B的直线方程为3)4y x =-,即:34x =+22349034y xy x ⎧=⎪⇒--=⎨+⎪⎩设1122,,()()A x y B x y ,,则121294y y y y +==-∴1212113||||||224OAB OAF OFB S S S OF y y y y =+=-=⨯-△△△3984== 故选:A.38.(2022春·河南·高二校联考期中)已知抛物线2:4C y x =的焦点为,F N 为C 上一点,且N 在第一象限,直线FN 与C 的准线交于点M ,过点M 且与x 轴平行的直线与C 交于点P ,若||2||MN NF =,则MPF △的面积为( ) A .8 B .12C.D.【答案】C【分析】过N 作准线的垂线,垂足为Q ,准线与x 轴交于点E ,进而根据几何关系得MPF △为等边三角形,34MF NF ==,再计算面积即可.【详解】解:如图,过N 作准线的垂线,垂足为Q ,准线与x 轴交于点E , 所以,NF NQ =,2EF =. 因为MQN MEF △△∽, 所以23QN MN MQ EF MF ME ===,43QN NF ==,34MF NF ==. 所以1cos 2EF MFE MF ∠==,60MFE PMF ∠=︒=∠.又因为PM PF =,所以60PFM PMF ∠=∠=︒,所以MPF △为等边三角形,所以2MPF S ==△ 若M 在第三象限,结果相同. 故选:C39.(2022秋·河南许昌·高二统考期末)已知直线l 过点()2,0,且垂直于x 轴.若l 被抛物线24y ax =截得的线段长为 ) A .()1,0 B .()0,1 C .()1,2 D .()2,1【答案】A【分析】将2x =代入24y ax =可得交点坐标,结合弦长为a ,进而得到抛物线的焦点坐标即可【详解】当2x =时,28y a =,显然0a >,解得y =±(-=,解得1a =,故抛物线24y x =,焦点坐标为()1,0故选:A40.(2022秋·河南·高二校联考开学考试)已知A ,B 为抛物线2:C y x =,上的两点,且2AB =,则AB 的中点横坐标的最小值为( ). A .14B .12C .34D .1【分析】根据抛物线的弦长公式,结合基本不等式进行求解即可. 【详解】设直线AB 的方程为()0x ky b b =+≥,()11,A x y ,()22,B x y ,联立方程组2y xx ky b ⎧=⎨=+⎩,得20y ky b --=,则12y y k +=,12y y b =-,240k b ∆=+>.因为2AB ,所以()()22144k k b ++=,得22114k b k =-+.因为()2121222x x k y y b k b +=++=+,所以AB 的中点的横坐标2221202211112241414x x k k k x b k k ++==+=+=+-++.因为2211141k k ++≥=+, 当且仅当221141k k +=+,即1k =±时,等号成立, 所以当1k =±时,0x 取得最小值34. 故选:C41.(2022秋·广东深圳·高二深圳市罗湖外语学校校考阶段练习)已知圆()2220x y r r +=>与抛物线23y x=相交于M ,N ,且MN =r =( )A B .2 C .D .4【答案】B【分析】由圆与抛物线的对称性及MN =M 点纵坐标,代入抛物线得横坐标,求出||OM 即可得解.【详解】因为圆()2220x y r r +=>与抛物线23y x =相交于M ,N ,且MN =由对称性,不妨设(M x ,代入抛物线方程,则33x =,解得1x =,所以M ,故||2r OM ==(三)焦点弦问题42.(2022春·湖南长沙·高二湘府中学校考阶段练习)设F 为抛物线2:2C y x =的焦点,点M 在C 上,点N 在准线l 上,满足//MN OF ,NF MN =,则MF =( )A .12 B C .2 D 【答案】C【分析】由抛物线方程可知p ,焦点坐标及准线方程,设准线l 与x 轴交点为E ,画出图象,由抛物线定义及NF MN =可知MNF 是正三角形,结合平行关系可判断60EFN ∠=︒,利用直角三角形性质即可求解. 【详解】由题,1p =,抛物线焦点F 为1,02⎛⎫⎪⎝⎭,准线l 为12x =-,设准线l 与x 轴交点为E ,如图所示, 由题知MN l ⊥,由定义可知MN MF =, 因为NF MN =,所以MNF 是正三角形,则对Rt NEF ,因为//MN OF ,所以60EFN MNF ∠=∠=︒, 所以222MF NF EF p ====, 故选:C43.(2022·全国·高二假期作业)已知抛物线2:4C y x =的焦点为F ,N 为C 上一点,且N 在第一象限,直线FN 与C 的准线交于点M ,过点M 且与x 轴平行的直线与C 交于点P ,若2MN NF =,则直线PF 的斜率为( ) A .1 B .2C .43D 【答案】D【分析】过N 作准线的垂线,垂足为Q ,根据抛物线的定义以及两直线平行内错角相等、等腰三角形的性质可得30NMQ ∠=,通过直线的倾斜角为πPFM MFO -∠-∠即可得结果. 【详解】如图,过N 作准线的垂线,垂足为Q ,则||||NF NQ =. 又因为||||PM PF =,所以PFM PMF MFO MNQ ∠=∠=∠=∠. 因为||2||MN NF =,即||2||MN NQ = 所以30NMQ ∠=,即60MNQ ∠=︒.直线PF的斜率为tan(π)tan 60PFM MFO -∠-∠=︒= 故选:D.44.(2022春·四川绵阳·高二四川省绵阳南山中学校考期中)已知直线l 过抛物线2:4E y x =的焦点F ,且与抛物线交于A ,B 两点,与抛物线的准线交于C 点,若2AB BC =,则||||AF BF 等于( ) A .2 B .3C .12D .13【答案】B【分析】过点A 作1AA 垂直于准线交准线于1A ,过点B 作1BB 垂直于准线交准线于1B ,根据相似得到1113BB AA =,再利用抛物线的性质得到答案. 【详解】如图所示:过点A 作1AA 垂直于准线交准线于1A ,过点B 作1BB 垂直于准线交准线于1B , 则1BF BB =,1AF AA =,2AB BC =,故1113BB AA =,即||3||AF BF =. 故选:B45.(2022春·浙江金华·高二浙江金华第一中学校考阶段练习)设倾斜角为α的直线l 经过抛物线C :()220y px p =>的焦点F ,与抛物线C 交于A 、B 两点,设A 在x 轴上方,点B 在x 轴下方.若2AFBF=,则cos α的值为( )A .13B .12C .23D 【答案】A【分析】由抛物线的性质,抛物线上的点到焦点的距离转化为到准线的距离,在直角三角形中求出倾斜角为α的余弦值.【详解】过A ,B 分别作准线的垂线交准线于M ,N ,过B 作BC AM ⊥于C ,则AC AM BN =-,由抛物线的性质可得,AM AF =,BN BF =, 因为||2||AF BF =,∴3AB BF =, 所以1cos 3333AC AM BN AF BF BF CAB AB BF BF BF --=====∠,即1cos 3α=. 故选:A .(四)中点弦问题。
高二数学抛物线试题

高二数学抛物线试题1.过抛物线的焦点作直线交抛物线于两点,线段的中点的纵坐标为2,则线段长为.【答案】【解析】抛物线,∴.设A、B、M到准线的距离分别为A′、B′、M′,则由抛物线的定义可得AB=AA′+BB′.再由线段AB的中点M的纵坐标为2可得2MM′=AA′+BB′,即=AA′+BB′=AB,∴AB=.【考点】抛物线的简单性质.2.抛物线的焦点坐标是()A.B.C.D.【答案】B【解析】抛物线开口向左,焦点在轴上,所以焦点坐标为.【考点】本小题主要考查由抛物线标准方程求抛物线的焦点坐标.点评:解决抛物线问题,要分清对称轴和开口方向.3.设抛物线的顶点在原点,准线方程为,则抛物线的方程是()A.B.C.D.【答案】B【解析】依题意设抛物线方程为,所以准线方程为则抛物线的方程是.【考点】本小题主要考查抛物线标准方程的求解,考查学生的运算求解能力.点评:抛物线有四种标准方程,要分清对称轴和焦点位置.4.如果抛物线y 2=ax的准线是直线x=-1,那么它的焦点坐标为()A.(1, 0)B.(2, 0)C.(3, 0)D.(-1, 0)【答案】A【解析】由已知,所以=4,抛物线的焦点坐标为(1, 0),故选A。
【考点】本题主要考查抛物线的定义、标准方程、几何性质。
点评:熟记抛物线的标准方程及几何性质。
5.圆心在抛物线y 2=2x上,且与x轴和该抛物线的准线都相切的一个圆的方程是()A.x2+ y 2-x-2 y -=0B.x2+ y 2+x-2 y +1="0"C.x2+ y 2-x-2 y +1=0D.x2+ y 2-x-2 y +=0【答案】D【解析】由抛物线定义知,此圆心到焦点距离等于到准线距离,因此圆心横坐标为焦点横坐标,代入抛物线方程的圆心纵坐标,1,且半径为1,故选D。
【考点】本题主要考查抛物线的定义、标准方程、几何性质,同时考查了圆的切线问题。
点评:抛物线问题与圆的切线问题有机结合,利用抛物线定义,简化了解答过程。
高二数学抛物线试题

高二数学抛物线试题1.抛物线上的点到直线的距离最小值为A.B.C.D.3【答案】A【解析】在抛物线上任设一点,则该点到直线的距离为,所以最小值为.【考点】点到直线的距离.2.斜率为2的直线L经过抛物线的焦点F,且交抛物线与A、B两点,若AB的中点到抛物线准线的距离1,则P的值为().A.1B.C.D.【答案】B【解析】设斜率为2且经过抛物线的焦点F的直线L的方程为,联立,得,即;设,中点;则;因为AB的中点到抛物线准线的距离为1,所以,.【考点】直线与抛物线的位置关系.3.已知圆C:的圆心为抛物线的焦点,直线3x+4y+2=0与圆C相切,则该圆的方程为().A.B.C.D.【答案】C.【解析】因为抛物线的焦点为,即为圆C的圆心,又直线3x+4y+2=0与圆C相切,所以圆心到直线的距离即为半径,则有,故选C.【考点】点到直线的距离公式,圆的切线的性质,抛物线的焦点坐标公式,圆的标准方程.4.已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点,若点到该抛物线焦点的距离为3,则=()A.B.C.4D.【答案】B.【解析】由题意可设抛物线方程为,因为点到该抛物线焦点的距离为3,所以,即,即抛物线方程为,又因为点在抛物线上,所以,所以,故选B.【考点】抛物线的简单性质.5.已知点M是抛物线上的一点,F为抛物线的焦点,A在圆C:上,则的最小值为__________.【答案】4【解析】抛物线的准线方程为:x=-1过点M作MN⊥准线,垂足为N∵点M是抛物线y2=4x的一点,F为抛物线的焦点∵A在圆C:,圆心C(4,1),半径r=1∴当N,M,C三点共线时,|MA|+|MF|最小∴=4.【考点】圆与圆锥曲线的综合;考查抛物线的简单性质;考查距离和的最小.6.抛物线的焦点坐标是( )A.B.C.D.【答案】B【解析】根据题意可知条件中表示的是焦点在y轴上抛物线,2p=4,p=2,而焦点坐标为,故选B.【考点】抛物线的焦点坐标.7.已知过曲线上任意一点作直线的垂线,垂足为,且.⑴求曲线的方程;⑵设、是曲线上两个不同点,直线和的倾斜角分别为和,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标.【答案】⑴⑵当时,直线恒过定点,当时直线恒过定点.【解析】⑴要求曲线方程,但是不知道是哪种曲线,所以只能设点.根据,转化为求曲线方程即可;⑵要证明直线恒过定点,必须得有直线方程,所以首先设出直线方程.又因为两个角是直线和的倾斜角,所以点也得设出来.利用韦达定理,然后讨论的范围变化,证明并得出定点坐标. 试题解析:⑴设,则,由得,;即;所以轨迹方程为;⑵设,由题意得(否则)且,所以直线的斜率存在,设其方程为,因为在抛物线上,所以,将与联立消去,得;由韦达定理知①;(1)当时,即时,,所以,,所以.由①知:,所以因此直线的方程可表示为,即.所以直线恒过定点(2)当时,由,得==将①式代入上式整理化简可得:,所以,此时,直线的方程可表示为,即,所以直线恒过定点;所以由(1)(2)知,当时,直线恒过定点,当时直线恒过定点. 12分【考点】相关点法求曲线方程;分类讨论.8.已知为抛物线上的两点,且的横坐标分别为,过分别作抛物线的切线,两切线交于点,则的纵坐标为( )A.B.C.D.【答案】C【解析】因为为由抛物线上的两点,且的横坐标分别为,所以两点的坐标分别为.由抛物线得,求导可得.所以过点的切线的斜率为4,故过点的切线方程为.同理写出过点的切线方程.所以它们交点的纵坐标是-4.故选C.【考点】1.曲线上的点.2.曲线的切线.3.直线的交点.9.设斜率为2的直线过抛物线的焦点F,且和轴交于点A,若△OAF(O为坐标原点)的面积为4,则抛物线方程为A.B.C.D.【答案】B【解析】抛物线的焦点F坐标为(,0),则直线l的方程为y=2(x-),它与y轴的交点为A(0,-),所以△OAF的面积为,解得a=±8.所以抛物线方程为y2=±8x,故选B.【考点】本题主要考查抛物线的标准方程及其几何性质,直线方程的点斜式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学抛物线试题答案及解析1.设抛物线焦点为F,点P在此抛物线上且横坐标为4,则|PF|等于【答案】6【解析】因为抛物线焦点为F,点P在此抛物线上且横坐标为4,所以由抛物线焦半径公式得|PF|=x+=4+2=6.【考点】本题主要考查抛物线的定义及几何性质。
点评:简单题,抛物线上的点到焦点的距离与到准线的距离相等。
2.过抛物线的焦点作直线交抛物线于两点,线段的中点的纵坐标为2,则线段长为.【答案】【解析】解:抛物线,∴p=.设A、B、M到准线y=-的距离分别为A′、B′、M′,则由抛物线的定义可得AB=AA′+BB′.再由线段AB的中点M的纵坐标为2可得2MM′=AA′+BB′,即 2(2+1 32 )=AA′+BB′=AB,∴AB=,故答案为.3.过抛物线的焦点作倾斜角为的直线,则它被抛物线截得的弦长为 .【答案】16【解析】解:因为设直线方程为y=(x-2)与抛物线方程联立方程组,结合韦达定理,得到弦长公式求解得到为16.或者利用抛物线的定义可知弦长为两个的和加上4得到。
4.抛物线的焦点坐标是()A.(2,0)B.(0,2)C.(1,0)D.(0,1)【答案】D【解析】解:因为根据题意2p=4,焦点在y轴上,因此焦点坐标为(0,1),选D5.抛物线的准线方程为,顶点在原点,抛物线与直线相交所得弦长为, 则的值为 .【答案】1【解析】解:因为抛物线的准线方程为,顶点在原点,抛物线与直线相交所得弦长为,联立方程组得到,所以p=16.设不在轴下方的动点到的距离比到轴的距离大求的轨迹的方程;过做一条直线交轨迹于,两点,过,做切线交于点,再过,做的垂线,垂足为,若,求此时点的坐标.【答案】见解析.【解析】第一问利用设点坐标,结合已知的关系式得到化简得到轨迹方程。
第二问中用直线与抛物线的方程联立所以由(1)知,所以为线段的中点,取线段的中点,∵是抛物线的焦点,∴,∴∴可得到。
……………………6分设N点坐标为(a,b)则…………………………8分由(1)知,所以为线段的中点,取线段的中点,∵是抛物线的焦点,∴,∴,∴,,,∴,…………………………12分即,所以,,∴,∴所求点的坐标为…………………………15分7.将两个顶点在抛物线上,另一个顶点是此抛物线焦点的正三角形个数记为,则()A.B.C.D.【答案】C.【解析】结合抛物线的对称性可知过抛物线的焦点作直线和,其中有四个交点,那么这四个交点与抛物线的焦点F可构成两个等边三角形.故应选C.8.的焦点坐标为 .【答案】.【解析】抛物线的焦点坐标为.9.设抛物线的准线与x轴的交点为,过点作直线交抛物线于两点.(1)求线段中点的轨迹方程;(2)若线段的垂直平分线交轴于,求证:;(3)若直线的斜率依次取时,线段的垂直平分线与x轴的交点依次为,当时,求的值.【答案】(1)(2)见解析(3)【解析】本试题主要是考查了抛物线方程以及抛物线的性质,以及直线与抛物线的位置关系的综合运用,求解中点轨迹方程。
并能借助于直线的方程,求解与z轴的交点,并证明坐标构成的等比数列的求和的综合运用解:(1)抛物线的准线为,设代入得由得设线段的中点为,则消去,得即为所求中点的轨迹方程; 4分(2)线段的垂直平分线方程为.令,得; 8分(3)当斜率时,,是以为首项,以为公比的等比数列,且故.10.已知为抛物线上一动点,为抛物线的焦点,定点,则的最小值为()A.3B.4C.5D.6【答案】B【解析】过M点作抛物线准线的垂线,垂足为N,则,,当P、M、N共线时,值最小,为4。
11.若抛物线的焦点与双曲线的左焦点重合,则实数=.【答案】-4【解析】双曲线的左焦点为(-2,0),所以,12.已知抛物线的准线与圆相切,则的值为。
【答案】2【解析】抛物线的准线方程为,由题意知圆心(3,0)到准线的距离等于半径4.所以.13.将两个顶点在抛物线上,另一个顶点是此抛物线焦点的正三角形的个数记为,则()A.B.C.D.【答案】C【解析】关于x轴对称,焦点是一个顶点的正三角形三边相等,如果其余两顶点在x轴一侧的话,焦点到其余两点的距离(即到准线的距离)不可能相等,所以一侧一个点,又夹角60度的故两个.14.抛物线y2=4x的弦AB垂直于x轴,若AB的长为4,则焦点到AB的距离为【答案】2【解析】由抛物线对称性知点A纵坐标为,所以A、B横坐标为3,所以AB 方程为,焦点坐标是(1,0)。
所以焦点到AB的距离为2.15.如果抛物线y2=ax的准线是直线x=-1,那么它的焦点坐标为()A.(1, 0)B.(2, 0)C.(3, 0)D.(-1, 0)【答案】A【解析】由抛物线的焦点坐标为,准线方程为可知,抛物线的焦点坐标为,故选A。
16.一抛物线形拱桥,当水面离桥顶2m时,水面宽4m,若水面下降1m,则水面宽为()A.m B.2m C.4.5m D.9m【答案】B【解析】以桥顶为原点,与水面平行的方向为x轴建立如图直角坐标系则设抛物线方程为,根据抛物线关于x轴对称的性质可得,该抛物线经过点代入可得,,解得所以当水面下降1m即时,,解得所以此时水面宽为m,故选B17.过抛物线y =ax2(a>0)的焦点F作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是p、q,则等于()A.2a B.C.4a D.【答案】C【解析】此题考查抛物线知识,考虑到是选择题利用特殊值思想解决即可,由题意知,对任意的过抛物线焦点的直线,的值都是的表示式,因而取抛物线的通径进行求解,则,所以=,故应选C.18.对于顶点在原点的抛物线,给出下列条件;(1)焦点在y轴上;(2)焦点在x轴上;(3)抛物线上横坐标为1的点到焦点的距离等于6;(4)抛物线的通径的长为5;(5)由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).其中适合抛物线y2=10x的条件是(要求填写合适条件的序号) _____【答案】(2),(5)【解析】抛物线是开口向右,焦点在x轴正半轴上的标准方程;2p=10,通径为10,准线为,根据抛物线定义:抛物线上横坐标为1的点到焦点的距离等于;过焦点和点(2,1)的直线斜率为。
故(2),(5)适合。
19.已知两点A(0,1),B(0, b),若抛物线x2=4y上存在点C使△ABC为等边三角形,则实【答案】5或-【解析】过作轴,垂足为点。
因为是等边三角形,所以是中点,则点坐标为且,故点坐标为。
因为点在抛物线上,所以将坐标代入可得:,解得或20.抛物线的焦点坐标是 ( )A.B.C.D.【答案】B【解析】抛物线的焦点坐标为,故抛物线的焦点坐标是。
21.直线与抛物线交于不同的两点P、Q,若PQ中点的横坐标是2.(1)求的值;(2)求弦的长.【答案】(1),设P,Q,中点为,则有在中,时,,若PQ中点的纵坐标是.由得:,即.解之得:或.由得:.因为直线与抛物线交于不同的两点,解之得:>且..(2)由得:. 即.设,则.【解析】略22.抛物线的焦点坐标为A.(1,0)B.(0,1)C.(2,0)D.(0,2)【答案】C【解析】抛物线的焦点坐标为,所以抛物线的焦点坐标为,故选C23.抛物线的焦点F作倾斜角为45°的直线交抛物线于A、B两点,若线段AB的长为8,则p的值是A、2B、 4C、D、【解析】抛物线的焦点坐标为,则直线方程为联立可得设坐标为,则因为线段的长为8所以解得,因为,所以,故选A24.过抛物线y2=8x的焦点,作直线交抛物线于A(x1,y1),B(x2,y2)两点,若x1+x2=6,则|AB|长为【答案】10【解析】设抛物线的焦点,准线方程为。
因为直线过抛物线焦点,则根据抛物线的几何性质可得25.抛物线的准线方程是()A.B.C.D.【答案】D【解析】因为的准线方程为,所以抛物线的准线方程为,故选D 26.(本题满分10分)已知抛物线上横坐标为的点到焦点的距离为.(I)求抛物线的方程;(II)若斜率为的直线与抛物线交于两点,且点在直线的右上方,求证:△的内心在直线上;(III)在(II)中,若,求的内切圆半径长.【答案】解:(I)由得所以抛物线……………………………3分(II)由(I)得,设,A(x1,y1),B(x2,y2),由得,所以,又,,,,所以,因此的角平分线为,即的内心在直线上.……………………7分(III)由(II)得,直线的倾斜角分别为,所以直线,所以同理因为,设的内切圆半径为,所以,所以…………………………………………………10分【解析】略27.已知抛物线D的顶点是椭圆Q:的中心O,焦点与椭圆Q的右焦点重合,点是抛物线D上的两个动点,且(1)求抛物线D的方程及y1y2的值;(2)求线段AB中点轨迹E的方程;(3)在曲线E上寻找一点,使得该点与直线的距离最近.【答案】①y2="4x "∴y1y2=-16②∴,【解析】略28.抛物线y 2=-4x的准线方程为( )A.x=1B.x=2C.y=1D.y=2【答案】A【解析】抛物线y 2=-4x开口向左且=4,所以其准线方程为即。
选A.29.已知抛物线的焦点F,点在抛物线上,且,则有 ( )A.B.C.D.【答案】C【解析】抛物线的准线方程为,根据抛物线的几何性质可知,。
因为,所以有,故选C30.当为任意实数时,直线恒过定点P,则以点P为焦点的抛物线的标准方程是A.B.C.D.【答案】B【解析】当为任意实数时,由,所以直线恒过定点则以点P为焦点的抛物线的标准方程是;故选B。