最新传感器知识点

最新传感器知识点
最新传感器知识点

传感器与自动检测技术

第一章

1、检测的定义:检测是利用各种物理、化学反应、选择合适的方法与装置,将生产、科研、生活等各方面的有关信息通过检查与测量的方法赋予定性或者定量结果的过程。能够自动的完成整个检测处理过程的技术成为自动检测与转换技术。

2检测系统的一般构成框图:

1)传感器是检测系统的第一环节,设计时要充分考虑被测量和被测对象的特点,在了解被测对象和各种传感器的特性的基础上,根据被测量精度的要求、被测量变化范围、被测量所处的环境条件、传感器的体积以及整个检测系统的性能要求等限制,合理地选择传感器。

2)信号调理电路是对传感器的传输电信号做进一步的加工处理,多数是进行信号之间的转换,包括对信号的转换、放大滤波等。

3)纪录、显示仪器是将所测的信号变成一种能成为人们所理解的形式,以供人们观察和分析。

4)信号分析处理用来对测试所得的实验数据今夕处理、运算、逻辑判断、线性变换,对动态测试结果做频谱分析(幅值谱分析、功率谱分析)、相关分析等,完成这些工作必须采用计算机技术。数据处理结果通常送到显示器和执行机构去。所谓的执行机构通常指各种继电器、电磁铁、电磁阀门、电磁调节阀、伺服电动机等,他们在电路中是起通断、控制、调节、保护等作用的电气设备。

3、传感器的定义:能够感受(或响应)规定的被测量,并按照一定规律转换成可用输出信号的期间或装置,通常由敏感元件和转换元件组成。

4、传感器一般由敏感元件、转换元件和其他辅助元件组成。

1)敏感元件——感受被测量,并输出与被测量成确定关系的其他量的元件。

2)转换元件——又称传感元件,是传感器的重要组成元件。

5、信号调理与转换电路——能把传感元件输出的电信号转换成便于显示、纪录和控制点有用信号的电路。

传感器组成框图:

6、通常用来描述静态响应特性的指标有测量范围、灵敏度、非线性度、回程误差等。

7、精确度(精度)指标有三个:精密度、正确度和精确度。

1)精密度:说明结果的分散性。越小说明结果越精密(对应随机误差)。

2)正确度:说明测量结果偏离真实值大小的程度(对应系统误差)。

3) 精确度:含有精密度和正确度两者之和的意思,即测量的综合优良程度。

7、系统的动态响应特性一般通过描述系统的微分方程、传递函数、频率响应函数、单位脉冲响应函数等数学模型来进行研究。

8、要实现不是真检测,检测系统的幅频特性应为常数,相频特性应为线性。A(ω)=|G(jω)|≠A(常数)引起的失真称为幅值失真,Φ(ω)与ω之间不满足线性关系引起的失真称为相位失真。

第二章

1、真值:指一定的时间及空间条件下,被测量客观存在的实际值。

2、标称值:计量或测量器具上标注的量值。

3、示值:由测量仪器给出或提供的量值,也称测量值。

4、测量结果的精密度:反映测量结果与真值接近程度的量。它与误差大小对应,即:误差大,精度低;误差小,精度高。可细分为:一、准确度(反应测量中系统误差的大小,即测量结果偏离真值的程度);二、精密度(反应测量中随机误差的大小,即测量结果的分散程度);三、精确度(反应测量中系统误差与随机误差综合影响的程度)。

其中,精密度与准确度的区别由图2.1可知,曲线1表示准确却不精密(δ小,σ大)的测量,曲线2表示精密却不准确(δ小,σ大)的测量。要同时兼顾准确度和精密度,

才能成为精确的测量

5测量误差分为系统误差、随机误差和粗大误差三大类。(1)系统误差——在相同条下,对同一被测量进行多次重复测量时,出现某种保持恒定或按一定规律变化着的误差称为系统误差。凡误差的数值固定或按一定规律变化者,均属于系统误差。

2)随机误差——在相同条件下,对同一被测量进行多次重复测量时,受偶然因素影响而出现误差的绝对值和符号以不可预知的方式变化着,则此类误差称为随机误差。随机误差不可能修正

6.系统误差的判别:

a)大体上正负相间无显著变化规律——不存在系差;(b)有规律地向一个方向成比例变化——有线性系差存在;(c)有规律地重复交替呈周期性变化——周期性系差存在;(d)呈周期性与线性复合变化——复杂系差存在。

7.通常,用绝对误差来评价相同被测量测量精度的高低,相对误差可用于评价不同被测量测量精度的高低。为了减少仪器表引用误差,一般应在满量程2/3范围以上进行测量。

第三章

1、半导体应变片是用半导体材料,采用与丝式应变片相同方法制成的半导体应变片。

2、电阻式传感器的测量电路常用桥式测量电路。

3、电容式传感器是利用将非电量的变化转化为电容量的变化来实现对物理量的测量。可分为变极距型、变极板面积型、变介质型三种类型。

4、电感式传感器是利用电磁感应原理将被测的非电量的变化转换成线圈的自感系数L或者互感系数M的变化的装置。可分为自感系数变化型和互感系数变化型。

5、可变磁阻型自感式传感器又分为气隙厚度变化型、气隙面积变化型和螺管型三种类型。

6、电感传感器所采用的测量电路一般为交流电桥。

7、互感式传感器则是把被测量的变化转换为变压器的互感变化。由于变压器的二次线圈常接成差动形式,故又称为差动变压器式传感器。差动变压器式传感器的应用非常广泛,凡是与位移有关的物理量均可经过它转换成电量输出。常用于测量振动、厚度、应变、压力、加速度等各种物理量。

8、根据电涡流效应制成的传感器叫做电涡流式传感器。可分为高频反射型和低频投射型两类。

9、用于电涡流式传感器的测量电路主要有调频式、调幅式电路两种。

10、压电式传感器是以具有压电效应的元件作为转换元件的有源传感器。

11、压电效应:当某些物质沿其一定方向施加压力或者拉力时,会产生形变,此时这种材料的两个表面将产生符号相反的电荷。

12、压电材料可分为:压电晶体和压电陶瓷。常见的压电晶体有天然和人造石英晶体

压电陶瓷是人造多晶体系压电材料。常用的有钛酸钡、锆钛酸铅、铌酸盐系压电陶瓷。

13、压电传感器可用来测量力、压力、加速度、位移等物理量。

14、磁电式传感器是通过磁电作用将被测量(如振动、位移、转速等)转换成电信号的一种传

感器,也成电磁感应传感器。根据结构方式不同,磁电感应式传感器通常有两种:动圈式和

磁阻式。

15、热电式传感器是将温度变化转换为电量变化的装置。

16、将两种不同材料的导体A 和B 串接成一个闭合回路,当两个接点温度不同时,在回路

中就会产生热电势,形成电流,此现象称为热电效应或赛贝克效应。

17、热电偶的热电势由接触电势和温差电势两部分组成。

18、实践证明,在热电偶回路中起主要作用的是两个结点的接触电势,因而将单一导体的温

差电动式忽略不计。则

19、热电偶定律:

1)中间导体定律:在热电偶测温回路内,接入第三种导体时,只要第三种导体的两端温度

相同,则对回路的总热电势没有影响。

()()()()000T T E T E T E T T E AB AB AB ABC ,=,=-

2)中间温度定律:在热电偶测温回路中,T m 为热电极上某一点的温度,热电偶AB 在接点

温度为(T ,T 0)时的热电势EAB (T ,T 0)等于热电偶AB 在接点温度(T ,T m )和(T m ,

T 0)时的热电势EAB (T ,T m)和EAB (T m ,T 0)的代数和。

()()()00T T E T T E T T E m AB m AB AB ,,,+=

20、热电阻传感器:利用导体或半导体的电阻值随温度变化而变化的原理(热阻效应)制成

的传感器。热电阻传感器分为:金属热电阻和半导体热电阻。金属热电阻:热电阻;半

导体热电阻:热敏电阻。

21、热电阻材料主要是铂、铜、镍、钅因、锰等。用得最多的是是铂、铜。镍和铁的电阻温

度系数大,电阻率高,可用于制成体积大、灵敏度高的热电阻。但由于容易氧化,化化

学稳定性差,不易提纯,重复性和线性度差,目前应用还不多。

22、按半导体电阻-温度特性,热敏电阻可分为三类:

(1)负温度系数的热敏电阻(NTC )(2)正温度系数的热敏电阻(PTC )

(3)临界温度系数的热敏电阻(CTR )

23、最常见的热敏电阻是由金属氧化物组成的,如锰、钴、铁、镍、铜等多种氧化物烧结而

成。

24、光电式传感器是将光信号转换为电信号的光电器件,可用于检测直接引起光强变化的非

电量,也可用来检测能转换成光量变化的其他非电量。

25、光电式传感器的基础是光电转换元件的光电效应。光电效应可分为两类:外光电效应和

内光电效应。

1) 外光电效应:在光线作用下,物体内的电子逸出物体表面向外发射的现象称为外光电

效应。

2) 内光电效应:在光线作用下,物体的导电性能发生变化或产生光生电动势的效应称为内

光电效应。内光电效应又可分为光电导效应和光伏特效应。 光伏特效应:在光照条件

下,半导体材料吸收光能后,引起PN 结两端产生电动势现象称为光伏特效应。

26、基于光电导效应工作原理制成的光电器件有光敏电阻。光敏电阻又称光导管,几乎都用

半导体材料制成的光电。

27、基于光生伏特效应原理制成的光电器件有光电二极管、光电三极管和光电池。

28、电荷耦合器件(Charge Couple Device, 缩写为CCD )是一种大规模金属氧化物半导体

(MOS )集成电路光电器件。电荷耦合器件以电荷为信号, 具有光电信号转换、 存储、 转

移并读出信号电荷的功能。

29、霍尔传感器是基于霍尔效应的一种磁敏式传感器。

30、光纤传感器(FOS)是基于光纤纤维的新型传感器。

31、振动频率20KHz以上的机械波成为超声波。

32、微波是指波长为1mm~1m的电磁波。

33、微波传感器可以分成反射式和遮断式。

34、微波传感器的优点:

1)可以实现非接触测量,因而可以进行活体检测,大部分测量不需要采样。

2)检测速度快、灵敏度高可以进行动态检测和实时处理,便于自动控制。

3)可以在恶劣环境条件下进行检测,如在高温、高压、有毒、有放射线环境条件下工作。4)输出信号可以方便地调制在载波信号上进行发射与接收,便于实现遥测与遥控。

35、微波传感器存在的问题:主要问题是零点漂移和标定问题,这些问题尚未得到很好的解决。另外,是用微波传感器的时候外界的因素影响比较多,如温度、气压、采样位置等。36、红外线:比红光波长更长的光叫红外线。是一种不可见光,由于位于可见光中红外线以外的光,故称红外线。

37、核辐射传感器是根据被测物质对射线的吸收,反、散射或射线对被测物质的电离激发作用而进行工作的。它是利用放射性同位素来进行测量的。

38、数字传感器:就是把被测模拟量直接转换成数字量输出的传感器。

39、数字传感器的特点:

1)具有高抗干扰能力和高性噪比,有利于杂恶劣的环境下是用。通常免于噪声和外来信号的干扰。特别是用于远距离传输。

2)数据可以高速远距离传输,而不会引入动态滞后。

3)能同时做到高测量精度和大测量范围。

4)易于与计算机接口,便于信号处理和实现自动控制,可以进行大量数据的高速处理,如压缩、调制和解调、显示、存储和反复阅读及调用。

5)响应速度受各种因素的制约,有的相对较低(主要是频率式的)。

6)数字式传感器与数字式执行器配合使用,特别适用于重复性的工作中。

7)数字式传感器便于动态及多路测量,使用方便,易于和其他各种数字电路接口,实现积木化,为非专业人员所熟悉和使用,变成一个大众化的传感器。

8)工作可靠性高,安装方便,维护简单。

40、光电式编码器用光电方法,将转角和位移转换成各种代码形式的数字脉冲。

41.光栅式传感器:是根据莫尔条纹原理制成的一种计量光栅,主要用于位移测量及与位移相关的物理量(如:速度、加速度、振动、质量、表面轮廓等方面)测量。

42.直线感应同步器和圆感应同步器的工作原理基本相同,都是利用电磁感应原理工作。43.生物传感器是利用各种生物或生物物质(是指酶、抗体、微生物等)作为敏感材料,并将其生产的物理量、化学量的变化转换成电信号,用以检测与识别生物体内的化学成分的传感器。

44、几种生物传感器:酶传感器、微生物传感器、免疫传感器、。

45.智能式传感器:是基于人工智能、信息处理技术实现的具有分析、判断,量程自动转换,漂移、非线性和频率响应等自动补偿,对环境影响的自适应,自学习以及超限报警、故障诊断等功能的传感器。

46.与传统传感器相比,智能传感器有以下特点:精度高、可靠性与高稳定型强、高性噪比与高分辨率、自适应性强、性能价格比高。

47.MEMS通常称微机电系统。定义:将传感器、信号处理器和执行器以微型化结构形式集成一个完整的系统,而该系统具有“敏感”、“决定”和“反应”的能力。

48.模糊传感器:是在经典传感器数值测量的基础上经过模糊推理与知识集成,以自然语言

符号的描述形式输出的传感器。其基本功能:学习、推理联想、感知和通信功能。

49.网络传感器:是指传感器在现场级实现网络协议,使现场测控数据就近登录网络,在网

络所能及的范围内实时发布和共享。

50.网络传感器主要是由信号采集单元、数据处理单元及网络接口单元组成。其核心是 使传

感器本身实现网络通信协议。

51:。网络传感器基本结构图:

第四章 1.力测量所依据的原理是力的静力效应和动力效应。

2.位移:是一个向量,包括线位移和角位移。

3.位移测量分为模拟测量和数字测量两大类。

1)常见的模拟测量传感器:电阻式传感器(电位器式和应变式)、电感式传感器(差动电感

式和差动变压器式)、电容式传感器(变极距式、变面积式和变介质式)、电涡流式传感器、

光电式传感器及光导纤维传感器、超声波传感器、激光及辐射式传感器、薄膜传感器。

2)常见数字式转化装置有感应同步器(直线式、圆形)、旋转变压器、磁尺(带状、线状、

圆形)、光栅(直线式、圆形)和各种脉冲编码等。

4.物位是指各种容器设备中液体介质液面的高低、两种不相溶的液体介质的分解面的高低和

固体粉末状物料的堆积高度等的总称。包括液位、料位、界位。

5.超声波物位传感器是利用超声波在两种介质的分界面上的反射特性而制成的。

原理:超声波发射和接收换能器可以设置在液体中,这样,超声波将在液体中传播。对于

单换能器,如图4.35中左边两种结构,若超声波从发射到液面,又从液面反射到换能器的

时间为t ,则换能器距液面的距离h 为:

对于双换能器,如图4.35中右边两种结构,若超声波发射点到换能器的距离为s ,则从发射

到被接收经过的路程为2s ,设两个换能器之间的距离为2a ,那么可以推算出液位高度为: *超声波传感器具有精度高和使用寿命长的特点,但若液体中有气泡或液面发生波动,便会

有较大的误差。在一般使用条件下,它的测量误差为±0.1℅,检测物位的范围为42-10~10m 。

2vt

h =22a s h -=

6.厚度测量的传感器:

1)绝对测厚——低频透射式电涡流测厚;超声波测厚;微波测厚;核辐射测厚。

2)相对测厚——极距变化性电容传感器、高频反射式涡流传感器。

7.有些频率的声音直接或间接地影响着人们的生活品质和身心健康,影响着机器设备的工

作性能和寿命,通常称之为噪声。

8.声波具有一般波动特性,在空间传播过程中遇到阻碍物时会产生反射、折射和衍射和干

涉等典型波动现象。两个同频率的声波在声场中相遇时会发生干涉,相遇处的声波互相加强

或消弱。

9.噪声的强弱通常采用声压、声强和声功率等参量来度量。

10.频率是决定声音高低的主要因素。

11.人耳判断声音响和程度用响度来度量。响度的单位为宋(sone )。

12.一般多采用近声场的测量法,将传声器置于距被测产品1m ,距地面1.5 m 的地方来测量。

13.温度是表征物体冷热程度的物理量,是物体内部分子无规则剧烈运动程度的标志。

14.温标就是温度的数值表示的标尺,是温度的单位制。

15.

按照国际温标ITS-90,摄氏温度t (oC )和国际开尔文温度T (K )之间的关系为

15.273-=T t

16.温度测量方法按照感温元件是否与被测介质接触,可以分为接触式与非接触式两大类。

17.论述什么是接触式、非接触式测温方法?

答:接触式测温的方法就是使温度敏感元件与被测温度对象相接触,之间进行充分的热交

换,当热交换平衡时,温度敏感元件与被测温度对象的温度相等,测温传感器的输出大小即

反映了被测温度的高低。 常用的接触式测温的温度传感器主要有热膨胀式温度传感器、热

电偶、热电阻、热敏电阻和温敏晶体管等。这类传感器的优点是结构简单、工作可靠、测量

精度高、稳定性好、价格低;缺点是有较大的滞后现象(测温时由于要进行充分的热交换),不方便于运动物体的温度测量,被测对象的温度场易受传感器接触的影响,测温范围受感稳

元件材料性质的限制等。

非接触式测温的方法就是利用被测温度对象的热辐射能量随其温度的变化而变化的原

理,通过测量与被测温度对象有一定距离处被测物体发出的热辐射强度来测得被测温度对象

的温度。 常见非接触式测温的温度传感器主要有光电高温传感器、红外辐射温度传感器等。这类传感器的优点是不存在测量滞后和温度范围的限制,可测高温、腐蚀、有毒、运动物体

及固体、液体表面的温度,不影响被策温度,缺点是受被测温度对象热辐射率的影响,测量

精度低,使用中测量距离和中间介质对测量结果有影响等。

18.对红外温度传感器的测温原理作简单介绍: 红外光向外界辐射出能量的大小与该物体热力学温度的4次方成正比:()

404T T E -=σε

利用这个原理制成的温度测量仪表叫红外温度传感器。这种测量不需要与被测对象接触,因

此属于非接触式测量。能量主要集中在中红外和远红外波长。

红外温度传感器测温原理图:

第五章

1.微弱信号检测学,就是研究从噪声中提取信息的方法及技术的学科。

2.从广义讲,噪声可以分为两类,即干扰和噪声(狭义)。一、干扰是指非被测信号或非测量系统所引起的噪声。干扰属于理想上可排除的噪声。二、狭义噪声是指来自于被测对象、传感器、比较测定系统内部的广义噪声。其特点:不可能彻底排除,只能设法减少,这些噪声是随机的。

3.微弱信号检测方法可分为两大类,一类是时域处理方法,即信号的所有处理都是在时域内进行;另一类是频域处理方法,即将信号变换到频域,然后按照信号的频域特性对信号进行处理。一、时域处理方法又分:常规方法、相关检测方法、周期信号的取样积分方法、离散量的计数统计、并行检测。二、频域检测方法又分:窄带化检测技术及相干检测技术。4.微弱信号检测技术:电容检测、压阻检测、压电检测、隧道检测、热流式检测、谐振式检测、光纤式检测、混沌检测。

第六章

1.按干扰的来源,可以将干扰分为内部干扰和外部干扰。一、外部干扰:就是指那些与系统结构无关,由使用条件和外部环境因素所决定的干扰。主要来源于自然界的干扰以及周围电气设备的干扰。自然干扰主要有地球大气放电(如雷电)、宇宙干扰(如太阳产生的无线电辐射)、地球大气辐射以及水蒸气、雨雪、砂尘、烟尘作用的静电效应等;电气设备的干扰主要高压输电线、内燃机、荧光灯、电焊机等设备产生的放电干扰。二、内部干扰:就是指系统内部的各种元器件、信道、负载、电源等引起的各种干扰。常见的如信号通道干扰、电源电路干扰、和数字电路干扰。

2.干扰的引入和传播主要有以下几种:静电耦合(又称静电感应)、电磁耦合(电磁感应)、共阻抗耦合、辐射电磁干扰和漏电流耦合。

3.干扰抑制问题:主要从硬件和软件两个方面来考虑。接地、屏蔽、去耦,以及软件抗干扰等是抑制干扰的主要方法。

4.检测系统的接地类型主要有两种:

1保护接地

2)工作接地:系统内印制电路板接地的基本原则是高频电路应就近多接地,低频电路应一点接地。一般来说,频率在1MHz以下,可用一点接地,其地线长度就不要超过波长的1/20,否则应采取多点接地;而高于10MHz,应多点接地。

5.信号地(传感器地):一般以5Ω导体(接地电阻)一点接地,注意这种地是不浮空的。

6.功率地:电流较大,接地线的线径应较粗,且与小信号地线分开,接直流地。

7.走线原则:在长线传输中,为了防止窜扰,行之有效的办法是采用交叉走线法。

8.软件抗干扰的主要措施:一、数字滤波;二、软件陷阱:三条指令NOP NOP

LJMPERTREAT三、“Watchdog”技术

第七章

1.信号调理电路是测量系统的组成部分,它的输入是传感器输出电信号,输出为适合传输、显示、纪录或者更好地满足后续标准设备或装置要求的信号。信号调理电路通常具有放大、电平移到、阻抗匹配、滤波、调制、解调等功能。

2.信号调理过程示意图:

1)传感器输出为模拟量的:2)传感器输出为数字量的:

3.隔离放大器主要由输入部分、输出部分、信号耦合器和隔离电源组成。

4.滤波是测量系统排除干扰、抑制噪声常用的方法。滤波技术分为硬件滤波和软件滤波。

5.使用多传感器数据融合技术将使测量系统具有如下优势

①增加测量维数,增加容错功能,改进系统的可靠性和可维护性。

②提高精度。在传感器测量中,不可避免地存在各种噪声,而同时使用描述同一特征的多个

不同信息,可以减少这种由测量不精确所引起的不确定性,显著提高系统的精度

③扩展了空间和时间的覆盖,提高了空间分辨率及环境的适应能力。

④改进探测性能,增加响应的有效性,降低了对单个传感器的性能要求,提高信息处理的速

度。

⑤降低信息获取的成本。

信息融合的结构形式:串行融合、并行融合和混合融合

第八章

1、所谓计算机检测,是将温度、压力、流量、位移等模拟量采集、转换成数字量后,再由

计算机进行存储、处理、显示或打印的过程。相应的系统称为计算机检测系统。

典型计算机检测的组成p 467

2、计算机检测技术一般包括硬件及软件两部分:软件部分除了具有必要的计算机操作系统

的软件外。主要包括有信号的采集、处理和分析等功能模块软件;硬件部分主要是由信号调

理、采样/保持。模数转换、数模转换、定时/计数器、总线接口电路等部分组成

3、计算机检测系统输出信号有:模拟量、开关量、数字量等输出信号

4、计算机检测系统的设计时需要考虑的问题

(1)传感器的选择:①与测量条件有关的因素:输入信号的幅值,频率宽度、精度要

求、测量所需要的时间等

②与传感器有关的技术指标:精度、稳定度、响应特性、模拟量与数字量、输出幅值、

对被测量物体产生的负载效应、校正周期、超标准过大的输入

信号保护等

③ 与使用环境条件有关的因素:安装现场条件及情况、环境条件(湿度、温度、振

动等)、信号传输距离、所需现场提供的功率容量等

④与购买和维修有关的因素:价格、零配件的储备、服务与维修制度、保修时间、交货日期等

(2)主计算机选型:一般考虑单片机、单板机、微型机等主要方面①中央处理单元CPU

②存储器③定时/计数器和通用输入输出I/O接口

(3)输入输出通道设计

(4)软件设计

5、计算机检测设计的基本步骤

一般分为总体设计和详细设计两个阶段

(1)

(2)系统总体设计①确定所需的信息、同时确定为所需信息而测量的系统物理参数

②测试方法的选择

(3)系统详细设计①根据性能要求选择相应的测量方法②选择适当的传感器或转换器③考虑系统所处现场需要的处理功能④与传感器、转换器相配合的硬件和机电装置的规格,以及专用器材的制造⑤有关的应用软件的选择及软件的编制6、虚拟仪器就是在计算机为核心的硬件平台上,由用户设计定义具有虚拟面板,其测试功能由测试软件实现的一种计算机仪器系统

7、虚拟仪器的构成:通用仪器硬件平台和应用软件

虚拟仪器的硬件平台一般分为计算机硬件平台和测控功能硬件(I/O接口设备)

虚拟仪器的软件平台主要由两部分组成,即应用程序和I/O接口仪器驱动程序

8、决定虚拟仪器具有传统仪器不可能具备的特点的根本原因在于“虚拟仪器的关键是软件”

9、虚拟仪器开发平台:LabWindows/CVI和LabVIEW

传感器原理复习提纲及详细知识点(2016)

传感器原理复习提纲第一章绪论 1.检测系统的组成。 2.传感器的定义及组成。 3. 传感器的分类。 4.什么是传感器的静态特性和动态特性。

5.列出传感器的静态特性指标,并明确各指标的含义。 x输入量,y输出量,a0零点输出,a1理论灵敏度,a2非线性项系数 灵敏度传感器在稳态下,输出的变化量与引起该变化量的输入变化量之比。 表征传感器对输入量变化的反应能力 线性传感器非线性传感器 迟滞正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。 产生迟滞的原因:由于传感器敏感元件材料的物理性质和机械另部件的缺陷 所造成的,如弹性敏感元件弹性滞后、运动部件摩擦、传动机构的间隙、 紧固件松动等。 线性度传感器的实际输入-输出曲线的线性程度。 4种典型特性曲线 非线性误差 % 100 max? ? ± = FS L Y L γ ,ΔLmax——最大非线性绝对误差,Y FS——满量程输出值。 直线拟合线性化:出发点→获得最小的非线性误差(最小二乘法:与校准曲线的残差平方和最小。) 例用最小二乘法求拟合直线。 设拟合直线y=kx+b 残差△i=yi-(kxi+b) k y x =?? % 100 2 max? ? = FS H Y H γ 最小 ∑? n i2

分别对k 和b 求一阶导数,并令其 =0,可求出b 和k 将k 和b 代入拟合直线方程,即可得到拟合直线,然后求出残差的最大值Lmax 即为非线性误差。 重复性 重复性是指传感器在输入量按同一方向作全量程连续多次变化时, 所得特性曲线不一致的程度。重复性误差属于随机误差,常用标准 差σ计算,也可用正反行程中最大重复差值计算,即 或 零点漂移 传感器无输入时,每隔一段时间进行读数,其输出偏离零值,即为零点漂移。 零漂=,式中ΔY0——最大零点偏差;Y FS ——满量程输出。 温度漂移 温度变化时,传感器输出量的偏移程度。一般以温度变化1度,输出最大偏差与满量程的百分比表示, 即温漂=Δmax ——输出最大偏差;ΔT ——温度变化值;YFS ——满量程输出。 6. 一阶特性的指标及相关计算。 一阶系统微分方程 τ:时间常数,k=1静态灵敏度 拉氏变换 )()()1(s X s Y s =+τ 传递函数 s s X s Y s H τ+= = 11 )()()( 频率响应函数 ωτ ωωωj j X j Y j H += = 11 )()()( 误差部分 7. 测量误差的相关概念及分类。 相关概念 (1)等精度测量(2)非等精度测量(3)真值(4)实际值(5)标称值(6)示值(7)测量误差 分类 系统误差 随机误差 粗大误差 %100)3~2(?± =FS R Y σ γ% 1002max ??± =FS R Y R γkx y dt dy =+τ

传感器技术知识点

1-1衡量传感器静态特性的主要指标。说明含义。 1、线性度——表征传感器输出-输入校准曲线与所选定的拟合直线之间的吻合(或偏离)程度的指标。 2、回差(滞后)—反应传感器在正(输入量增大)反(输入量减小)行程过程中输出-输入曲线的不重合程度。 3、重复性——衡量传感器在同一工作条件下,输入量按同一方向作全量程连续多次变动时,所得特性曲线间一致程 度。各条特性曲线越靠近,重复性越好。 4、灵敏度——传感器输出量增量与被测输入量增量之比。 5、分辨力——传感器在规定测量范围内所能检测出的被测输入量的最小变化量。 6、阀值——使传感器输出端产生可测变化量的最小被测输入量值,即零位附近的分辨力。 7、稳定性——即传感器在相当长时间内仍保持其性能的能力。 8、漂移——在一定时间间隔内,传感器输出量存在着与被测输入量无关的、不需要的变化。 9、静态误差(精度)——传感器在满量程内任一点输出值相对理论值的可能偏离(逼近)程度。 1-2计算传感器线性度的方法,差别。 1、理论直线法:以传感器的理论特性线作为拟合直线,与实际测试值无关。 2、端点直线法:以传感器校准曲线两端点间的连线作为拟合直线。 3、“最佳直线”法:以“最佳直线”作为拟合直线,该直线能保证传感器正反行程校准曲线对它的正负偏差相等并 且最小。这种方法的拟合精度最高。 4、最小二乘法:按最小二乘原理求取拟合直线,该直线能保证传感器校准数据的残差平方与最小。 1-3什么就是传感器的静态特性与动态特性?为什么要分静与动? (1)静态特性:表示传感器在被测输入量各个值处于稳定状态时的输出-输入关系。 动态特性:反映传感器对于随时间变化的输入量的响应特性。 (2)由于传感器可能用来检测静态量(即输入量就是不随时间变化的常量)、准静态量或动态量(即输入量就是随时间变化的变量),于就是对应于输入信号的性质,所以传感器的特性分为静态特性与动态特性。 1—4 传感器有哪些组成部分?在检测过程中各起什么作用? 答:传感器通常由敏感元件、传感元件及测量转换电路三部分组成。 各部分在检测过程中所起作用就是:敏感元件就是在传感器中直接感受被测量,并输出与被测量成一定联系的另一物理量的元件,如电阻式传感器中的弹性敏感元件可将力转换为位移。传感元件就是能将敏感元件的输出量转换为适于传输与测量的电参量的元件,如应变片可将应变转换为电阻量。测量转换电路可将传感元件输出的电参量转换成易于处理的电量信号。 1-5传感器有哪些分类方法?各有哪些传感器? 答:按工作原理分有参量传感器、发电传感器、数字传感器与特殊传感器;按被测量性质分有机械量传感器、热工量传感器、成分量传感器、状态量传感器、探伤传感器等;按输出量形类分有模拟式、数字式与开关式;按传感器的结构分有直接式传感器、差分式传感器与补偿式传感器。 1-6 测量误差就是如何分类的? 答:按表示方法分有绝对误差与相对误差;按误差出现的规律分有系统误差、随机误差与粗大误差按误差来源分有工具误差与方法误差按被测量随时间变化的速度分有静态误差与动态误差按使用条件分有基本误差与附加误差按误差与被测量的关系分有定值误差与积累误差。 1-7 弹性敏感元件在传感器中起什么作用? 答:弹性敏感元件在传感器技术中占有很重要的地位,就是检测系统的基本元件,它能直接感受被测物理量(如力、位移、速度、压力等)的变化,进而将其转化为本身的应变或位移,然后再由各种不同形式的传感元件将这些量变换成电量。1-8、弹性敏感元件有哪几种基本形式?各有什么用途与特点? 答:弹性敏感元件形式上基本分成两大类,即将力变换成应变或位移的变换力的弹性敏感元件与将压力变换成应变或位移的变换压力的弹性敏感元件。 变换力的弹性敏感元件通常有等截面轴、环状弹性敏感元件、悬臂梁与扭转轴等。实心等截面轴在力的作用下其位移很小,因此常用它的应变作为输出量。它的主要优点就是结构简单、加工方便、测量范围宽、可承受极大的载荷、缺点就是灵敏度低。空心圆柱体的灵敏度相对实心轴要高许多,在同样的截面积下,轴的直径可加大数倍,这样可提高轴的抗弯能力,但其过载能力相对弱,载荷较大时会产生较明显的桶形形变,使输出应变复杂而影响精度。环状敏感元件一般为等截面圆环结构,圆环受力后容易变形,所以它的灵敏度较高,多用于测量较小的力,缺点就是圆环加工困难,环的各个部位的应变及应力都不相等。悬臂梁的特点就是结构简单,易于加工,输出位移(或应变)大,灵敏度高,所以常用于较小力的测量。扭转轴式弹性敏感元件用于测量力矩与转矩。 变换压力的弹性敏感元件通常有弹簧管、波纹管、等截面薄板、波纹膜片与膜盒、薄壁圆筒与薄壁半球等。弹簧管可以把压力变换成位移,且弹簧管的自由端的位移量、中心角的变化量与压力p成正比,其刚度较大,灵敏度较小,但过载能力强,常用于测量较大压力。波纹管的线性特性易被破坏,因此它主要用于测量较小压力或压差测量中。 Z-1 分析改善传感器性能的技术途径与措施。

物联网技术与应用 期末复习 知识点

物联网技术与应用 第一章 1 物联网定义 物联网是指物体的信息通过智能感应装置,经过传输网络,到达指定的信息处理中心,最终实现物与物、人与物之间的自动化的信息交互与处理的智能网络。 2物联网三大特征 全面感知;利用射频识别、二维码、传感器等感知、捕获、测量技术随时随地对物体进行信息采集和获取(2)可靠传送:通过将物体接入信息网络,依托各种通信网络,随时随地进行可靠的信息交互和共享(3)智能处理: 利用各种智能计算技术,对海量的感知数据和信息进行分析并处理,实现智能化的决策和控制 4 面向物联网的传感技术 (1)低耗自组、异构互连、泛在协同的无线传感网络。(2)智能化传感器网络节点研究。 (3)传感器网络组织结构及底层协议研究。(4)对传感器网络自身的检测与控制。 (5)传感器网络的安全问题。(6)先进测试技术及网络化测控。 5 物联网中的智能技术 智能技术是为了有效地达到某种预期的目的,利用知识所采用的各种方法和手段。 人工智能理论研究(2)机器学习(3)智能控制技术与系统(4)智能信号处理 8 什么是IPv6 IPv6是"Internet Protocol Version 6"的缩写,也被称作下一代互联网协议,它是由IETF设计的用来替代现行的IPv4协议的一种新的IP协议。 9 IPv6与物联网的关系 物联网的发展与IPv6紧密联系,因为每个物联网链接的对象都需要IP地址作为识别码,而目前IPv4的地址已经不够用.IPv6拥有巨大的地址空间,他的地址空间完全可以满足结点标识的需要 第二章 1 物联网层次结构模型 (1)信息感知层: 实现对物理世界的智能感知识别、信息采集处理和自动控制,并通过通信模块将物理实体连接到网络层和应用层。 (2)物联接入层:主要任务是将信息感知层采集到的信息,通过各种网络技术进行汇总,将大范围内的信息整合到一块,以供处理。

传感器与检测技术第二版知识点总结

传感器知识点 一、电阻式传感器 1) 电阻式传感器的原理:将被测量转化为传感器电阻值的变化,并加上测量电路。 2) 主要的种类:电位器式、应变式、热电阻、热敏电阻 应变电阻式传感器 1) 应变:在外部作用力下发生形变的现象。 2) 应变电阻式传感器:利用电阻应变片将应变转化为电阻值的变化 a. 组成:弹性元件+电阻应变片 b. 主要测量对象:力、力矩、压力、加速度、重量。 c. 原理:作用力使弹性元件形变发生应变或位移应变敏感元件电阻值变化通过测 量电路变成电压等点的输出。 3) 电阻值:A L R ρ= (电阻率、长度、截面积)。 4) 应力与应变的关系:εσE =(被测试件的应力=被测试件的材料弹性模量*轴向应变) 5) 应力与力和受力面积的关系:(面积) (力) (应力)A F = σ 6) 应变片的种类:

种类金属电阻应变片(应变为主)半导体电阻应变片(压阻为主)灵敏度 优点散热好允许通过较大电流 电阻应变的温度补偿:电桥补偿 应注意的问题: a.R3=R4; b.R1与R2应有相同的温度系数、线膨胀系数、应变灵敏度、初值; c.补偿片的材料一样,个参数相同; d.工作环境一样; 测量电路:直流电桥、交流电桥 直流电桥交流电桥 平衡条件R1R4=R2R3 输出电压

典型应用 种类被测量 电阻式力传感器荷重或力 电阻式压力传感器流动介质 ~液体重量传感器容器内液体的重量 ~加速度传感器加速度 ~差压传感器气动测量 二、电感式传感器 1)电感式传感器的原理:将输入物理量的变化转化为线圈自感系数L或互感系数M的 变化。 2)种类:变磁阻式、变压器式、电涡流式。 3)主要测量物理量:位移、振动、压力、流量、比重。 变磁阻电感式传感器 1)原理:衔铁移动导致气隙变化导致电感量变化,从而得知位移量的大小方向。

Zigbee知识点

第一章Zigbee概述 1、Zigbee是一种新兴的短距离、低速率无线网络技术,主要用于近距离无线连接。 2、Zigbee的特点是功耗低、成本低、时延短、网络容量大、可靠安全。 3、常见的Zigbee芯片有CC243X系列、MC1322X系列和CC253X系列。 4、常见的Zigbee协议栈有非开源(msstatePAN)协议栈、开源(freakz)协议栈和半开源(Zstack)协议栈。 5、Zigbee软件开发平台包括IAR、Zigbee Sniffer、物理地址修改软件以及其它辅助软件。 6、Zigbee硬件开发平台采用Altium Designer进行设计。 7、简述Zigbee的定义。 答:Zigbee是一种近距离、低复杂度、低功耗、低成本的双向无线通讯技术。主要用于距离短、功耗低且传输速率不高的各种电子设备之间,进行数据传输(包括典型的周期性数据、间歇性数据和低反应时间数据)的应用。 ( Zigbee的基础是,但是仅处理低级的MAC(媒体接入控制协议)层和物理层协议,Zigbee 联盟对网络层协议和应用层进行了标准化。) 8、简述无线传感器网络与Zigbee之间的关系。 答:从协议标准来讲:目前大多数无线传感器网络的物理层和MAC层都采用协议标准。描述了低速率无线个人局域网的物理层和媒体接入控制协议(MAC层),属于工作组。而Zigbee 技术是基于标准的无线技术。 从应用上来讲:Zigbee适用于通信数据量不大,数据传输速率相对较低,成本较低的便携或移动设备。这些设备只需要很少的能量,以接力的方式通过无线电波将数据从一个传感器传到另外一个传感器,并能实现传感器之间的组网,实现无线传感器网络分布式、自组织和低功耗的特点。 9、Zigbee技术特点:低功耗、低成本、大容量、可靠、时延短、灵活的网络拓扑结构。 第二章Zigbee技术原理 1、Zigbee协议分为物理层、MAC层、网络层和应用层,其中物理层和MAC层由定义。 2、Zigbee有三种网络拓扑结构,分别是星型、树型和网状型。 3、物理层定义了物理无线信道和与MAC层之间的接口,提供物理层数据服务和物理层管理服务。 4、MAC层提供MAC层数据服务和MAC层管理服务,并负责数据成帧。 5、网络层负责拓扑结构的建立和维护网络连接。 6、Zigbee的应用层由应用支持子层(APS)、Zigbee设备对象、Zigbee应用框架(AF)、Zigbee 设备模板和制造商定义的应用对象等组成。 7、简述MAC层帧的一般结构。 答:MAC帧,即MAC协议数据单元(MPDU),是由一系列字段按照特定的顺序排列而成的。设计目标是在保持低复杂度的前提下实现在噪声信道上的可靠数据传输。MAC层帧结构分为一般格式和特定格式。 一般格式:三部分,MAC帧头(MHR)、MAC有效载荷、MAC帧尾(MFR)。 特定格式:信标帧、数据帧、确认帧和命令帧。 (MAC帧头部分由帧控制字段和帧序号字段组成;MAC有效载荷由地址信息和特定帧的有效载荷组成,MAC有效载荷的有效长度与特定帧类型有关;MAC帧尾是校验序列FCS)。 8、简述Zigbee网络层的功能。

高考物理最新电磁学知识点之传感器知识点总复习含答案(3)

高考物理最新电磁学知识点之传感器知识点总复习含答案(3) 一、选择题 1.如图所示是一个基本逻辑电路。声控开关、光敏电阻、小灯泡等元件构成的一个自动控制电路。该电路的功能是在白天无论声音多么响,小灯泡都不会亮,在晚上,只要有一定的声音,小灯泡就亮。这种电路现广泛使用于公共楼梯间,该电路虚线框N中使用的是门电路.则下面说法正确的是() A.R2为光敏电阻,N 为或门电路 B.R2为光敏电阻,N为与门电路 C.R2为热敏电阻,N为或门电路 D.R2为热敏电阻,N为非门电路 2.如图所示是某居民小区门口利用光敏电阻设计的行人监控装置,R1为光敏电阻(光照增强电阻变小),R2为定值电阻,A、B接监控装置.则() ①当有人通过而遮蔽光线时,A、B之间电压升高 ②当有人通过而遮蔽光线时,A、B之间电压降低 ③当仅增大R2的阻值时,可增大A、B之间的电压 ④当仅减小R2的阻值时,可增大A、B之间的电压 A.①③B.①④C.②③D.②④ 3.图甲为斯密特触发器,当加在它的输入端A的电压逐渐上升到某个值(1.6V)时,输出端Y会突然从高电平跳到低电平(0.25V),而当输入端A的电压下降到另一个值的时候(0.8V),Y会从低电平跳到高电平(3.4V).图乙为一光控电路,用发光二极管LED模仿路灯,R G为光敏电阻.关于斯密特触发器和光控电路的下列说法中正确的是( )

A.斯密特触发器是具有特殊功能的与门电路 B.斯密特触发器的作用是将模拟信号转换为数字信号 C.调节R1和R2的阻值都不影响光线对二极管发光的控制 D.要使二极管在天更暗时才会点亮,应该调小R1 4.图甲是在温度为10℃左右的环境中工作的某自动恒温箱原理简图,箱内的电阻R1="20" kΩ,R2 ="10" kΩ,R3="40" kΩ,R t为热敏电阻,它的电阻随温度变化的图线如图乙所示.当a、b 端电压U ab ≤ 0时,电压鉴别器会令开关S接通,恒温箱内的电热丝发热,使箱内温度升高;当a、b端电压U ab>0时,电压鉴别器会令开关S断开,停止加热,则恒温箱内的温度可保持在() A.10℃ B.20℃ C.35℃ D.45℃ 5.如图所示为用热敏电阻R和继电器L等组成的一个简单的恒温控制电路,其中热敏电阻的阻值会随温度的升高而减小.电源甲与继电器、热敏电阻等组成控制电路,电源乙与恒温箱加热器(图中未画出)相连接.则( ) A.当温度降低到某一数值,衔铁P将会被吸下 B.当温度升高到某一数值,衔铁P将会被吸下 C.工作时,应该把恒温箱内的加热器接在C、D端 D.工作时,应该把恒温箱内的加热器接在A、C端 6.电熨斗能自动控制温度,在熨烫不同的织物时,设定的温度可以不同,图为电熨斗的结

传感器的主要知识点

绪论 一、传感器的定义、组成、分类、发展趋势 能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件构成。 如果传感器信号经信号调理后,输出信号为规定的标准信号(0~10mA,4~20mA;0~2V,1~5V;…),通常称为变送器, 分类: 按照工作原理分,可分为:物理型、化学型与生物型三大类。物理型传感器又可分为物性型传感器和结构型传感器。 按照输入量信息: 按照应用范围: 传感器技术: 是关于传感器的研究、设计、试制、生产、检测和应用的综合技术. 发展趋势: 一是开展基础研究,探索新理论,发现新现象,开发传感器的新材料和新工艺;二是实现传感器的集成化、多功能化与智能化。 1.发现新现象; 2.发明新材料; 3.采用微细加工技术; 4.智能传感器; 5.多功能传感器; 6.仿生传感器。 二、信息技术的三大支柱 现在信息科学(技术)的三大支柱是信息的采集、传输与处理技术,即传感器技术、通

信技术和计算机技术。 课后习题 1、什么叫传感器,它由哪几部分组成?它们的作用与相互关系? 传感器(transducer/sensor):能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置(国标GB7665—2005)。通常由敏感元件和转换元件组成。 敏感元件:指传感器中能直接感受或响应被测量并输出与被测量成确定关系的其他量(一般为非电量)部分。 转换元件:指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的可用输出信号(一般为电信号)部分。 信号调理电路(Transduction circuit) :由于传感器输出电信号一般较微弱,而且存在非线性和各种误差,为了便于信号处理,需配以适当的信号调理电路,将传感器输出电信号转换成便于传输、处理、显示、记录和控制的有用信号。 第一章 传感器的一般特性 1. 传感器的基本特性 动态特性 静态特性 2. 衡量传感器静态特性的性能指标 (1) 测量范围、量程 (2) 线性度 %100max ??± =?S F L y δ 传感器静态特性曲线及其获得的方法 传感器的静态特性曲线是在静态标准条件下进行校准的。

最新无线传感网知识点

第一章无线传感网概述 1.无线传感器网络的概念:无线传感器网路是一种由多个无线传感器节点和几个汇聚节点构成的网络,能够实时的检测、感知和采集节点部署区域的环境或感兴趣的的感知对象的各种信息,并对这些信息进行处理后一无线的方式发送出去。 2.WSN的特点及优势 1)WSN与Ad hoc共有的特征:自组织;分布式;节点平等;安全性差 2)WSN特有的特征:计算能力不高;能量供应不可代替;节点变化性强;大规模网络 3.无线传感器网络架构: 1)协议:物理层,数据链路层,网络层,传输层,应用层 物理层:负责载波频率产生、信号的调制解调等工作,提供简单但健壮的信号调制和无线收发技术。 数据链路层:(1)媒体访问控制。(2)差错控制。 网络层:负责路由发现和维护,是无线传感器网络的重要因素。 传输层:负责将传感器网络的数据提供给外部网络,也就是负责网络中节点间和节点与外部网络之间的通信。 应用层:主要由一系列应用软件构成,主要负责监测任务。这一层主要解决三个问题:传感器管理协议、任务分配和数据广播管理协议,以及传感器查询和数据传播管理协议。 2)管理平台:(1)能量管理平台(2)移动管理平台(3)任务管理平台 (1)管理传感器节点如何使用资源,在各个协议层都需要考虑节省能量。 (2)检测传感器节点的移动,维护到汇聚节点的路由,使得传感器节点能够动态跟踪其邻居的位置。 (3)在一个给定的区域内平衡和调度检测任务。 4.无线传感器网络所面临的挑战:低能耗,实时性,低成本,安全和抗干扰,协作 第二章无线传感网物理层设计 1.WSN物理层频率的选择:一般选用工业,科学和医疗频段。ISM(医疗)频段的主要优点是无需注册的公用频段、具有大范围可选频段、没有特定标准、灵活使用。欧洲使用433MHZ,美国使用915MHZ频段 2.WSN结构采用的是无线射频通信 第三章数据链路层 1.MAC协议分类: 1)按节点的接入方式:侦听(间断侦听:DEANAdeng),唤醒(低功耗前导载波侦听MAC协议),调度(主要使用在广播中) 2)按信道占用数划分:单信道(主要采用),双信道,多信道 3)信道分配方式:竞争型(S-MAC,T-MAC,Sift),分配型(SMACS,TRAMA),混合型(ZMAC),跨层型 2.分配型MAC协议采用TDMA,CDMA,SDMA,FDMA等技术 3.数据链路层的关键问题:能量效率问题,可扩展性,公平性,信道共享,网络性能的优化 4.记忆竞争的S-MAC协议,具有以下特点: (1)周期性的侦听和睡眠 (2)使用虚拟载波侦听和物理载波侦听进行冲突避免 (3)自适应侦听 (4)将长消息分成子段进行消息传递 5.基于竞争的T-MAC协议:为了改进S-MAC协议不能根据网络负载调整自己的调度周期的缺点,T-MAC协议根据一种自适应占空比的原理,通过动态地调整侦听与睡眠时间的比值,从而实现节省能耗的目的。主要解决了早睡的问题 6.基于竞争的Sift协议:为了解决多个相邻节点都会发现同一事件并传输相关信息而导致空间竞争现象,它采用CSMA机制,竞争窗口的大小原本是设定好的,采用非均匀概率来决定是否发送数据,特点如下: (1)无线传感传感器网络中基于空间中的竞争 (2)基于时间的报告方式 (3)感知事件的节点密度的自适应调整 7.基于分配的SMAC协议:该协议假设每个节点都能够在多个载波频点上进行切换,将每个双向信道定义为两个时间段。SMAC协议是一种分布式协议,允许一个节点集发现邻居并进行信道分配。SMAC协议可避免全局时间同步,从而减少复杂性 8.基于分配的TRAMA协议:该协议采用了流量自适应的分布式选举算法,节点交换两跳内的邻居信息,传输分配时指明在时间顺序上哪些节点是目的节点,然后选择在每个时隙上的发送节点和接收节点,TRAMA将一个物理信道分成多个时隙,通过对这些时隙的复用为数据和

传感器主要知识点

1.传感器 定义 传感器是一种以一定的精确度把被测量转化为与之有确定对应关系的、便于精确处理和应用的另一种量的测量装置或系统。 静态特性 指传感器在输入量的各个值处于稳定状态时的输出与输入的关系,即当输入量是常量或变化极慢时,输出和输入的关系。 动态特性 输入量随时间动态变化时,传感器的输出也随之变化的回应特性。 扩展 一阶环节 微分方程为 a1dt dy +a0y=b0x 令τ=a1/a0为时间常数,K=b0/a0为静态灵敏度 即(τs+1)y=Kx 频率特性y (j ω)/x (j ω)=K /(j ωτ+1).课后习题1-10 2.金属的电阻应变效应:导体或半导体在受到外力的作用下,会产生机械形变,从而导致其电阻值发生变化的现象。 应变式电阻传感器主要由电阻应变计、弹性元件和测量转换电路三部分构成;被测量作用在弹性元件上,弹性元件作为敏感元件,感知由外界物理量(力、压力、力矩等)产生相应的应变。 3.实际应用中对应变计进行温度补偿的原因,补偿方法及其优缺点 原因:由于环境温度所引起的附加的电阻变化与试件受应变所造成的电阻变化几乎在相同的数量级上,从而产生很大的测量误差。 补偿方法:A 自补偿法a 单丝自补偿法 优点是结构简单,制造使用方便,成本低,缺点是只适用于特定的试件材料,温度补偿范围也狭窄。b 组合式补偿法 优点是能达到较高精度的补偿,缺点是只适用于特定的试件材料。B 线路补偿法a 电桥补偿法 优点是结构简单,方便,可对各种试件材料在较大温度范围内进行补偿。缺点是在低温变化梯度较大的情况下会影响补偿效果。b 热敏电阻补偿法 补偿良好。C 串联二极管补偿法 可补偿应变计的温度误差。 4.变隙式电感传感器的结构、工作原理、输出特性及其差动变隙式传感器的优点 由线圈、铁芯和衔铁构成;在线圈中放入圆柱形衔铁当衔铁上下移动时,自感量将相应变化,构成了电感式传感器 输出函数为L=ω2μ0S0/2δ 其中μ0为空气的磁导率,S0为截面积,δ为气隙厚度。优点 可以减小气隙厚度带来的误差。 5.电感式传感器和差动变压器传感器的零点残余误差产生原因,如何消除 原因①两个电感线圈的等效参数不对称,使其输出的基波感应电动势的幅值和相位不同,调整磁芯位置时也不能达到幅值和相位同时相同; ②传感器的磁芯的磁化曲线是非线性的,所以在传感器线圈中产生高次谐波。而两个线圈的非线性不一致使高次波不能相互抵消。 措施 ⑴在设计和工艺上,要求做到磁路对称、线圈对称,磁芯材料要均匀,特性要一致;两个线圈要均匀,紧松一致。 ⑵采用拆圈的试验方法,调整两线圈的等效参数,使其尽量相同。 ⑶在电路上进行补偿。 6.改善单组式变极距型电容式传感器的非线性 传感器输出特性的非线性随相对位移△δ/δ0的增加而增加,为了保证线性度,应限制相对位移的大小。 一般采用差动式结构,使之在结构上对称,减小非线性误差。 电容式传感器工作原理:两平行极板组成的电容器,不考虑边缘效应,其电容C=εS /δ式中ε 极板间介质的介电常数 S 极板的遮盖面积 δ 极板间的距离 当被测量的变化使式中的εδS 任一参量发生变化时,电容C 也随之变化。

无线传感器网络的基本知识点

I无线传感器网络概述 一、无线传感器网络的概念 无线传感器网络的3个基本要素为传感器、感知对象和观察者。 无线网络是传感器之间、传感器与观察者之间的通信方式,用于在传感器与观察者之间建立通信路径;协作地感知、采集、处理、发布感知信息是无线传感器网络的基本功能。 一组功能有限的传感器协作地完成大的感知任务是无线传感器网络的重要特点。 传感器主要由感知单元、传输单元、存储单元和电源组成,完成感知对象的信息采集、存储和简单的计算后,传输给观察者以提供环境的决策依据。 观察者是无线传感器网络的用户,是感知信息的接收和应用者。观察者可以是人,也可以是计算机或其它设备。 感知对象是观察者感兴趣的监测目标,也是无线传感器网络的感知对象。 一个无线传感器网络可以感知网络分布区域内的多个对象,一个对象也可以被多个无线传感器网络所感知。 二、无线传感器网络的特点 (1)硬件资源有限 (2)电源容量有限 (3)无中心

(4)自组织 (5)多跳路由 (6)动态拓扑 (7)节点数量众多,分布密集 三、无线传感器网络的学术界研究进展 1、网络技术(不太懂) 2、通信协议 无线传感器网络协议要有不同于传统Ad Hoc和因特网通信协议的原因如下: (1)传感器网络中的传感器节点数量远大于Ad Hoc网络中的节点数; (2)感知节点出现故障的频率要大于Ad Hoc网络; (3)感知节点要比因特网和Ad Hoc网络中的节点简单; (4)感知节点的能量有限; (5)因特网的数据报头对于传感器网络来说太长,例如,每个节点必须有一个永久的地址。 美国一些大学提出了有效的协议如下: 包括谈判类协议(如SPIN-PP协议、SPIN-EC协议、SPIN-BC协议、SPIN-RL协议)、定向发布类协议、能源敏感类协议、多路径类协议、传播路由类协议、介质存取控制类、基于Cluster的协议、以数据为

物联网安全概论知识点

第一章 1.1物联网的安全特征: 1,感知网络的信息采集、传输与信息安全问题。 2,核心网络的传输与信息安全问题。3,物联网业务的安全问题。 1.2物联网从功能上说具备哪几个特征? 1,全面感知能力,可以利用RFID、传感器、二维条形码等获取被控/被测物体的信息。 2,数据信息的可靠传递,可以通过各种电信网络与互联网的融合,将物体的信息实时准确的传递出去。 3,可以智能处理,利用现代控制技术提供智能计算方法,对大量数据和信息进行分析和处理,对物体实施智能化的控制。 4,可以根据各个行业,各种业务的具体特点形成各种单独的业务应用,或者整个行业及系统的建成应用解决方案。 1.3物联网结构应划分为几个层次? 1,感知识别层 2,网络构建层 3,管理服务层4,综合应用层 1.4概要说明物联网安全的逻辑层次 物联网网络体系结构主要考虑3个逻辑层,即底层是用来采集的感知识别层,中间层数据传输的网络构建层,顶层则是包括管理服务层和综合应用层的应用中间层 1.5物联网面对的特殊安全为问题有哪些? 1,物联网机器和感知识别层节点的本地安全问题。2,感知网络的传输与信息安全问题。3,核心网络的传输与信息安全问题。4,物联网业务的安全问题 信息安全:是指信息网络的硬件、软件及其系统中的数据受到保护,不易受到偶然的或者恶意的原因而遭到破坏、更改、泄露,系统连续可靠的运行,信息服务不中断。 针对这些安全架构,需要发展相关的密码技术,包括访问控制、匿名签名、匿名认证、密文验证(包括同态加密)、门限密码、叛逆追踪、数字水印和指纹技术。 1.8 物联网的信息安全问题将不仅仅是技术问题,还会涉及许多非技术因素。下述几个方面的因素很难通过技术手段来实现: (1)教育:让用户意识到信息安全的重要性和如何正确使用物联网服务以减少机密信息的泄露机会; (2)管理:严谨的科学管理方法将使信息安全隐患降低到最小,特别应注意信息安全管理; (3)信息安全管理:找到信息系统安全方面最薄弱环节并进行加强,以提高系统的整体安全程度,包括资源管理、物理安全管理和人力安全管理; (4)口令管理:许多系统的安全隐患来自账户口令的管理; 物联网结构与层次 ①感知识别层:涉及各种类型的传感器、RFID标签、手持移动设备、GPS终端、视频摄像设备等;重点考虑数据隐私的保护; ②网络构建层:涉及互联网、无线传感器网络、近距离无线通信、3G/4G通信网络、网络中间件等;重点考虑网络传输安; ③管理服务层:涉及海量数据处理、非结构化数据管理、云计算、网络计算、高性能计算、语义网等;重点考虑信息安全; ④综合应用层:涉及数据挖掘、数据分析、数据融合、决策支持等。重点考虑应用系统安全; 4 管理服务层位于感知识别和网络构建层之上,综合应用层之下,人们通常把物联网应用

物联网基础概述部分知识点

物联网作业1-概述 ?简述物联网的定义,分析物联网的“物”的条件? 1.物联网的定义: 物联网是通过使用射频识别技术(RFID)、传感器、红外感应器、全球定位系统(GPS)、激光扫描器等信息交换和通讯设备,按照约定的协议,把任何物品与互联网连接起来,进行信息交换和通信,以实现智能化识别、定位、跟踪、监控和管理的一种网络。 2.物联网的“物”的条件: 1)要有相应信息的接收器; 2)要有数据传输通路; 3)要有一定的存储功能; 4)要有CPU; 5)要有操作系统; 6)要有专门的应用程序; 7)要有数据发送器; 8)遵循物联网的通信协议; 9)在世界网络中有可被识别的唯一编号。 ?简述物联网的主要特征。 ?物联网的内涵是什么?物联网与射频技术、传感网有什么关系? 1.物联网的内涵: 1)物联网起源于射频识别领域 2)无线传感器网络概念的融入 3)泛在网络的愿景(实现4A化通讯) 2.物联网与射频技术、传感网有什么关系: 物联网与射频识别、无线传感器网络和泛在网等有关。由于物联网是一种新兴的并正在不断发展的技术,其内涵也在不断地发展、扩充和完善。物联网的概念最早是美国麻省理工学院提出的。物联网的概念是从射频识别(RFID)这个领域来的。由射频识别(RFID)引出的物联网有局限性,又将无线传感器网络这个概念引入了物联网。 ?简述物联网的技术体系结构? 1.感知层(皮肤和五官) 功能:物联网感知层解决的就是人类世界和物理世界的数据获取及数据收集问题。用于完成信息的采集、转换、收集和整理。 关键技术:蓝牙、ZigBee、GPS、RFID 2.网络层(神经中枢和大脑) 功能:数据传输功能 关键技术:互联网、移动通信网、无线传感器网络(WSN)、局域网 3.应用层 功能:将感知和传输来的信息进行分析和处理,做出正确的控制和决策,实现智能化的管理、应用和服务。这一层解决的是信息处理和人机界面的问题。 关键技术:M2M、云计算、人工智能、数据传输、中间件 ?分析物联网的关键技术和应用难点。 1.关键技术:

电磁感应知识点总结

电磁感应 1、 磁通量Φ、磁通量变化?Φ、磁通量变化率t ??Φ 对比表 2、 电磁感应现象与电流磁效应的比较 3、 产生感应电动势和感应电流的条件比较

4、 感应电动势 在电磁感应现象中产生的电动势叫感应电动势,产生感应电流比存在感应电动势,产生感应电动势的那部分导体相当于电源,电路断开时没有电流,但感应电动势仍然存在。 (1) 电路不论闭合与否,只要有一部分导体切割磁感线,则这部分导体就会产生 感应电动势,它相当于一个电源 (2) 不论电路闭合与否,只要电路中的磁通量发生变化,电路中就产生感应电动 势,磁通量发生变化的那部分相当于电源。 5、 公式 n E ?Φ =与E=BLvsin θ 的区别与联系 6、 楞次定律 (1) 感应电流方向的判定方法

(2)楞次定律中“阻碍”的含义 (3)对楞次定律中“阻碍”的含义还可以推广为感应电流的效果总是要阻碍产生感应电流的原因 1)阻碍原磁通量的变化或原磁场的变化; 2)阻碍相对运动,可理解为“来拒去留”。 3)使线圈面积有扩大或缩小趋势; 4)阻碍原电流的变化。 7、电磁感应中的图像问题 (1)图像问题 (3)解决这类问题的基本方法 1)明确图像的种类,是B-t图像还是Φ-t图像、或者E-t图像和I-t图像 2)分析电磁感应的具体过程 3)结合法拉第电磁感应定律、欧姆定律、牛顿定律等规律列出函数方程。 4)根据函数方程,进行数学分析,如斜率及其变化,两轴的截距等。 5)画图像或判断图像。 8、自感涡流 (1)通电自感和断电自感比较

(2) 自感电动势和自感系数 1) 自感电动势:t I L E ??=,式中t I ??为电流的变化率,L 为自感系数。 2) 自感系数:自感系数的大小由线圈本身的特性决定,线圈越长,单位长度的匝 数越多,横截面积越大,自感系数越大,若线圈中加有铁芯,自感系数会更大。 (3) 涡流 9、电磁感应中的“棒-----轨”模型

传感器基本知识重点

模块一传感器概述练习题 一、填空题: 1、依据传感器的工作原理,通常传感器由、和转换电路三部分组成,是能把外界转换成的器件和装置。 2、传感器的静态特性包含、、迟滞、、分辨力、精确度、稳定性和漂移。 3、传感器的输入输出特性指标可分为和动态指标两大类,线性度和灵敏度是传感器的指标,而频率响应特性是传感器的指标。 4、传感器可分为物性型和结构型传感器,热电阻是型传感器,电容式加速度传感器是型传感器。 5、已知某传感器的灵敏度为K0,且灵敏度变化量为△K0,则该传感器的灵敏度误差计算公式为。 6、测量过程中存在着测量误差,按性质可被分为、和三类。 7、相对误差是指测量的与被测量量真值的比值,通常用百分数表示。 8、噪声一般可分为和两大类。 9、任何测量都不可能,都存在。 10、常用的基本电量传感器包括、电感式和电容式传感器。 11、对传感器进行动态的主要目的是检测传感器的动态性能指标。 12、传感器的过载能力是指传感器在不致引起规定性能指标永久改变的条件下,允许超过的能力。 13、传感检测系统目前正迅速地由模拟式、数字式,向方向发展。 14、若测量系统无接地点时,屏蔽导体应连接到信号源的。 15、如果仅仅检测是否与对象物体接触,可使用作为传感器。 16、动态标定的目的,是检验测试传感器的指标。 17、确定静态标定系统的关键是选用被测非电量(或电量)的标准信号发生器和。 18、传感器的频率响应特性,必须在所测信号频率范围内,保持条件。 19、为了提高检测系统的分辨率,需要对磁栅、容栅等大位移测量传感器输出信号进行 _ 。

20、传感器的核心部分是。 21、在反射参数测量中,由耦合器的方向性欠佳以及阻抗失配引起的系统误差是。 22、传感器在输入按同一方向连续多次变动时所得特性曲线不一致的程度称为。 二、判断题: 1、灵敏度高、线性误差小的传感器,其动态特性就好。() 2、测量系统的灵敏度要综合考虑系统各环节的灵敏度。() 3、测量的输出值与理论输出值的差值即为测量误差。() 4、一台仪器的重复性很好但测得的结果不准确,是由于存在系统误差的缘故。() 5、线性度是传感器的静态特性之一。() 6、时间响应特性为传感器的静态特性之一。() 7、真值是指一定的时间及空间条件下,某物理量体现的真实数值。真值是客观存在的,而且是可以测量的。() 8、真值是指一定的时间及空间条件下,某物理量体现的真实数值。真值是客观存在的,而且是可以测量的。() 9、传感器的输出--输入校准曲线与理论拟合直线之间的最大偏差与传感器满量程输出之比,称为该传感器的“非线性误差”。() 10、选择传感器时,相对灵敏度必须大于零。() 11、弹性敏感元件的弹性储能高,具有较强的抗压强度,受温度影响大,具有良好的重复性和稳定性等。() 12、敏感元件,是指传感器中能直接感受或响应被测量的部分。() 13、传感器的阈值,实际上就是传感器在零点附近的分辨力。() 14、灵敏度是描述传感器的输出量(一般为非电学量)对输入量(一般为电学量)敏感程度的特性参数。() 15、传感器是与人感觉器官相对应的原件。() 三、选择题: 1、传感器在正(输入量增大)反(输入量减小)行程期间,其输出一输入特性曲线不重合的现象称为()

物联网技术应用复习知识点

第一章 1 物联网定义 物联网是指物体的信息通过智能感应装置,经过传输网络,到达指定的信息处理中心,最终 实现物与物、人与物之间的自动化的信息交互与处理的智能网络。 2 物联网三大特征 (1)全面感知;利用射频识别、二维码、传感器等感知、捕获、测量技术随时随地对物体进行信息采集和获取(2) 可靠传送: 通过将物体接入信息网络,依托各种通信网络,随时随地进行可靠的信息交互和共享(3) 智能处理: 利用各种智能计算技术,对海量的感知数据和信息进行分析并处理,实现智能化的决策和控制 4面向物联网的传感技术 (1 )低耗自组、异构互连、泛在协同的无线传感网络。( 2)智能化传感器网络节点研究。(3)传感器网络组织结构及底层协议研究。( 4)对传感器网络自身的检测与控制。 (5)传感器网络的安全问题。( 6)先进测试技术及网络化测控。 5物联网中的智能技术智能技术是为了有效地达到某种预期的目的,利用知识所采用的各种方法和手段。 (1)人工智能理论研究(2) 机器学习(3) 智能控制技术与系统(4) 智能信号处理 8 什么是IPv6 IPv6 是"Internet Protocol Version 6" 的缩写,也被称作下一代互联网协议,它是由 IETF 设计的用来替代现行的IPv4 协议的一种新的IP 协议。 9 IPv6 与物联网的关系 物联网的发展与IPv6 紧密联系, 因为每个物联网链接的对象都需要IP 地址作为识别码 , 而目前IPv4 的地址已经不够用.IPv6 拥有巨大的地址空间, 他的地址空间完全可以满足 结点标识的需要第二章 1 物联网层次结构模型 (1)信息感知层: 实现对物理世界的智能感知识别、信息采集处理和自动控制,并通过通信模 块将物理实体连接到网络层和应用层。 (2)物联接入层: 主要任务是将信息感知层采集到的信息,通过各种网络技术进行汇总,将大范围内的信息整合到一块,以供处理。 (3)网络传输层: 基本功能是利用互联网、移动通信网、传感器网络及其融合技术等,将感 知到的信息无障碍、高可靠性、高安全性地进行传输(远距离传输) 。 (4)技术支撑层: 主要任务是开展物联网基础信息运营与管理,是网络基础设施与架构的主 体。 (5)应用接口层:物联网和用户(包括人、组织和其他系统) 的接口,主要完成服务发现和服务呈现的工作。 5 物联网网关是什么是一种跨信息感知层和网络传输层的设备 6物联网的应用? 监控型(物流监控、污染监控)查询型(智能检索、远程抄表) 控制型(智能交通、智能家居、路灯 控制)扫描型(手机钱包、高速公路不停车收费) 8物联网体系的特点: 实时性, 大范围, 自动化, 全天候 9RFID的缺点(1) 、RFID读写器不能实时感应环境的变换;(2) 、覆盖范围受限。优点(1)扫描识别性能强(2) 数据的记忆体容量有不断扩大趋势(3)抗污染能力和耐久性比较好(4) 可重复使用(5) 体积小型化、形状多样化(6). 安全性

传感器与检测技术第二知识点总结

、电阻式传感器 1) 电阻式传感器的 原理:将被测量转化为传感器 电阻值的变化,并加上测量电路。 2) 主要的种类:电位器式、 应变式、热电阻、热敏电阻 应变电阻式传感器 1) 应变:在外部作用力下发生形变的现象。 2) 应变电阻式传感器:利用电阻应变片将应变转化为电阻值的变化 a. 组成:弹性元件+电阻应变片 b. 主要测量对象:力、力矩、压力、加速度、重量。 c. 原理:作用力使弹性元件形变发生应变或位移应变敏感元件电阻值变化通过测量电路变成电压等 点的输出。 PL 3) 电阻值:R (电阻率、长度、截面积)。 A 4) 应力与应变的关系: 打二E ;(被测试件的应力=被测试件的材料弹性模量 *轴向应变) 应注意的问题: a. R3=R4; b. R1与 R2应有相同的温度系数、线膨胀系数、应变灵敏度、初值; c. 补偿片的材料一样,个参数相同; d. 工作环境一样; 、电感式传感器 1) 电感式传感器的 原理:将输入物理量的变化转化为线圈 自感系数L 或互感系数 M 的变化 2) 种类:变磁阻式、变压器式、电涡流式。 3) 主要测量 物理量:位移、振动、压力、流量、比重。 变磁阻电感式传感器 1) 原理:衔铁移动导致气隙变化导致 电感量变化,从而得知位移量的大小方向。 点 八、、 5) 应力与力和受力面积的关系: 二(应力) F (力)

2)自感系数公式: 2 N 4 (( 磁导率)Ao (截面积) L 二2;(气隙厚度) 3) 种类:变气隙厚度、变气隙面积 4) 变磁阻电感式传感器的灵敏度取决于工作使得 当前厚度。 5) 测量电路:交流电桥、变压器式交变电桥、谐振式测量电桥。 P56 6) 应用:变气隙厚度电感式压力传感器(位移导致气隙变化导致自感系数变化导致电流变化) 差动变压器电感式传感器 1) 原理:把非电量的变化转化为互感量的变化。 2) 种类:变隙式、变面积式、螺线管式。 3) 测量电路:差动整流电路、相敏捡波电路。 电涡流电感式传感器 1) 电涡流效应:块状金属导体置于变化的磁场中或在磁场中做切割磁感线的运动,磁通变化,产生电动 势,电动势将在导体表面形成闭合的电流回路。 Z W 「,r ,f ,x ) 等效阻抗 (电阻率、磁导率、尺寸 、励磁电流的频率、距 离) 2) 趋肤效应:电涡流只集中在导体表面的现象。 3) 原理:产生的感应电流产生新的交变磁场来反抗原磁场,式传感器的等效阻抗变化 4) 测量电路:调频式测量电路、调幅式测量电路。 5) 测量对象:位移、厚度、表面温度、速度、应力、材料损伤、振幅、转速。 三、电容式传感器 1) 原理:将非电量的变化转化为电容量的变化。 2) 特点:结构简单、体积小、分辨率高、动态响应好、温度稳定性好、电容量小、负载能力差、易受外 界环境的影响。 3) 测量对象:位移、振动、角度、加速度、压力,差压,液面、成分含量。 结构分类:平板和圆筒电容式传感器 1) 公式: >0 zr A d 2) 平板式电容器可分为三类:变极板覆盖面积的 的变极距型。 变面积型,变介质介电常数的 变介质型、变极板间距离 3) 测量电路:调频电路、运算放大器、变压器是交流电桥、二极管双 T 型交流电路、脉冲宽度调制电路 4) 典型应用 四、压电式传感器(有源) 1) 正压电效应:对某些电介质沿一定方向加外力使之形变,其内部产生极化而在表面产生 电荷聚集的现

相关文档
最新文档