航天炉煤气化技术运行情况

合集下载

航天炉的介绍

航天炉的介绍

航天炉的介绍!HT-L粉煤气化装置的技术特性干煤粉进料:20 ~90微米煤粉颗粒惰性气体输送:氮气或二氧化碳高压气化炉:2.0~4.0MPaA优点:⒈干煤粉进料气化效率高严格控制进料煤粉的水含量。

与湿法比较,1Kg水煤浆可以减少蒸发0.35Kg水,节约~2600KJ的能量,折算标煤0.113Kg(5500Kcal/Kg),占进煤量的17 %。

粉煤气化比水煤浆气化:冷煤气效率提高10%,氧耗量降低15 ~25 %。

有效气产量提高6%。

⒉先进成熟的干煤粉密相输送技术悬浮速度7 ~10m/s,固气比480Kg/m3,载气量少。

⒊强化燃烧,提高了单位体积的产气率,气化强度高在同样生产能力下,与常压炉相比,设备尺寸最小,结构紧凑,占地面积小,燃烧效率提高。

气化炉膛允许操作温度:1400 ~1900℃优点:⒈煤种适应性范围广煤的灰熔点可选范围宽(1250 ~1650℃),气化原料可选范围广;⒉碳转化率高、粗合成气品质好,CH4含量低碳转化率设计值≥99.5%,出口合成气有效气体(CO+H2)体积≥90%,CH4体积≤130PPm。

⒊提高反应速率,可缩短反应停留时间高温、高压提高反应速率。

与水煤浆气化工艺比,更容易达到平衡状态。

平均炉内停留时间10S。

⒋干煤粉纯氧燃烧,提高火焰中心温度,火焰短燃烧器火焰的中心温度:1800~2150℃。

单烧嘴顶烧组合燃烧器优点:⒈燃烧火焰、炉内物料流场与炉膛结构有较好的符合炉内煤粉热解区、火焰燃烧区、烟气射流区、烟气回流区以及二次反应区分布合理。

反应停留时间满足气化要求⒉燃烧负荷调节范围大负荷调节范围:60%~120 %⒊燃烧器结构设计合理、具有良好的燃烧性能中心氧与旋流煤粉混合充分,煤粉反应完全;火焰形状、稳定性好;⒋安装、调试、维护方便集高能电点火装置、液化气(柴油)点火烧嘴、火检为一体,独立冷却水外盘管,拆装维护方便。

⒌精良的加工制造工艺关键材料采用进口材料或同类特制国产材料,焊接和组装工艺严格按规范执行,整体热处理消除热应力。

煤气化技术的现状及发展趋势概览

煤气化技术的现状及发展趋势概览

煤气化技术是现代煤化工的基础,是通过煤直接液化制取油品或者在高温下气化制得合成气,再以合成气为原料制取甲醇、合成油、天然气等一级产品及以甲醇为原料制得乙烯、丙烯等二级化工产品的核心技术。

作为煤化工产业链中的“龙头”装置,煤气化装置具有投入大、可靠性要求高、对整个产业链经济效益影响大等特点。

目前国内外气化技术众多,各种技术都有其特点和特定的合用场合,它们的工业化应用程度及可靠性不同,选择与煤种及下游产品相适宜的煤气化工艺技术是煤化工产业发展中的重要决策。

工业上以煤为原料生产合成气的历史已有百余年。

根据发展进程分析,煤气化技术可分为三代。

第一代气化技术为固定床、挪移床气化技术,多以块煤和小颗粒煤为原料制取合成气,装置规模、原料、能耗及环保的局限性较大;第二代气化技术是现阶段最具有代表性的改进型流化床温和流床技术,其特征是连续进料及高温液态排渣;第三代气化技术尚处于小试或者中试阶段,如煤的催化气化、煤的加氢气化、煤的地下气化、煤的等离子体气化、煤的太阳能气化和煤的核能余热气化等。

本文综述了近年来国内外煤气化技术开辟及应用的发展情况,论述了固定床、流化床、气流床及煤催化气化等煤气化技术的现状及发展趋势。

1 .国内外煤气化技术的发展现状在世界能源储量中,煤炭约占79% ,石油与天然气约占12%。

煤炭利用技术的研究和开辟是能源战略的重要内容之一。

世界煤化工的发展经历了起步阶段、发展阶段、停滞阶段和复兴阶段。

20 世纪初,煤炭炼焦工业的兴起标志着世界煤化工发展的起步。

此后世界煤化工迅速发展,直到20 世纪中叶,煤向来是世界有机化学工业的主要原料。

随着石油化学工业的兴起与发展,煤在化工原料中所占的比例不断下降并逐渐被石油和天然气替代,世界煤化工技术及产业的发展一度停滞。

直到20 世纪70 年代末,由于石油价格大幅攀升,影响了世界石油化学工业的发展,同时煤化工在煤气化、煤液化等方面取得了显著的发展。

特殊是20 世纪90 年代后,世界石油价格长期在高位运行,且呈现不断上升趋势,这就更加促进了煤化工技术的发展,煤化工重新受到了人们的重视。

煤气化技术及各种气化炉实际应用现状综述_赵麦玲

煤气化技术及各种气化炉实际应用现状综述_赵麦玲
表2
操作 温度 / 操作 压力 / M Pa
各种流化床气化炉的技术参数
碳 转化率 / % 有效气 冷煤气 ( C O+ H 2 ) 效率 / % 比氧耗 / m 3 / km 3 76 190~ 210 有效气 ( CO + H 2 ) 比煤耗 / kg/ km 3 580 单台炉 加煤量/ t/ d
0


污染严重。以常压 2 650 mm 的气化炉为例 , 单 台炉 投 煤 量仅 为 60 t/ d, 且 要 求 原料 为 25 ~ 80 mm 的无烟块煤或焦炭。 ( 2) 鲁奇 ( L urg i) 固定床气化工艺成熟可靠, 气化温度 900~ 1 050 , 包括焦油在内的气化效 率、碳转化率、气化热效率都较高 , 氧耗是各类 气化工艺中最低的 , 原料制备、 排渣处理 成熟。 煤气热值是各类气化工艺中最高的 , 它最适合生产 城市煤气。若采用此技术制合成气存在以下问题。 煤气成分复杂, 合成气中含有不需要的 甲烷, 约 7% ~ 10% , 如果 将这些 甲烷 转化为 H 2 和 CO, 势必投资大 , 成本高。 有大量污 水需要处理。污水中含大量焦油、酚、氨、脂肪 酸、氰化物等 , 因此要建焦油回收装置 , 酚、氨 回收和生化处理装置 , 增加了投资 和原材料消 耗。 该气化技术原料为 15~ 50 mm 的块煤。 块煤价格高, 增加了成本。 ( 3) BGL 炉是在鲁奇 ( L urgi) 炉基础上的改 进, 由固态排渣改为液态排渣 , 该气化炉可直接气 化含水量大于 20% 的各种煤, 在 1 400~ 1 600 高温条件下气化, 蒸汽用量可大幅下降 , 90% ~
2
反应区, 用于输入煤粉、水蒸气和氧气的喷嘴设 在下炉膛的两侧壁上 , 渣口位于下炉膛底部 , 采 用液态排渣。上炉膛为第二反应区, 区段较长, 在上炉膛的侧壁上设有二次煤粉和水蒸气喷嘴。 运行时, 由气化炉下段喷入干煤粉、氧气以及蒸 汽, 所喷入 的煤粉 量占总 煤量的 80% ~ 85% , 在上炉膛喷入水蒸气和煤粉, 所喷入煤粉占总量 的 15% ~ 20% 。上炉膛的作用有二 : 其一是代 替循环合成气 , 使温度达到 1 400 的煤气降温 至约 900 ; 其二是利用下炉膛的煤气显热进行 煤的热裂解和部分气化, 以提高总的冷煤气效率 和热效率。 ( 6) 国产新型四喷嘴干煤粉加压气化炉是华 东理工大学开发的煤气化技术 , 与水煤浆气化相 比, 粉煤加压气化系统对仪表有更特殊的要求, 其安 全 联 锁 控制 指 标 更 高。气 化 温 度 1 300~ 1 600 , 压力 3 0 M Pa 、4 0 M Pa, 有效气成分 为 89% ~ 93% 。 ( 7) 多元料浆气化技术( M CSG) 是由西北化 工研究院开发的大型煤气化技术, 在完成中间试 验和工业化示范试验基础上, 于 2001 年实现工 业应用。该技术采用湿法气流床气化, 以煤、石 油焦、石油沥青等 含碳物质和 油 ( 原油、重油、 渣油等) 、水等经优化混配形成多元料浆 , 料浆 与氧通过喷嘴混合后瞬间气化 , 具有原料适应性 广、气化指标先进、技术成熟可靠、投资费用低 等特点, 整套工艺以及料浆制备、添加剂技术、 喷嘴、气化炉、煤气后续处理系统等已获得 8 项 国家专利。目前, 多元料浆气化技术已在二十多 套工 业 装 置 上 应 用 , 包 括 300 kt/ a 合 成 氨、 200~ 600 kt / a 甲醇和 500 kt / a 煤制油 装置, 已 有三套工业装置平稳运行。 ( 8) H T L 航天炉是原航天十一所借鉴荷兰 Shell、德国 GSP、美国 T ex aco 煤气化工艺的先 进经验, 配置自己研发的盘管式水冷壁气化炉而 形成的一套结构简单、有效实用的煤气化工艺。 该工艺煤种适应性广 , 从褐煤、烟煤到无烟煤均 可气化, 对于高灰分、高水分、高硫的煤种同样 适用。烧嘴设计同 GSP, 采用单烧 嘴顶烧式气 化, 气化采用 T ex aco 激冷工艺, 设计气化温度 1 400~ 1 600 , 气化压力 2 0~ 4 0 M Pa 。 H T L 气化炉的烧嘴由原航天十一所自己制造 , 与德 国 GSP 气化烧嘴相似 , 只是煤粉喷入的方向有

航天炉粉煤加压气化技术分析

航天炉粉煤加压气化技术分析

航天炉粉煤加压气化技术分析摘要:本文主要介绍了航天炉粉煤加压气化技术的工艺原理、技术特点及控制技术,以供参考。

关键词:航天炉;技术特点;结构一、航天炉煤气化的工艺原理原料煤经过磨煤、干燥后储存在低压粉煤储罐,然后用N2(正常生产后用CO2输送)通过粉煤锁斗加压、粉煤给料罐加压输送,将粉煤输送到气化炉烧嘴。

干煤粉(80℃)、纯氧气(200℃)、过热蒸汽(420℃)一同通过烧嘴进入气化炉气化室,瞬间发生升温、挥发分裂解、燃烧及氧化还原等物理和化学过程(1—10 s)。

该反应系统中的放热和吸热的平衡是自动调节的,既有气相间反应,又有气固相间的反应。

1400—1600℃的合成气出气化室通过激冷环、下降管被激冷水激冷冷却后,进入激冷室水浴洗涤、冷却,出气化炉的温度为210~220℃,然后经过文丘里洗涤器增湿、洗涤,进入洗涤塔进一步降温、洗涤,温度约为204℃、粉尘含量小于10×10-6的粗合成气送到变换、净化工段。

[1]二、航天炉的主要设备1、气化炉HT—L炉的核心设备是气化炉。

HT—L炉分上下两个部分:上部是气化室,由内筒和外筒组成,包括盘管式水冷壁、环行空间和承压外壳。

盘管式水冷壁的内侧向火面焊有许多抓钉,抓钉上涂抹一层耐火涂层,其作用是保护水冷壁盘管、减少气化炉热鼍损失。

盘管式水冷壁的结构简单,材质为碳钢,易制作且造价较低。

水冷壁盘管内的水采用强制密闭循环,在这循环系统内,有一个废热锅炉生产5.4MPa(G)的中压蒸汽,将热量迅速移走,使水冷壁盘管内水温始终保持一恒定的范围。

下部为激冷室,包括激冷环、下降管、破泡条和承压外壳。

激冷室为一承压空壳,外径和气化室一样,上部和水冷壁相连的为激冷环,高温合成气经过激冷环和下降管煤气温度骤降。

向下进入激冷室,激冷室下部为一锥形,内充满水,熔渣遇冷固化成颗粒落入水中,顺锁斗循环水排入灰锁斗。

粗合成气从激冷室上部引出。

2、烧嘴HT—L炉烧嘴是一个组合烧嘴,由一个主烧嘴、一个点火烧嘴和一个开工烧嘴组成。

航天炉煤气化技巧运转情况[精彩]

航天炉煤气化技巧运转情况[精彩]

航天炉煤气化技术运行情况航天, 煤气化, 技术, 运行HT-L煤气化技术的生产应用HT-L煤气化工艺是航天十一所借鉴荷兰SHELL、德国GSP、美国TEXACO煤气化工艺中先进技术,配置自己研发的盘管式水冷壁气化炉而形成的一套结构简单、有效实用的煤气化工艺。

现将该工艺在煤化工项目中的应用介绍如下:一、工艺介绍1、磨煤与干燥系统磨煤与干燥系统的工艺流程、运行原理、控制参数都与SHELL工艺相同,两套系统一开一备,单套能力35吨/小时,目的是制造出粒度小于90微米的大于80%、水含量小于2%的煤粉。

没有单独的石灰石加入系统,只是利用皮带秤通过比值调节将粒状石灰石加到输煤皮带上,一块进入磨煤机研磨。

2、加压输送系统加压输送系统的工艺流程、运行原理、控制参数都与SHELL工艺相同,目的是将制出的合格煤粉利用压差输送至气化炉进行燃烧气化。

不同是V1205下面是三条腿,三条线输送,到烧嘴处汇合从烧嘴环隙呈螺旋状喷入炉膛。

3、气化及净化烧嘴设计同GSP,采用单烧嘴顶烧式气化,气化炉采用TEXACO激冷工艺,气化炉升压到1MPa时,煤粉及氧、蒸汽混合以一定的氧煤比进入气化炉,稳压1小时挂渣,炉膛内设置有8个温度检测点,可以作为气化温度的参考点,也可以判断挂渣的状态。

设计气化温度1400-1600℃,气化压力4.0MPa。

热的粗煤气和熔渣一起在气化炉下部被激冷,也由此分离,激冷过程中,激冷水蒸发,煤气被水蒸汽饱和,出气化炉为199℃ ,经文丘里洗涤器、洗涤塔洗涤后,194℃、固体含量小于0.2mg/m3的合成气送去变换。

4、渣及灰水处理系统渣及灰水处理系统的工艺流程、运行原理、控制参数都与TEXACO工艺相同。

渣经破渣机,高压变低压锁斗,排到捞渣机,进行渣水分离,水回收处理利用;灰水经高压闪蒸、真空闪蒸后到沉降池,清水作为激冷水回收利用,浆水经真空抽滤后制成滤饼。

二、技术特点1、原料的适应性据设计方介绍,该工艺煤种适应性广,从烟煤、无烟煤到褐煤均可气化,对于高灰份、高水分、高硫的煤种同样适用。

煤气化技术的现状及发展趋势

煤气化技术的现状及发展趋势

煤气化技术的现状及发展趋势摘要:中国是一个资源丰富、幅员辽阔、矿产资源丰富的国家,煤炭作为中国资源结构的一个特别重要的组成部分,具有绝对的数量优势。

随着科技的发展,煤炭的使用逐渐增多,为了改善煤炭资源直接燃烧造成的污染程度,能源公司正在将煤炭转化为更加环保的二次能源,这大大促进了国家的可持续发展。

本文将分析我国煤气化技术的现状和发展过程,探索更科学、更环保的发展方向。

关键词:煤气化;利用方式;发展工艺;二次能源前言中国是一个幅员辽阔资源丰富的国家煤炭相对丰富。

此外,近年来中国社会经济和科技的迅猛发展在一定程度上促进了中国石油化工的进步。

最重要的联系是将煤转化为清洁和有效的合成气体,即CO+H2,通常称为煤气化技术。

先进的煤气化技术不仅可以大大减少燃烧过程中对大气环境的污染和排放,而且还可以在一定程度上提高煤炭使用的效率。

它在煤的直接液化、煤的间接液化、石油化学、燃料电池等方面发挥着至关重要的作用,并具有一定的显示意义。

一、煤气化技术的发展现状1.固定床气化技术固定床气化技术,又称移动床气化技术,是世界上第一个开发和应用的气化技术。

固定床通常使用煤或焦炭作为原料。

煤(焦炭)是从煤气炉顶部加入的,从上到下经过干燥层、炭化层、还原层和氧化层。

最后,将灰排放出炉外,气化剂由下而上预热到氧化层和还原层。

固定床气化极限是床层均匀性和密封性的高要求,炉内使用的煤必须具有一定的粒度(6-50 mm)和均匀性。

机械强度、热稳定性、粘度和煤渣都与渗透性有关。

因此,固定式燃气炉对人炉原料有许多限制。

2.流化床气化技术煤气炉从锅底吹出来,使煤粉(粒径小于6毫米)与锅炉房的反向流动平行反应,通常称为流化床气化技术。

煤颗粒(煤粉)和气化剂平行移动在炉底锥部分和炉柱部分,固体废物被排出。

逆流气化对人炉煤的活性要求很高。

与此同时,炉内温度低、停留时间短,可能导致碳转化率低、粉煤灰含量高、残馀碳含量高、灰分分离困难和操作弹性低。

航天炉粉煤气化装置试车总结

航天炉粉煤气化装置试车总结

有效气 ( CO + H 2 ) 含量
吨甲醇耗有效气
表 2 航天炉气化装置试运期开停车时间及停车原因
投料时间 2008 10 31T09 : 18 2008 10 31T18 : 55 2008 11 1T14 : 55 2009 01 18T01 : 39 2009 03 08T10 : 30 2009 04 07T18 : 36 2009 04 29T00 : 37 2009 05 29T04 : 45 2009 07 03T15 : 02 2009 10 27T12 : 20 运行时间 / h 7 15 47 351 658 482 684 805 2 763 1 485 停车原因 氧气流量大 , 气化炉联锁停车 氮气压力超标 , 气化炉联锁停车 汽包液位下降 , 气化炉紧急停车检修 沉降槽扒料机故障 , 计划停车系统整改 除氧器分布器堵 , 气化炉紧急停车 粉煤系统阀门故障 , 气化炉紧急停车 破渣机密封水外漏严重 , 计划停车处理 空压机故障停车 , 气化炉停车处理 全厂停电 , 气化炉停车 仪表故障 , 氧煤比高跳车
C 69 55 H 4 14 O 3 25
4 % ~ 5 %; 90 %; 2 %。
表 1 煤的化学成分
N 1 63 S 0 43%Fra bibliotek灰分 21
2 2 工艺参数 气化炉操作压力 气化炉操作温度 气化炉烧嘴流量 3 7~ 4 0 M Pa 1 400~ 1 700 ! 28 810 / 22 515 /1 204 ( 粉
( 3) 系 统 水质 不稳 定, 并 且 波动 比较 大, 灰水系统结垢比较快。原因是航天炉粉煤气化项 目在我公司初次运行 , 灰水系统的水质没有引起 足够的重视 , 对其重要程度认识不够。指定专人 负责灰水系统的水质管理后, 水质不稳问题基本 解决。具体措施如下 : ∃ 针对煤气化系统渣水的高温、高压、高 硬度、高碱度、高悬浮物的特点及其对灰水阻垢 分散性能的要求 , 对加药量及加药点进行了优化 调整; % 不同煤种选择不同的絮凝剂; & 控制灰水系统的 p H 在 8~ 9 , 给黑水系 统创造最佳的絮凝条件。 5 结束语 航天炉粉煤加压气化技术生产的粗合成气的 有效成分含量高、 CO2 含量低 , 具有碳转化率和 冷煤气效率高、比氧耗和比煤耗低等优势。但也 存在一些问题: ( 1) 气化炉连续运行时间不长; ( 2) 气化炉上锥段易超温, 挂渣较困难; ( 3) 粉煤烧嘴燃烧效果不佳 , 运行时间短 ; ( 4) 工人的操作技能和水平有待提高。

航天炉粉煤气化装置长周期稳定运行总结_黄保才

航天炉粉煤气化装置长周期稳定运行总结_黄保才

航天炉粉煤气化装置长周期稳定运行总结黄保才,童维风,任山,郭兴建(安徽晋煤中能化工股份有限公司,安徽临泉236400)[摘要]通过对工艺的不断优化和对设备的改进,安徽晋煤中能化工股份有限公司航天炉粉煤气化装置的运行周期和稳定性不断提高。

从工艺控制和设备管理两方面对航天炉粉煤气化装置稳定运行的控制思路和方法进行了论述。

[关键词]航天炉;长周期稳定运行;工艺控制;设备管理[中图分类号]TQ 546[文献标识码]B[文章编号]1004-9932(2013)05-0004-03[收稿日期]2013-01-21[作者简介]黄保才(1983—),男,安徽固镇人,助理工程师。

Summary on Hangtian Pulverized Coal Gasifier's Long Steady OperationHUANG Baocai ,TONG Weifeng ,REN Shan ,GUO Xingjian(Anhui Jinmei Zhongneng Chemical Co.,Ltd ,Linquan 236400,China )Abstract :Through process optimization and equipment modification ,the running span and steadibility of Hang-tian pulverized coal gasifier in Anhui Jinmei Zhongneng Chemical Co.,JP 〗Ltd were greatly risen.This paper mainly introduces the control approach and method for keeping the gasifier steady operating from two aspects ,process control and facility management.Key Words :Hangtian gasifier ;long steady operating ;process control ;facility management0引言具有中国自主产权的粉煤气化技术———航天炉(HT-L )粉煤气化技术的研发和成功应用,表明中国已进入煤气化时代,为中国广大煤资源合理利用提供了设备基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

航天炉煤气化技术运行情况
航天, 煤气化, 技术, 运行
HT-L煤气化技术的生产应用
HT-L煤气化工艺是航天十一所借鉴荷兰SHELL、德国GSP、美国TEXACO煤气化工艺中先进技术,配置自己研发的盘管式水冷壁气化炉而形成的一套结构简单、有效实用的煤气化工艺。

现将该工艺在煤化工项目中的应用介绍如下:
一、工艺介绍
1、磨煤与干燥系统
磨煤与干燥系统的工艺流程、运行原理、控制参数都与SHELL工艺相同,两套系统一开一备,单套能力35吨/小时,目的是制造出粒度小于90微米的大于80%、水含量小于2%的煤粉。

没有单独的石灰石加入系统,只是利用皮带秤通过比值调节将粒状石灰石加到输煤皮带上,一块进入磨煤机研磨。

2、加压输送系统
加压输送系统的工艺流程、运行原理、控制参数都与SHELL工艺相同,目的是将制出的合格煤粉利用压差输送至气化炉进行燃烧气化。

不同是V1205下面是三条腿,三条线输送,到烧嘴处汇合从烧嘴环隙呈螺旋状喷入炉膛。

3、气化及净化
烧嘴设计同GSP,采用单烧嘴顶烧式气化,气化炉采用TEXACO激冷工艺,气化炉升压到1MPa时,煤粉及氧、蒸汽混合以一定的氧煤比进入气化炉,稳压1小时挂渣,炉膛内设置有8个温度检测点,可以作为气化温度的参考点,也可以判断挂渣的状态。

设计气化温度1400-1600℃,气化压力4.0MPa。

热的粗煤气和熔渣一起在气化炉下部被激冷,也由此分离,激冷过程中,激冷水蒸发,煤气被水蒸汽饱和,出气化炉为199℃ ,经文丘里洗涤器、洗涤塔洗涤后,194℃、固体含量小于0.2mg/m3的合成气送去变换。

4、渣及灰水处理系统
渣及灰水处理系统的工艺流程、运行原理、控制参数都与TEXACO工艺相同。

渣经破渣机,高压变低压锁斗,排到捞渣机,进行渣水分离,水回收处理利用;灰水经高压闪蒸、真空闪蒸后到沉降池,清水作为激冷水回收利用,浆水经真空抽滤后制成滤饼。

二、技术特点
1、原料的适应性
据设计方介绍,该工艺煤种适应性广,从烟煤、无烟煤到褐煤均可气化,对于高灰份、高水分、高硫的煤种同样适用。

龙宇生产用过两种煤,神木炭厂和永煤新桥,工况稳定,有效气含量基本能够达到设计要求,但由于神木炭厂的煤灰分含量低(<10%),挂渣情况不是太好,炉膛上部还可以,下部基本挂不上渣。

永煤新桥煤运行时间较短,还不能完全反应其结渣性。

附神木炭厂和永煤新桥的煤质分析:
2、单系列能力
现设计单台气化炉生产能力为有效气体(CO+H2)4.2万NM3/H,可生产甲醇15-20万吨/年,正在研发年产甲醇35万吨的配套气化技术和设备。

3、设计碳转化率高,达到98%,渣中残碳控制在1-2%,实际残碳含量:2.74%,3.98%,1.59%;设计有效气含量90%,其中CO70%,H220%,实际见下面合成气分析:
注:煤粉输送介质为二氧化碳,负荷为60%
4、热效率
总的热效率为95-96%,实际冷煤气效率为80-83%,蒸汽产量只有3T/H,大部分的热量都由粗煤气及熔渣带入激冷水中,造成热量损失。

5、氧耗
设计生产每千方有效气耗氧330-360Nm3,实际生产中用新桥矿煤,60%的负荷时产的有效气及耗氧数据进行计算,每千方有效气耗氧为382.45 Nm3。

6、煤耗
原设计用固定碳为74%的鹤壁煤作为原料煤,煤耗为600Kg/KNm3有效气,实际生产中用新桥矿煤,60%的负荷时产的有效气及煤、氧数据进行计算,每千方有效气耗煤为693 Kg。

7、污水排放
设计每小时有9.76吨污水排放到水处理装置,实际运行中最高排放量达到20吨/小时,但平均排放量小于10吨每小时,基本达到了设计要求。

8、气化炉水冷壁
气化炉水冷壁采用盘管式,水管内径为DN40,保证水流量分配均匀,不会堵管使水流量过低造成爆管。

但阻力较大,换热效果差。

三、关键设备及仪表
1、磨煤机
磨煤机采用沈重的G168型,运行效果较好,70%以下负荷磨辊加压到6.5MPa,70%以上负荷加压到7.5 MPa;磨出的煤粉80%以上小于90um,其中≤40um的占3-27%,一般在10%左右。

售后服务较差。

2、烧嘴
HT-L气化炉的烧嘴是航天十一所自己制造,与德国GSP气化烧嘴相似,只是煤粉喷入的方向有一些改变。

采用点火烧嘴、开工烧嘴、煤烧嘴一体,点火烧嘴在中心,使用0.2 MPa的天然气,开工烧嘴采用天然气压缩机出口的1.7 MPa的天然气,炉膛升压到1.0 MPa后,三条煤粉管线同时投煤(由于氧管线只有一条,氧煤比按总量控制),投煤后,开工点火烧嘴退出。

设计方说,烧嘴一般损坏的都是烧嘴头,烧嘴头需半年到一年更换一次(价格说不清)。

试车三个月来,已更换三个烧嘴,说是烧嘴本身没有问题,只是为了试验减少烧嘴阻力。

3、HT-L气化炉
气化炉采用顶烧式,只要保证烧嘴压差,一般不会烧坏烧嘴。

水冷壁采用盘管式,循环水分配环管相对均匀引出DN40的四根水管,四根水管平行环绕而成水冷壁,管与管之间有挂钉和翅片,挂砌耐火材料,炉膛共有八组测温点,测温元件镶嵌在耐火材料表面,测温数据显示可达1200℃,但设计方要求不要超过1000度,如超过1000度表明挂渣不好或炉膛超温。

介绍说,安徽临泉航天炉测温点显示1800℃,水冷壁很快烧坏了。

炉体下部采用TEXACO的激冷工艺,起到洗涤和冷却作用。

4、捞渣机
捞渣机采用青岛四洲的,由于运行时间短,负荷低,而且原料煤中灰分低,本体没有出现什么问题,但渣水泵打量不够,造成渣水溢流,准备更换为石家庄某厂的渣水泵(原为上海凯泉泵)。

5、煤粉质量流量计
煤粉质量流量计采用德国的SWR型,微波测量,不是速度计、密度计分开检测再在PLC中计算,而是速度计及密度计一体,直接输出数据,数据采集稳定,但较实际偏低。

原订的美国热电产品未使用。

6、煤粉调节阀
煤粉调节阀用的是德国的SUFU,跟我厂一样,但已出现一次由于堵杂物损坏阀杆的事情。

7、煤粉三通阀
煤粉三通阀是北京航天十一所的产品,动作较慢,一般大于15秒,我厂采用丹麦的,动作时间在10秒左右。

8、气化炉产蒸汽流量表指示不准,龙宇操作工无蒸汽产量控制氧煤比操作经验,参考炉膛温度变化趋势及合成气组分。

四、问题
1、螺旋输送机运行不稳定,经常出现堵料、螺杆断等问题,准备更换为南京的。

2、三条煤粉循环管线跳一条,就要停炉,以免造成偏烧损坏水冷壁、烧嘴,这对长周期运行造成很大困难,必须保证煤粉的清洁,不造成煤粉阀的堵塞。

曾出现过V1204的电容式料位计断,堵塞煤粉阀,造成停车。

3、由于蒸汽产量较少,流量测量不准,使用二氧化碳输送煤粉时,没有可以参考的参数调节氧煤比,操作盲目。

4、灰水经过两次闪蒸后温度降至70-80℃,经沉降后打到真空抽滤机,水温较高,容易造成滤布变形跑偏或打折损坏滤布。

5、由于蒸汽产量较少,外蒸汽管网压力低,造成气化负荷目前没有作更高的尝试。

6、煤粉质量流量表单位为吨/小时,造成氧煤比串级控制时波动太大,现氧煤比控制为手动。

五、推广与应用分析
1、HT-L煤气化工艺是适合我国国情的由航天十一所自主研发的一种煤粉加压气化技术,虽然没有中试装置,但各个单元的技术都有成熟的设计基础和丰富的运行经验,直接实现了工业化生产,没有设计缺陷和运行瓶颈。

2、投资少。

河南龙宇15万吨甲醇项目总投资6.4亿元,其中气化装置投资3.1亿元,比同规模SHELL工艺投资要少三分之一。

结构简单,操作方便。

3、国产化率高。

HT-L煤气化装置许多设备如:粉煤锁斗阀、破渣机、烧嘴、气化炉、煤粉循环三通阀、渣水循环泵、激冷水泵、锅炉水循环泵、热风炉等都是由北京航天十一所设计、制造或委托制造的,设备运行平稳、操作维护方便,也带动了相关产业的发展,对于促进我国经济技术的发展有重大意义。

4、HT-L煤气化工艺虽然热效率低,热量损失大,但在以后的运行和设计中可以进行技改,增加废热利用装置,降低能耗。

综上所述,HT-L煤气化工艺经济可靠,值得推广和应用
濮阳HT-L炉已经运行2年多了,听说烧嘴连续运行146天,装置运行周期达100天,08、09年运行不好,10年运行得很好。

这篇文章放在两年前看,比较符合实际情况。

一看作者就是知情人、懂行人。

但文中有个小问题,实际情况是:航天炉没有备炉,而且现在实现了长周期稳定运行,2010年,全年实现了近340天的长周期运行,就是按365天算,开工率达到了93%左右。

航天炉(HT2L)粉煤加压气化技术(以下简称航天炉技术)属于加压气流床工艺,是在借鉴壳牌、德士古及GSP加压气化工艺设计理念的基础上,由北京航天万源煤化工工程技术有限公司自主开发、具有独特创新的新型粉煤加压气化技术。

此项技术未经小试和中试,直接按照工艺设计建设工业化示范项目, 2008年先后在安徽临泉、河南龙宇建成2套单炉日投煤量720 t的示范装置。

从目前运行情况看,基本达到设计要求,最长连续运行时间已达到128 d。

目前已经建成和在建的航天炉项目主要有两种炉型:直径2800炉型,日投煤750吨;直径3200炉型,日投煤1500吨。

去年11月下旬神华宁煤GSP炉开车不久遇到些问题停车检查,去现场了解初步看下来个人观点是:1 煤粉的控制方法不妥,2 烧嘴中氧和煤粉的混合不均。

这方面正在修改,节后准备再去看下。

截止5月7日宁煤1#、2#气化炉连续运行通过72小时长周期考核,气化负荷103%,合成气成分、煤耗、氧耗优于设计值。

相关文档
最新文档