煤气化工艺的选择和对航天炉的看法

合集下载

航天炉的介绍

航天炉的介绍

航天炉的介绍!HT-L粉煤气化装置的技术特性干煤粉进料:20 ~90微米煤粉颗粒惰性气体输送:氮气或二氧化碳高压气化炉:2.0~4.0MPaA优点:⒈干煤粉进料气化效率高严格控制进料煤粉的水含量。

与湿法比较,1Kg水煤浆可以减少蒸发0.35Kg水,节约~2600KJ的能量,折算标煤0.113Kg(5500Kcal/Kg),占进煤量的17 %。

粉煤气化比水煤浆气化:冷煤气效率提高10%,氧耗量降低15 ~25 %。

有效气产量提高6%。

⒉先进成熟的干煤粉密相输送技术悬浮速度7 ~10m/s,固气比480Kg/m3,载气量少。

⒊强化燃烧,提高了单位体积的产气率,气化强度高在同样生产能力下,与常压炉相比,设备尺寸最小,结构紧凑,占地面积小,燃烧效率提高。

气化炉膛允许操作温度:1400 ~1900℃优点:⒈煤种适应性范围广煤的灰熔点可选范围宽(1250 ~1650℃),气化原料可选范围广;⒉碳转化率高、粗合成气品质好,CH4含量低碳转化率设计值≥99.5%,出口合成气有效气体(CO+H2)体积≥90%,CH4体积≤130PPm。

⒊提高反应速率,可缩短反应停留时间高温、高压提高反应速率。

与水煤浆气化工艺比,更容易达到平衡状态。

平均炉内停留时间10S。

⒋干煤粉纯氧燃烧,提高火焰中心温度,火焰短燃烧器火焰的中心温度:1800~2150℃。

单烧嘴顶烧组合燃烧器优点:⒈燃烧火焰、炉内物料流场与炉膛结构有较好的符合炉内煤粉热解区、火焰燃烧区、烟气射流区、烟气回流区以及二次反应区分布合理。

反应停留时间满足气化要求⒉燃烧负荷调节范围大负荷调节范围:60%~120 %⒊燃烧器结构设计合理、具有良好的燃烧性能中心氧与旋流煤粉混合充分,煤粉反应完全;火焰形状、稳定性好;⒋安装、调试、维护方便集高能电点火装置、液化气(柴油)点火烧嘴、火检为一体,独立冷却水外盘管,拆装维护方便。

⒌精良的加工制造工艺关键材料采用进口材料或同类特制国产材料,焊接和组装工艺严格按规范执行,整体热处理消除热应力。

清华炉煤气化技术研究和应用及煤气化技术选择思考

清华炉煤气化技术研究和应用及煤气化技术选择思考

清华炉煤气化技术研究和应用及煤气化技术选择思考煤是我国主要的化石能源,煤气化技术是目前国内外煤改气的重要手段之一,也是实现煤资源转化和综合利用的有效途径。

清华炉煤气化技术是当前国内外煤气化技术的前沿和研究热点,本文就清华炉煤气化技术的研究和应用情况及煤气化技术选择思考进行分析。

一、清华炉煤气化技术概述清华大学能源与动力工程系在煤气化技术领域研究了数十年,开发出了便于规模化应用、节能环保的清华炉煤气化技术,该技术主要是采用氢气或四氢呋喃(THF)作为溶剂,对煤进行氢依赖性热分解反应,生成煤气。

与传统的氧气煤气化过程不同,清华炉煤气化技术既没有二氧化碳排放,也没有废渣,这样既可以降低环境污染,又可以降低能耗,符合现代清洁化、低碳化的能源转型趋势。

二、清华炉煤气化技术的研究和应用情况1.研究成果清华炉煤气化技术在氢气和THF两种溶剂下的煤气化反应机理、温度、压力等方面进行了深入研究,并形成了三种不同的煤气化反应机理模型。

其中,以THF为溶剂的反应模型,能有效解决煤气化过程中的困难问题,提高了煤气化的效率。

同时,清华大学与中国石化、太钢、武钢等企业进行合作,开发了规模化的清华炉煤气化试验装置和工业化应用,运行效果良好,未发现安全问题。

此外,清华大学还建立了气化反应器标准实验装置和研究平台,为今后的研究提供了可靠的基础。

2.应用前景清华炉煤气化技术能够充分利用我国的大量煤炭资源,实现了煤的清洁高效转化,具有广阔的应用前景。

该技术可以制备合成天然气、合成液体燃料和合成化学品等高附加值产品,同时还能提高煤利用率,实现能源和环境的双赢。

目前,清华大学已与多家企业展开合作,在重大资产项目、新型化工原料研发、煤气化产业化建设等领域开展合作研究,推进清华炉煤气化技术产业化进程。

三、煤气化技术选择思考由于煤是我国重要的能源资源,煤气化技术在国内的应用前景广阔,而煤气化技术也有多种选择模式。

下面就煤气化技术的选择进行思考。

初探煤气化工艺方案的选择

初探煤气化工艺方案的选择

初探煤气化工艺方案的选择随着能源需求的不断增加,煤作为一种丰富的化石燃料资源,越来越成为人们关注的焦点。

煤气化技术是将煤转化成可用于燃料、化学品和能源的气体产品,是煤能够得以广泛应用的关键技术。

在进行煤气化工艺方案的选择时,需要根据煤的性质、热力学参数和经济效益等多个方面进行综合考虑,下面就从这三个方面来初步探讨一下煤气化工艺方案的选择。

一、煤的性质煤的性质主要包括煤种、灰分、挥发分等指标。

在选择煤气化工艺方案时,需要根据煤的性质,确定合适的气化方式。

对于高挥发分的煤,常用的气化方式为流化床气化和喷锅气化,而对于低挥发分的煤,则更适合采用固定床气化等方式。

在确定煤种后,还需要进行煤的预处理,如煤的粉碎、干燥等,以达到更好的气化效果。

二、热力学参数热力学参数主要包括气化温度、气化压力、气化剂、气化反应等方面的指标。

在选择煤气化工艺方案时,需要根据热力学参数的调节,确定合适的气化反应条件。

在气化反应过程中,气化剂的选择很关键,常用的气化剂有氧气、水蒸气等,不同的气化剂会对气化产物有很大的影响。

同时,气化温度和气化压力也是决定气化效率和气化产物品质的重要因素。

因此,在选择煤气化工艺方案时,需要对煤的热力学参数进行分析和优化,以达到更高的气化效率和更好的产物品质。

三、经济效益在进行煤气化工艺方案的选择时,经济效益也是需要重视的方面。

煤气化工艺方案的选择,要从整个项目的角度出发,综合考虑技术的成熟度、建设投资、运营成本、产品市场和环保要求等多个方面,以实现最大经济效益和社会效益。

在现代化社会,环保要求越来越严格,因此,在选择煤气化工艺方案时,也需要优先考虑环保要求的满足程度。

总之,煤气化工艺方案的选择需要考虑到多个方面的因素,需要进行综合分析和协调,在选择方案时也要有整体观念,达到最佳综合效益。

作为一种关键的煤化工技术,煤气化工艺的发展将有助于推动煤的能源利用和清洁化,更好地满足人们的能源需求和环境保护要求。

航天炉粉煤加压气化技术探究_

航天炉粉煤加压气化技术探究_
部的构件都是由我国自行设计并制造出来的,因而实现了航天炉 设备的国产化,并降低了购买设备所需的资金,大大缩短了设备 加工所需的时间。
(5)航天炉技术的应用缩短了项目的建设周期 通过查阅相关资料可知,航天炉粉煤加压气化技术的应用能
够大大缩短项目建设的周期。比如说,安徽临泉化工股份有限公 司就只耗用了 24 个月完成了项目的建设与安装调试,这速度是 壳牌粉煤气化技术无法比拟的。
1.航天炉粉煤加压气化技术必须使用适应性较强的原料煤 航天炉粉煤加压气化装置经过试烧之后,试烧人员观察得
知,原料煤粒度会对碳的转化过程造成影响,另外,如果原料煤含
有的水分过高就会降低 U1200 单元煤粉的输送效率,如果原料煤
内部的灰分较少,试烧过后渣就无法顺利挂在水冷壁上,因而航
天炉内部无法拥有稳定的保护渣层。综上所述,航天炉粉煤加压
气化技术必须要使用适应性较强的原料煤。 2.应用此技术缩短了开停车的时间,提高了负荷升降的速度 应用航天炉粉煤加压气化技术之后,通过对装置的运行情况
进行观察,装置操作人员观察到开停车时间大大缩短,并且负荷
升降的速度得以提高。主要表现在如下两个方面:一、应用航天
炉技术之后停车到开车这一段过程最多只需消耗两个小时;二、
在投料的时候,要想使气化炉负荷从 40%增加到 100%也最多消
耗两小时。上述两点都大大降低了物料的消耗数量,并用最少的
资源合成最优质的氨产品。 3.应用此技术能提高监控的安全性和便捷性 与其他煤制合成气工艺相比,航天炉技术将火焰检测器转换
成高清晰度的摄像头,通过摄像头,监控人员就可以通过总控制
室的显示屏得知航天炉中的情况,与火焰检测器相比,摄像头的
应用大大提高了监控的安全性和便捷性。 三、航天炉的结构特征

航天炉粉煤加压气化技术分析

航天炉粉煤加压气化技术分析

航天炉粉煤加压气化技术分析摘要:本文主要介绍了航天炉粉煤加压气化技术的工艺原理、技术特点及控制技术,以供参考。

关键词:航天炉;技术特点;结构一、航天炉煤气化的工艺原理原料煤经过磨煤、干燥后储存在低压粉煤储罐,然后用N2(正常生产后用CO2输送)通过粉煤锁斗加压、粉煤给料罐加压输送,将粉煤输送到气化炉烧嘴。

干煤粉(80℃)、纯氧气(200℃)、过热蒸汽(420℃)一同通过烧嘴进入气化炉气化室,瞬间发生升温、挥发分裂解、燃烧及氧化还原等物理和化学过程(1—10 s)。

该反应系统中的放热和吸热的平衡是自动调节的,既有气相间反应,又有气固相间的反应。

1400—1600℃的合成气出气化室通过激冷环、下降管被激冷水激冷冷却后,进入激冷室水浴洗涤、冷却,出气化炉的温度为210~220℃,然后经过文丘里洗涤器增湿、洗涤,进入洗涤塔进一步降温、洗涤,温度约为204℃、粉尘含量小于10×10-6的粗合成气送到变换、净化工段。

[1]二、航天炉的主要设备1、气化炉HT—L炉的核心设备是气化炉。

HT—L炉分上下两个部分:上部是气化室,由内筒和外筒组成,包括盘管式水冷壁、环行空间和承压外壳。

盘管式水冷壁的内侧向火面焊有许多抓钉,抓钉上涂抹一层耐火涂层,其作用是保护水冷壁盘管、减少气化炉热鼍损失。

盘管式水冷壁的结构简单,材质为碳钢,易制作且造价较低。

水冷壁盘管内的水采用强制密闭循环,在这循环系统内,有一个废热锅炉生产5.4MPa(G)的中压蒸汽,将热量迅速移走,使水冷壁盘管内水温始终保持一恒定的范围。

下部为激冷室,包括激冷环、下降管、破泡条和承压外壳。

激冷室为一承压空壳,外径和气化室一样,上部和水冷壁相连的为激冷环,高温合成气经过激冷环和下降管煤气温度骤降。

向下进入激冷室,激冷室下部为一锥形,内充满水,熔渣遇冷固化成颗粒落入水中,顺锁斗循环水排入灰锁斗。

粗合成气从激冷室上部引出。

2、烧嘴HT—L炉烧嘴是一个组合烧嘴,由一个主烧嘴、一个点火烧嘴和一个开工烧嘴组成。

入炉煤质对航天炉运行影响的探讨

入炉煤质对航天炉运行影响的探讨

入炉煤质对航天炉运行影响的探讨摘要: 总结了干煤粉气流床气化工艺对煤质的具体要求,并介绍了航天炉粉煤加压气化工艺流程特点。

结合安徽晋煤中能化工股份有限公司航天炉粉煤加压气化示范装置运行实际,系统地阐述了煤质参数变化对粉煤气化工艺的影响,并提出了应对措施。

关键词: 气化炉;煤质;灰分;黏温特性;干煤粉气流床。

1、工艺简述航天炉示范装置由磨煤及干燥单元、粉煤加压及输送单元、气化及洗涤单元、渣水处理及回收单元和气化公用工程系统组成,工艺流程为经盘式磨煤机研磨筛选的合格粉煤进入袋式过滤器。

在袋式过滤器风粉分离后的煤粉经螺旋输送机输送到常压粉煤储罐储存。

粉煤加压及输送单元采用低温甲醇洗单元分离出的CO 2气体为输送载气。

煤粉锁斗通过周期性的低高压变化操作,将常压粉煤储罐的粉煤间歇性地送入到粉煤给料罐中。

给料罐内的粉煤通过三条粉煤管线进入气化炉顶部的一体化烧嘴。

在粉煤进入烧嘴的同时,O 2和高压蒸气也被送入气化炉烧嘴处。

三股物料在烧嘴射流作用下进入气化炉并充分混合和反应,生成以CO 和H 2为主要成分的粗合成气。

气化炉作为核心设备是决定煤质适应性优劣的关键。

航天炉为单嘴顶置式结构,采用水冷壁内衬以渣抗渣,构建了单喷嘴顶置式直流射流流场;该炉型能适应大部分煤种,原煤适应性强,,更能满足高灰熔点、高灰分劣质煤的高效气化需要。

该流场由射流区、回流区和旋流区组成,具有中上部炉温略低、下部靠近渣口处炉温较高的温度场分布特性,有效促使渣口处熔渣顺畅排出,从而强化了其对高灰熔点、高灰分劣质煤的适应性,生成的熔渣和高温合成气从渣口流出经过下降管进入洗涤冷却室降温。

淬冷后的熔渣沉积在激冷室底部成为粗渣,定期通过渣锁斗排入渣池,并被捞渣机捞出,运出气化界区。

在激冷室完成初级洗涤后的粗合成气依次进入混合器和旋风分离器,进行二级洗涤分离以除去较大粒度的杂质; 然后再进入洗涤塔进行第三级洗涤除尘,以进一步除去较小粒度的细灰,从而达到灰质量浓度< 1.5 mg/m 3 的要求; 随后送出气化界区,进入后续的变换单元。

煤化工产品在航空航天领域中的应用前景展望

煤化工产品在航空航天领域中的应用前景展望

煤化工产品在航空航天领域中的应用前景展望煤化工产品在航空航天领域中的应用前景展望随着世界经济的快速发展和人民生活水平的提高,航空航天事业变得越来越重要。

航空航天工业对材料的需求非常高,需要材料具备高强度、轻质、高温和高耐腐蚀性等特点。

煤化工产品恰好具备这些特点,因此在航空航天领域中具有广阔的应用前景。

煤化工产品在航空航天领域的应用前景主要从以下几个方面展望。

首先是煤化工产品在航空燃料领域的应用。

航空煤油一直是航空发动机的主要燃料,然而,由于石油资源的日益枯竭和环境污染的问题,寻找替代燃料已成为当务之急。

煤制合成油是一种非常理想的替代燃料。

煤制合成油在燃烧过程中产生的污染物含量低,可以有效降低环境污染。

此外,煤制合成油的产量稳定,可以满足航空工业对燃料供应的需求。

因此,煤制合成油在航空燃料领域的应用前景非常广阔。

其次是煤化工产品在航空航天材料领域的应用。

航空航天领域对材料的要求非常高,需要具备高强度、轻质、高温和高耐腐蚀性的特点。

煤化工产品中的合成纤维材料具备这些特点,比如碳纤维和炭化硅纤维。

碳纤维是一种非常轻质但又具有很高强度的材料,可以用于制造航空航天中的飞机机身和发动机部件,既能减轻重量,又能提高强度。

炭化硅纤维具有高温和高耐腐蚀性,可以用于制造航天器的外壳和热保护材料。

因此,煤化工产品在航空航天材料领域的应用前景非常广泛。

再次是煤化工产品在航空航天润滑油领域的应用。

润滑油在航空航天领域中起着非常重要的作用,可以降低摩擦和磨损,提高机械设备的工作效率和使用寿命。

煤化工产品中的油品具有很好的润滑性能和耐高温性能,非常适合用于航空航天润滑油。

此外,煤化工产品中的油品还具备很好的防腐蚀性能和抗氧化性能,可以保护设备免受腐蚀和氧化的影响。

因此,煤化工产品在航空航天润滑油领域的应用前景非常广泛。

最后是煤化工产品在航空航天领域的环境保护应用。

煤炭资源是我国的主要能源,因此,煤炭的燃烧对环境造成了很大的压力。

初探煤气化工艺方案的选择

初探煤气化工艺方案的选择

初探煤气化工艺方案的选择煤气化是一种将煤炭转化为合成气的重要技术。

合成气是一种混合气体,主要成分是一氧化碳和氢气,可以用于生产合成燃料、化工原料、肥料等,同时也可以用于发电和供热。

煤气化技术在减少碳排放、提高能源利用效率等方面具有重要意义。

在选择煤气化工艺方案时,需要考虑到煤种特性、产品需求、环境影响等因素,以确保实现经济、环保和可持续发展的目标。

首先,选择适合的煤气化工艺是至关重要的。

目前,主要的煤气化工艺包括干燥气化、气体化、固体床气化和流化床气化等。

不同的煤气化工艺具有不同的优缺点,需要根据具体情况进行选择。

干燥气化工艺适用于低热值的煤炭,通过将煤炭预处理后进行气化,能够实现煤气中有机组分的高效转化。

气体化工艺是一种高效的煤气化工艺,具有操作简单、产品质量高等优点,但需要消耗大量的能源。

固体床气化工艺适用于高强度的煤气化,可以实现高效的碳转化,但也存在需要更多外部热输入的问题。

流化床气化工艺具有较高的热效率和碳转化率,适用于多种煤种,但运行成本较高。

其次,根据产品需求选择合适的煤气化工艺方案。

不同的煤气化工艺可以得到不同成分和比例的合成气,根据具体产品需求,如合成燃料、化工原料等,选择合适的工艺方案能够提高生产效率和产品质量。

再次,考虑环境影响是选择煤气化工艺方案的重要因素之一、煤气化过程中会排放大量的废气和废水,其中含有二氧化碳、氮氧化物、硫氧化物等有害物质,对环境造成污染。

选择低污染、低能耗的煤气化工艺方案,通过废气净化、循环利用等技术措施,可以减少对环境的影响。

最后,综合考虑经济性、可持续性等因素选择煤气化工艺方案。

煤气化技术的投资、运营成本较高,需要测算投资回收期、成本效益等指标,确保项目能够持续盈利。

同时,考虑到气化废物的处理、能源消耗等问题,选择符合可持续发展理念的煤气化工艺方案能够实现长期稳定的运营。

总之,选择适合的煤气化工艺方案是实现煤气化技术应用的关键。

需要根据煤种特性、产品需求、环境影响、经济性等多方面因素进行综合考虑,确保选取的方案能够实现经济、环保和可持续发展的目标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

煤气化工艺的选择和对航天炉的看法目前国际上先进的加压气流床煤气化工艺技术主要是Shell 公司的SCGP粉煤加压气化工艺、美国德士古公司的水煤浆加压气化工艺和德国未来能源公司的GSP粉煤加压气化工艺。

近十年来,在中国的化肥工业中,美国德士古公司的水煤浆加压气化工艺已有渭河、鲁南、上海焦化、淮南、浩良河、金陵石化等12套成功应用的业绩,另外还有7套装置正在建设中。

Shell公司的SCGP工艺是粉煤加压气化工艺,是近年发展起来的先进煤气化工艺之一,已成功地用于联合循环发电工厂的商业运营。

目前国内已有湖北双环、广西柳化、湖南洞氮、湖北枝江、安庆石化、神华、云南沾益、云天化、大连大化、永煤集团、河南开祥、中原大化等19套装置,有5套投料试运行,其余在建或已签合同。

GSP工艺技术采用气化炉顶干粉加料与反应室周围水冷壁结构,是较为先进的气化技术。

目前国内多家企业计划引进该技术建设大型煤化工装置。

但江苏宜兴和淮化在与德国未来能源公司签订引进协议并进行了用淮南煤在德国的试烧后,因未来能源公司的工程能力等问题而终止了协议。

煤气化工艺实质上是在Texaco工艺、Shell工艺、GSP工艺和国内煤气化工艺中选择。

(1)Texaco水煤浆气化工艺Texaco工艺采用水煤浆进料、液态排渣、在气流床中加压气化,水煤浆与纯氧在高温高压下反应生成煤气。

Texaco水煤浆气化工艺具有如下特点:★对煤种有一定适应性。

国内企业运行证实水煤浆气化对使用煤质有一定的选择性:气化用煤的灰熔点温度t3值低于1350℃时有利于气化;煤中灰分含量不超过15%为宜,越低越好,煤的热值高于26000 kJ/kg,并有较好的成浆性能,使用能制成60~65%浓度的水煤浆之煤种,才能使运行稳定。

★气化压力高。

工业装置使用压力在2.8~6.5MPa之间[MS6],可根据使用煤气的需要来选择。

★气化技术成熟。

制备的水煤浆可用隔膜泵来输送,操作安全又便于计量控制。

气化炉为专门设计的热壁炉,为维持1350~1400℃温度下反应,燃烧室内由多层特种耐火砖砌筑。

热回收有激冷和废锅两种类型,可以煤气用途加以选择。

★合成气质量较好。

其有效组分(CO+H2)含量占80%,甲烷量<0.1%。

碳转化率95~98%。

冷煤气效率70~76%,气化指标较为先进。

由于水煤浆中含有35~40%水分,因而氧气用量较大。

★对环境影响较小。

气化过程不产生焦油、萘、酚等污染物,故废水治理简单,易达到排放指标。

高温排出的融渣,冷却固化后可用于建筑材料,填埋时对环境也无影响。

★国产化程度高,投资较低。

国内已经完全掌握了Texaco气化工艺,主要设备都可以国产化,如关键技术之一的国产喷嘴替代了从美国引进的水煤浆气化喷嘴,技术性能大大优于引进喷嘴;国产洛耐砖替代了从法国进口的气化炉用耐火砖,价格比为0.5:1。

另外,我国已具备设计制造如磨煤机、气化炉、激冷环,锁渣斗、捞渣机、高、低压煤浆泵、灰水泵、文氏管等设备的能力。

鲁南化肥厂的设备国产化率已达到90%以上,只引进煤浆泵等少量设备。

因此,投资省。

★水煤浆气化技术的缺点是煤浆带35%-40%水入炉,因此氧耗比干粉煤气化约高20%;炉衬是耐火砖,冲刷严重,每年要更换一次;生成C02量大,碳的转化率低,有效气体成份(CO+H2)低;并流气化,燃烧效率略低;对煤有一定要求,如要求灰分<13%,灰熔点<1300℃,含水量<8%等,虽然具有气流床煤气化的共同优点,仍是美中不足。

★由于国内已经完全掌握了Texaco气化工艺,积累了大量的经验,因此设备制造、安装和工程实施周期短,开车运行经验丰富,达标达产时间短。

(2)壳牌(Shell)干煤粉气化工艺壳牌(Shell)干煤粉气化工艺在1972年就开始基础研究,1993年在荷兰建成日处理煤量为2000吨的单系列大型气化装置。

壳牌粉煤气化工艺具有如下特点:★采用干煤粉作气化原料,煤粉用惰气输送,操作十分安全。

对煤种的适应性比较广泛,从较差的褐煤、次烟煤、烟煤到石油焦均可使用;对煤的灰熔点适应范围比其它气化工艺更宽,即使是高灰分、高水分、高硫的煤种也能使用。

★气化温度高,一般在1400~1600℃,碳转化率高达99%。

煤气中甲烷含量极少,不含重烃,CO+H2达到90%。

★氧耗低。

采用干煤粉进料与水煤浆气化相比不需在炉内蒸发水分,氧气用量因而可减少15~25%,从而降低了成本。

配套空分装置规模相对缩小,投资也可相应降低。

★气化炉采用水冷壁结构,无耐火砖衬里。

水冷壁设计寿命按25年考虑。

正常使用维护量很小,运行周期长,也无需设置备用炉。

★每台气化炉设有4~6个烧嘴,对生产负荷调节更为灵活。

Shell烧嘴保证寿命为8000小时,已超过连续16000小时运行。

★热效率高。

Shell煤气化的冷煤气效率达到78~83%,其余~15%副产高压或中压蒸汽,总的原料煤的热效率达98%。

★对环境影响小。

气化过程无废气排放。

系统排出的融渣和飞灰含碳低,可作为水泥等建筑材料,堆放时也无污染物渗出。

气化污水不含焦油、酚等,容易处理,需要时可作到零排放。

★国产化程度较低,投资较高。

Shell气化炉非常复杂,加工和制造难度大,主要设备如气化炉内件需从国外进口,国产化程度较低,由此造成投资大,是Texaco气化工艺的1.4-1.5倍。

★目前世界上仅有一套用于发电的Shell气化炉在运行,Shell气化炉用于化工生产尚无先例,因此,开车运行经验少,可靠性有待验证。

由于气化炉庞大且复杂,在设备制造、安装和工程实施方面难度大,周期长,预计达标达产时间也较长。

(3)未来能源GSP干煤粉气化工艺GSP工艺技术于上世纪70年代末由前民主德国的德意志燃料研究所开发,目的是用高灰分褐煤生产民用煤气。

1984年,在黑水泵市(S chwarZePumpe)的劳柏格(Laubag)电厂建立了一套130MW冷壁炉的商业化装置,原料处理能力为720吨/天,该装置运行了10多年,未更换过气化炉烧嘴的主体和水冷壁。

目前该技术属于未来能源公司G mbHF。

GSP工艺技术有以下特点:★GSP气化原料的适应范围广,可以气化褐煤、烟煤、无烟煤和石油焦,对煤的活性基本没有要求,对煤的灰熔点适应范围比其他气化工艺更宽,对于高灰份、高水分、高含硫煤同样适应。

★GSP气化工艺的气化温度为1400--1600℃,碳转化率可达99%以上,甲烷含量低,煤气中有效组分(CO+H2)达90%以上,煤的消耗低。

★GSP气化采用干粉进料,与水煤浆相比氧耗降低15%-20%,可以减少空分能力,节约投资。

★已投入运行的气化炉压力为3.0Mpa,单炉日处理煤720吨。

可以设计2000-2500吨/天,甚至更大能力的气化炉。

带水冷壁和煤气冷却器的干煤粉加压气化半工业化装置。

在此装置上进行了十几种典型煤种的加压气化试验,取得了宝贵的操作经验和丰富的煤种气化数据,装置累计运行时间达到2300小时。

★西北化工研究院进行的干法粉煤气化技术开发研究,已建成一套类似于GSP的干法气化小型试验装置,投煤量为15~20kg/h,气化炉采用GSP炉型,由于装置规模较小,热损失大,炉内为全耐火材料结构,主要进行干法加压进料技术和工艺条件、不同煤种的探索试验。

★航天十一所开发的HT-L煤粉加压(水冷壁)气化炉,已运用于河南濮阳年产20万吨甲醇和安徽临泉年产15万吨甲醇项目建设,预计在2008年6月以后陆续投产。

对气流床煤气化工艺的选择,应从以下几方面来考虑:(1)从技术的成熟程度看,水煤浆优于干粉煤、激冷流程远优于废锅流程。

(2)从技术的先进性看,干粉煤优于水煤浆。

(3)从投资来看,GSP与Texaco相近;其次是Dow(LGTI);再是Shel l。

GSP的投资略低于Texaco。

对于60万t/a甲醇投资的比:GSP:Texaco(激冷):Shell为1:1.2:1.8。

(4) 从国产化程度来看,Texaco最高。

(5)对煤种的适应性看,干粉煤气化优于水煤浆气化。

(6)运行稳定性和投资风险看,水煤浆优于干粉煤。

(5)采用HT-L煤粉加压(水冷壁)气化炉的风险HT-L煤粉加压气化炉是结合SHELL、GSP、TEXACO的一些优势特点所开发的一种炉型,如粉煤干燥、加压输送是利用了SHELL技术;炉内辐射段类似于GSP炉,顶端单喷嘴采用的是粉煤分三路进入气化炉烧嘴的三个粉煤管旋转斜喷进料与GSP环形喷嘴不同;水冷壁盘管则采用四进四出平行并绕与GSP单管并绕不同;激冷室以下段与TEXACO 炉完全相同。

我们认为采用航天炉存在以下风险:★目前SHELL炉在国内投运了5套,仅湖北双环经过半年多的调试,能连续运行58天,其余装置都不能正常运行,还得接受时间的考验。

反映在煤粉输送上的主要问题是煤粉不能稳定地输送和磨损严重等。

航天炉的投运可能也会出现类似的问题。

★GSP冷壁炉的商业化装置目前已运行了十年未换过烧嘴,航天炉烧嘴为规避侵犯知识产权进行了从新设计,但未进行工业化试验,风险很大。

★气化炉的水冷壁,SHELL炉是多段竖管排列,GSP炉则是圆筒单管盘管,设计和制造难度都很大,内件(特别是传热面)用异型钢管等材料,目前只能都依赖进口。

航天炉水冷壁内件的设计和制造能否达到国际水平,很难做出评估,风险很大。

★以CO2为输送气体的粉煤输送和气化,目前还没有成功的经验和数据,存在着一定的风险。

[MS3]山东兖矿集团贵州项目拟采用该技术生产化肥[MS4]国内气流床技术有:西北化工研究院多元料浆气化技术、华东理工大学四喷嘴对置水煤浆/干煤粉气化、西安热工研究院两段炉技术[MS5]气流床加压气化[MS6]~8.7MPa;气化强度大[MS7]根据煤气的用途或者产品方案选择气化压力。

[MS8]气化炉反应段为专门设计的热壁炉[MS9]设备国产化率较高、投资较低。

[MS10]高压煤浆泵还需进口![MS11]定期更换,陕西渭河化肥厂耐火材料的运行周期最长已达18 000h~19000h。

[MS12]粗合成气中CO2量高不说明碳转化率低;有效气体CO+H2较干煤粉气化低[MS13]主要是高灰份、高灰熔点。

高水分必须预先进行干燥[MS14]根据经验,相同规模如50万吨/年甲醇装置,SHELL气化技术的投资较水煤浆增加约2.5亿人民币。

SHELL气化技术空分装置投资较小,但是气化装置的投资巨大。

[MS15]零排放不可能![MS16]主要是高灰份、高灰熔点。

高水分必须预先进行干燥[MS17]2.7MPa~8.5MPa[MS18]~1450℃[MS19]~82%[MS20]50~110%[MS21]相同[MS22]不单是设计和制造的风险,还有工程运行的风险。

[MS23]以CO2为输送气体的粉煤密相输送技术应该不是问题,但是输送过程的能耗是大大增加的。

相关文档
最新文档