角的概念PPT课件

合集下载

《角的初步认识》课件

《角的初步认识》课件

03
角的基本性质
角的大小与边的长度无关
总结词
在比较角的大小时,边的长度并不影 响角的大小。
详细描述
角的定义是基于其夹角的大小,而不 是边的长度。因此,即使两个角的边 长不同,只要它们的夹角相同,它们 就是相等的角。
角的大小与夹角的大小有关
总结词
角的大小直接与其夹角的大小相关。
详细描述
角的度数是由其夹角的大小决定的。夹角越大,角就越大; 夹角越小,角就越小。
平角和周角
总结词
平角等于180度,周角等于360度
详细描述
平角是角度等于180度的角,也称为直线角。在几何学中,平角是角的特殊类型之一, 用于描述两条射线在同一平面内平行且相离的夹角大小。周角是角度等于360度的角, 也称为圆周角。在几何学中,周角是角的特殊类型之一,用于描述一个圆或圆弧所对应
的角度大小。
特点
弧度制在国际上得到了广泛的应用 ,特别是在物理学和工程学领域。
应用
在研究旋转和周期性现象时,弧度 制提供了更为直观和方便的表示方 法。
角度制和弧度制的换算
重要性
在实际应用中,了解和掌握角度制与弧度制 之间的换算是非常重要的,特别是在不同领 域和学科之间进行交流和合作时。
练习与掌握
通过大量的练习和实践,可以逐渐熟悉和掌 握角度制与弧度制之间的换算方法,提高自 己的数学素养和解决实际问题的能力。
角的大小与角的开口大小有关
总结词
角的开口大小可以影响角的大小。
VS
详细描述
虽然角的开口大小并不直接影响角的度数 ,但它可以影响角的视觉大小。一般来说 ,开口较大的角看起来更大,而开口较小 的角看起来更小。
04
角的应用
在几何图形中的应用

初一 角ppt课件ppt课件

初一 角ppt课件ppt课件
初一 角ppt课件ppt课件
目录 CONTENTS
• 角的基本概念 • 角的种类 • 角的性质 • 角的运算 • 角的应用
01
角的基本概念
角的定义
总结词
角的定义是指两条射线在同一平面内形成的夹角。
详细描述
角是由两条射线在同一平面内相交形成的,这两条射线称为角的边,相交的点 称为角的顶点。根据定义,一个角的大小是固定的,与其边的长度无关,只与 两条射线的夹角有关。
角的表示方法
总结词
角的表示方法有多种,包括使用顶点和两条边的字母表示、 使用数字表示以及使用弧度表示。
详细描述
在几何学中,角通常用顶点和两条边的字母表示,例如∠ABC 表示一个角,其中B是角的顶点,AB和BC是角的两边。此外 ,也可以使用数字表示角,例如∠1、∠2等。另外,角也可以 用弧度表示,例如π/2弧度表示90度的角。
在日常生活中的应用
时钟
时钟上的时针、分针和秒针之间 的角度变化可以用来表示时间, 这是角度在日常生活中最直观的
应用之一。
导航
在导航中,方向通常用角度来表 示,例如北纬、东经等。通过测 量和计算角度,可以确定物体的
位置和方向。
建筑学
在建筑设计中,角度是一个重要 的参数,用于确定建筑物的外观 、结构和稳定性。例如,斜屋顶 的角度会影响到雨水的流向和建

05
角的应用
在几何图形中的应用
角度的测量
多边形的内角和
在几何学中,角度是描述两条射线、 线段或平面之间的夹角的重要参数。 通过测量角度,可以确定图形的形状 、大小和相对位置。
多边形的内角和与边数和角度有关, 通过计算多边形的内角和,可以进一 步研究多边形的性质。
三角形的全等判定

6.3.1角的概念 课件(共35张PPT) 初中数学人教版(2024)七年级上册

6.3.1角的概念 课件(共35张PPT)  初中数学人教版(2024)七年级上册
用三个大写 字母表示
图例 A
O
B
用一个大写 字母表示
O
用数字表示
1
用希腊字母 表示
记法
方法解读
字母O表示顶点,要写在中 间,A,B表示角的两边上 的点,用该表示法可以表 示任何一个角。
当以某一个字母表示的点为 顶点的角只有一个时,可以 用这个顶点的字母来表示
在靠近角的顶点处加上 弧线,并标上数字或希 腊字母。该表示法形象 直观
巩固练习
1、下列图形是角吗?
2、判断题: (1)两条射线组成的图形叫角。 (2)角的大小与边的长短无关。 (3)角的两边是两条射线。
总结
定义
图例
组成元素
“静” 态的观

“动” 态的观

有公共端点的

两条射线组成
的图形叫做角 顶点

角可以看作由 一条射线绕着 它的端点旋转 而形成的图形。
终边 始边
因此,54.26°= 54°15′36″.
例3 .把45°25′48″化成度.
解:45°25′48″ =45°+25′+48×(610)' =45°+25.8' =45°+25.8×(610)° =45.43°
巩固练习
例2:填空 ① 1小时= 60分, 1分= 60 秒. ② 3.3小时= 3 小时 18 分, 2小时30分= 2.5 小时. ③ 1°= 60 ′,1′= 60 ″. ④ 0.75°= 45 ′= 2700 ″, ⑤ 1800″= 0.5 °,39°36′= 39.6 °.
向两端 无限延 伸
0个
不可 度量
射线
·
A
B· l
1.射线AB 2.射线l

(2024秋季新教材)人教版数学七年级上册6.3.1角的概念 课件(共30张PPT)

(2024秋季新教材)人教版数学七年级上册6.3.1角的概念 课件(共30张PPT)
注意:(1)顶点、两边是构成角的两个要素: 每个角都有两条边,这两条边都是射线; 角的两边有公共端点,即顶点. (2)角的大小与边的长短无关,只与构成角的两边张开的 幅度有关.
新知探究 知识点1 角的概念
例1 给出下列说法:①两条射线组成的图形是角;②将一条线 段绕它的一个端点旋转得到的图形是角;③把一个角放在放大镜 下观察,角的度数不变;④平角是一条直线,周角是一条射线.其
∠α的度数是48度56分37秒, 记作:∠α=48°56′37″.
角的度、分、秒是60进制,这和计量 时间的时、分、秒是一样的.
新知探究 知识点3 角的度量和换算
以度、分、秒为单位的角的度量制,叫作角度制. 此外,还有其他度量角的单位制. 例如,以后将要学到的以弧度为基本度量单位的弧度制, 在军事上经常使用的角的密位制,等等.
我们常用量角器量角,度、分、秒是常用的角的度量单位. 如图,把一个周角360等分,每一份就是1度的角,记作1°; 把1度的角60等分,每一份叫作1分的角,记作1′; 把1分的角60等分,每一份叫作1秒的角, 记作1″.
1周角= 360 °;1平角= 180°.
1°= 60′;1′= 60″.
新知探究 知识点3 角的度量和换算
O
始边 A
如果射线OB继续旋转,还会形成什么角呢?
新知探究 知识点1 角的概念
一条射线绕它的端点旋转,当终边和始边成一条直线时, 所成的角叫作平角.
B
O
A
当终边又和始边重合时,所成的角叫作周角.
O
A (B)
新知探究 知识点1 角的概念 归纳:角的概念 (1)静态:角由两条具有公共端点的射线组成. (2)动态:角也可以看成是由一条射线绕着它的端点旋转而成的.

2024版七年级数学角的概念ppt课件

2024版七年级数学角的概念ppt课件

角的定义角是由两条有公共端点的射线组成的图形,这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

角也可以看作是由一条射线绕着它的端点旋转而形成的图形,旋转开始时的射线叫做角的始边,旋转终止时的射线叫做角的终边。

01角的大小与角的两条边的长短无关,只与角的开口大小有关。

02角的大小可以用度、分、秒来表示,1度等于60分,1分等于60秒。

03角具有方向性,即角有正负之分,通常规定逆时针旋转形成的角为正角,顺时针旋转形成的角为负角。

角的基本性质角的大小比较可以使用量角器来测量角的大小,并进行比较。

对于两个角,如果它们的度数相等,则这两个角相等;如果它们的度数不相等,则这两个角不相等。

对于两个相等的角,如果其中一个角比另一个角大,则这个角叫做另一个角的余角。

01锐角小于90°的角,如30°、60°等。

02直角等于90°的角,记作Rt∠。

03钝角大于90°且小于180°的角,如120°、150°等。

锐角、直角、钝角0102等于180°的角,记作∠180°或平角。

等于360°的角,记作∠360°或周角。

平角周角平角、周角03是锐角的一种,也是等腰直角三角形的一个锐角。

45°角是锐角的一种,也是等边三角形的一个内角。

60°角即直角,是特殊角中唯一的一个直角,具有独特的性质和应用。

90°角特殊角:45°、60°、90°角度的基本单位,一个圆被等分为360度。

度1度等于60分,用于更精确的角度测量。

分1分等于60秒,用于高精度角度计算。

秒角度的度量单位当两个角共有一个端点和两条相交的直线时,它们的角度相加。

角度的加法角度的减法角度的乘法与除法用于计算两个角之间的差值。

通过乘以或除以一个常数来增大或减小角度。

030201角度的计算方法两个或多个角相加得到的总角度。

角的认识ppt课件

角的认识ppt课件
在量角器上比较两个角的大小,可以直接读出两个角的度数进行比较;也可以 用量角器的中心点重合、零刻度线重合、量角器刻度线重合的“三重合”方法 比较。
角的应用
1 2
角在几何学中的应用
角是几何学中重要的概念之一,可以用于描述平 面图形和空间几何体的形状和大小。
角在物理学中的应用
角是物理学中描述运动和力的重要概念之一,可 以用于描述物体的运动状态和受力情况。
角在机械制图中的应用
总结词:基础元素
详细描述:在机械制图中,角是描述物体位置和形状的基础元素之一。通过使用角度、射线等工具, 可以准确地表示物体的位置和形状,以确保制造和设计的精确性。
角在日常生活中的应用
总结词:无处不在
详细描述:角在日常生活中无处不在,无论是门窗的角落、 桌椅的边角还是建筑物的拐角,角都是我们生活中常见的元 素之一。同时,角在许多建筑和设计作品中也有着广泛的应 用。
掌握解决与角有关的实际问题的能力
解决实际问题
能够运用所学的知识解决与角有关的 实际问题,如测量角度几何问题 ,提高自己的推理能力。
培养空间观念和推理能力
要点一
空间观念
通过观察和操作,培养自己的空间观念和几何直观能力。
要点二
推理能力
通过推理和演绎的方法解决几何问题,提高自己的推理能 力。
2023-2026
ONE
KEEP VIEW
角的认识ppt课件
REPORTING
CATALOGUE
目 录
• 角的基本概念 • 角的度量 • 角的绘制与识别 • 角在实际生活中的应用 • 总结与展望
PART 01
角的基本概念
角的定义
静态定义
有公共端点的两条射线组成的图 形叫做角

《角的认识》课件

《角的认识》PPT课件
欢迎来到《角的认识》PPT课件!在这个课程中,我们将探索角的形状特征、 命名和标记方法、度量单位和计算方法、分类和性质、相邻、补角和互补角 关系、平分线和对顶角以及角的应用和实例。
角的形状特征
1 尖锐角和钝角
角可以分为尖锐角(小于90度)和钝角(大于90度)。
2 直角
直角是一个等于90度的角,形状类似于直线的转角。
3 计算方法
可以使用各种三角函数(如正弦、余弦和正切)来计算角度。
角的分类和性质
锐角
锐角是一个小于90度的角。
性质:
- 图形中的锐角较为常见 - 锐角的正弦、余弦和正切值都 是正数
直角
直角是一个等于90度的角。
性质:
- 直角可以形成垂直线 - 直角的正弦值为1,余弦值为0, 正切值为无穷大
钝角
钝角是一个大于90度的角。
对顶角
对顶角是指两个角在相交的直线上,且互为补角。
角的应用和实例
1
几何形状
角在几何形状的定义和构造中起着重要的作用。
2
三角函数
角的概念被广泛应用于三角函数的计算中。
3
工程和建筑
角度测量在工程和建筑领域中是至关重要的。
性质:
- 图形中的钝角较为罕见 - 钝角的正弦和正切值是负数, 余弦值是正数
角的相邻、补角和互补角关系
1
相邻角
相邻角是指两个共享一个公共边的角。
2
补角
பைடு நூலகம்
补角是指两个角的度数之和等于90度。
3
互补角
互补角是指两个角的度数之和等于180度。
角的平分线和对顶角
平分线
平分线是指将一个角分成两个相等的角的线。

《角》PPT教学课文课件


活动2 探究新知
我们常用量角器量角,度、分、秒 是常用的角的度量单位. 把一个周角 360等分,每一份就是 1 度的角,记作 1°;把 1 度的角 60 等分,每一份叫 做1 分的角,记作 1′;把1分的角 60等 分,每一份叫做1 秒的角,记作1″.
1周角= 360 °;1平角= 180 °.
1°= 60 ′;1′= 60 ″.
活动4 例题与练习
例3 根据下列语句画图: (1)画∠AOB=100°; (2)在∠AOB的内部画射线OC,使∠BOC=50°; (3)在∠AOB的外部画射线OD,使∠DOA=40°.
解:如图所示:
随堂练习
1.教材P134 练习第1,2,3题.
2.如图,其中小于180°的角共有( C )
A.3个 B.4个 C.5个
活动4 例题与练习
例1 图中能用∠1,∠ACB,∠C三种方法表示同 一个角的是( C )
A
B
C
D
活动4 例题与练习
例2 (1)将26.19°转化为用度、分、秒表示的形式;
解:26.19°=26°+0.19°
=26°+0.19×60′ =26°+11.4′ =26°+11′+0.4×60″=26°11′24″; (2)将33°14′24″转化为用度表示的形式.
角还有基本度量单位: *弧度制, 军事上还经常使用角的*密位制.
活动3 知识归纳
1.有公共端点的 两条射线 组成的图形叫做角,这个公 共端点是角的 顶点 ,这两条射线是角的 两条边 .
角也可以看作是由一条射线绕着它的 端点 旋转而形成 的图形.
2.我们常用量角器 量角,以度、分、秒 为单位的 角的度量制,叫做角度制.

120°

北师大版(2024)数学七年级上册 4.2.1 角的认识 课件(共23张PPT)


情境引入
在小学我们学习过角,请说说你对角的认识。你能在图4-16中找到角吗?
图4-16
获取新知
探究点1:角、平角、周角的概念
角由两条具有公共端点的射线组成(如图4-17)。 角也可以看成是由一条射线绕着它的端点旋转而成的(如图4-18)。
A

顶点
O

B
图4-17
图4-18
角的大小与边 的长短无关。
文化馆 幼儿园
图书馆
游乐园 超市
课堂小结
这节课,你有什么收获?
课堂小结
角的定义
有公共端点的两条射线组成的图形 一条射线绕着它的端点旋转而形成的图形
平角、周角的 定义
一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫作平角。 终边继续旋转,当它又和始边重合时,所成的角叫作周角。

用三个大写字母或一个大写字母表示
B C
A
图4-21
D
解:(1)∠BAC,∠BAD和∠CAD
(2)∵以点A为顶点的角有3个 ∴∠BAC,∠BAD和∠CAD不能用∠A来表示
例题讲解
例2 下列四个图中,能用∠1、∠AOB、∠0三种方 法表示同一个角的是( D )
[解析]A、图中的∠AOB 不能用∠0 表示,故本选项错误; B、图中的∠1和∠AOB不是表示同一个角,故本选项错误; C、图中的∠1 和∠AOB 不是表示同一个角,故本选项错误; D、图中∠1、∠AOB、∠O 表示同一个角,故本选项正确;
角的表示方法 用一个数字加弧线表示
用一个小写希腊字母加弧线表示
角的度量 方位角
度、分、秒 1°=60′,1′=60″
课堂小结
这节课,你有什么困惑?

6.3.1 角的概念 课件(共24张PPT) 人教版七年级数学上册

×

×
×
2.将图中的角用不同方法表示出来,填在下表中.
用数字或小写希腊字母表示
∠1
∠3
∠4
∠α
用三个大写英文字母表示
∠BCA
∠BAC
∠ABF
∠ABC
∠2
∠β
∠BCE(或∠FCE)
∠BAD
3.计算:(1)1.45°=______′=________″;(2)1 800″=______′=_______°;(3)58.37°=_______°_______′______″;(4)15°32′24″=_______°=__________″.
解:(1)①22.5°=22°30′. ②51.23°=51°13′48″.
【题型二】度、分、秒的换算
(2)①18°36′=18.6°. ②13°37′48″=13.63°.
例4:灯塔在货轮的南偏东50°方向的30海里处,则货轮相对于灯塔的位置是( )A.北偏西50°方向,30海里处 B.西偏北50°方向,30海里处C.北偏西40°方向,30海里处 D.南偏东50°方向,30海里处
把一个周角平均分成360份,每一份就是1度的角;把1度的角平均分成60份,每一份就是1分的角;把1分的角平均分成60份,每一份就是1秒的角
360
180
60
60
1.判断下列说法是否正确,对的打“√”,错的打“×”.(1)两条射线组成的图形叫作角;( )(2)角的两边是两条射线;( )(3)平角是一条直线;( )(4)周角是一条射线.( )
知识点2:角的度量及单位换算(难点)
度量单位
换算方法
度量工具
(1)度:把一个周角360等分,每一份是1度的角,1度记作1°.(2)分:把1度的角60等分,每一份是1分的角,1分记作1′.(3)秒:把1分的角60等分,每一份是1秒的角,1秒记作1″
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.3

90
180
0
O
SUCCESS
THANK YOU
2 A C ∠1
A
1 C 在中间
∠C A B ∠A
图1
∠ACB ∠ABC
2、(1)∠BAC还能用同样的表 示方法吗?
D
图2
(2)此图2共含有几个角,分别是 哪些角?
3、把图3中的角表示成下列形式:
C (1) ∠APO (2) ∠AOP A
(3) ∠OPC (4) ∠O
Pa
图3
O (5)∠P (6) ∠COP (7) ∠a
B
A
C 图中又有几个角,它们是

D
E ∠BAC、 ∠BAD、 ∠BAE、 ∠CAD、
∠CAE、 ∠DAE
若以A为端点引(n+1)条射线, 此时又有几个角?
1、通过实例,建立角的概念
2、掌握角的表示方法 3、通过在实例中找角,学会观察、 探究、抽象、概括。
注意的问题: 1、不能漏掉角的符 号 2、以一个字母为顶点的角有多 个时,不能用单独一个顶点字母表示
A
2、判断
(1)直线是平角 × (2)一条射线是一个周角。 × (3)两条射线组成的图形叫角 ×
SUCCESS
THANK YOU
2019/7/3
可编辑
D
C A
B
4、如图,射线AC和射线AB构成的角
是 ∠BAC
,∠BDC的两边分别
是 射线DB和射线DC

B
图中有几个角,它们
C
A


D
∠BAC、 ∠BAD、 DAC
B
CC
1、 ∠ABC或∠CBA
角的符号+三个大写字母,且把 顶点字母放在中间。
2、∠B(顶点处只有一个角)
(角的顶点字母)
3、角的符号和一个数字。如∠1
1
(图形内有涵盖这一角度的一段弧线)
4、角的符号和一个小写希腊字母表
a
示。 ∠α (图形内有涵盖这一角
度的一段弧线)
1、你能用不同的方法 表示图(1)的各个角吗?
两条射线:角的两条边 公共端点:角的顶点
角可以看作一条射线绕着它的 端点旋转,初始态与最终态所 成的图形。
终边 A
O 顶点 始边 B
A
O
B
平角:两边共线,并分 别在顶点两侧。
A (B) O
周角:两边重合,在顶点同侧。
练一练:
1、下列图形是角吗?
怎样表示一个角呢?
角的符号:
怎样表示一个角呢?
A
A
其中正确 (1)、(3)、(5)、(7)
的 4、图2中,下列表示角的。方法错误的为 D


B
(A)∠AOB (B) ∠BOC
(C) ∠a ∠O
(D) O a
C
图2
A
5、∠B AC是下列哪个图形?( ) C
B
A
C
A
A
β
C
B
B
C
6、下面哪个角是∠α ( ) C
B
O β αC
A、∠ β B 、∠ AOC C、 ∠AOB
回忆
直线、射线、线段有什么区别与联系?
类型 线段 射线 直线
端点
2个 1个 无端点
延伸性
度量
不能延伸
可度量
向一个方向无限延伸 不可度量
向两个方向无限延伸 不可度量
4.3

角有什么特征? ①公共端点 ②两条射线

你会用图形来表示角吗?
顶点 边
角的概念: 有 公共端点 两条射的线 组成的图形,叫做角
相关文档
最新文档