淀粉基生物降解塑料的研究进展

淀粉基生物降解塑料的研究进展
淀粉基生物降解塑料的研究进展

_==J96

2005.v01.26.NO.5食品硪究与开发综述

淀粉基生物降解塑料的研究进展

何小维罗志刚

华南理工大学轻工与食品学院广州510640

摘要:我国淀粉资源丰富、价格低廉,淀粉作为可完全生物降解的天然高分子材料日益受到人们的重视。本文综述了当今淀粉基生物降解塑料的分类、研究方法、发展状况,以及当今淀粉基生物降解塑料发展中存在的一些问题和应用前景。

关键词:淀粉塑料生物降解

RESEARCHPROGRESSABOUTB10DEGRADABLEPLAS’11CSBASEDONS’lARCH

HEXiaoweiLUOZhigang

CollegeofLightIndustryandFoodScience,SouthChinaUniveIsityofTechnology,Guangzhou,510640Abstract:Starchisveryabundantandche印inourcountry.Asacompletelybiodegradablenatural

macromoleculematerial,starchwas

given

muchattention.Theclassificationandthemethodsofstudy—

ingandthedevelopmentofstaI℃hplasticsaresumm赫zedinthis

paper.SomepI.oblemstobeconsid-

eredarepmposed,theforegmundisalsoforecast.Keywords:starch;plastics;biodegradation

塑料与混凝土、钢铁、木材并称为四大工业材料。自1997年利奥?柏兰克制得第一个以合成材料树脂为基础的塑料——酚醛树脂以来,几十年间,塑料工业得到了飞速的发展。特别是20世纪50年代以来,以聚乙烯、聚丙烯、聚苯乙烯等为原料制成的塑料制品被大量使用,极大地促进了生产力的发展。

塑料制品因其具有重量轻、机械性能良好、耐水、耐化学腐蚀、外形美观、制造及安装方便以及价格低廉等特点,在很大程度上迅速代替了金属、木材、玻璃甚至纸制品,被广泛应用于国民经济各个部门。据统计,全世界每年的塑料产量近1亿t,在三大合成材料中约占其总产量的75%以上,与钢铁的体积产量之比已达到92%。美国自1974年以来,塑料行业一直发展很快,发展速度为其他工业的2倍。1979年美国的塑料产量首次超过了钢铁产量。塑料在美国四大材料中名列第二。我国于20世纪50年代末期开始发展塑料加工工作,当时着重发展日用塑料制品(如塑料鞋、日用塑料薄膜制品),后开始努力发展农用塑料制品,满足水稻育秧和大棚用膜需要,以提高水稻及蔬菜的产量并延长蔬菜供应时间。目前我国农地膜和应用耕地面积已为世界之最。据1996年不完全统计,我国塑料制品总产量已达800万t[1]o

塑料的诞生确实给人们的日常生活带过来很广东省自然科学基金(970468)多方便。然而,随着塑料工业发展到一定的程度,其本身存在的一些隐患也逐渐暴露出来。塑料的化学稳定性使得塑料在自然界中几乎不被降解,塑料垃圾越来越多,弃于环境中的塑料废弃物、残膜急剧增加,几乎到了随处可见、无处不有的程度。以我国的塑料包装为例,其中一次性包装材料如以1/3计,每年就有70多万t的塑料废弃物作为垃圾抛弃[2]。

塑料垃圾不仅影响环境美观,而且污染了水源和土壤,危及禽畜及野生动物,给地球生态环境带来了沉重负担。由于现行塑料主要是以石油基聚合物为基础的,其污染又具有污染范围广、污染物量增长快、处理难、回收利用难、对生态环境危害大等特点。而且,由于其质量轻,总体积十分惊人。有资料表明,在日本海域的漂浮物中,有60%是废弃的发泡聚苯乙烯和乙烯基塑料[3|。以重量计,塑料垃圾的重量也占全球垃圾总量的8%,且在继续增加。

目前对塑料废弃物的处理,主要采用回收、焚烧、掩埋等方法,但效果均不理想。如做填埋处理,不但占用土地,而且由于一般塑料要经200~400年才会降解因而对土壤造成长期危害;做焚烧处理,会产生有害气体,形成对环境的二次污染;做回收处理,则仅可处理25%的塑料垃圾,且因为回收技术跟不上,使得处理费用过高,并且回收产品的性能和使用价值会大大降低[4]。因而,越来越多的人提倡开发和应用降解塑料。

_==J98

2005.V01.26.NO.5食品研究与再发综述

美国农业部研制的PE与淀粉的共聚物,采用乙烯一丙烯酸共聚物(EAA)作为增容剂,利用EAA中所含有的羧基和淀粉分子链上的羟基起反应生成脂类,改变了淀粉的表面特性。经过改性的淀粉在其表面形成了一层与聚乙烯相容性很好的表面层,不仅使淀粉颗粒很容易地分散到聚乙烯中,而且也大大增加了聚乙烯与淀粉之间的结合力[6]。

若用硅烷处理,塑料中淀粉的含量可达6%一0%。加拿大的St.Lawrence淀粉公司将淀粉经硅烷偶联剂作疏水处理,加入玉米油作为自动氧化剂,当遇到土壤的金属盐时,自动氧化剂形成过氧化氢,使聚合物分子链断裂。被用于HDPE、LDPE及PS等。生产的含12%或6%淀粉的含有Ecostar母料的聚烯烃薄膜分别在6个月或3年内分解。此外改性淀粉乙酸乙脂共聚物与LDPE共混挤出也得到了力学性能良好的淀粉基生物降解塑料[I¨9|。3.1.2化学改性淀粉填充塑料。

通常是把淀粉与一些烯类单体接枝共聚形成改性淀粉,然后再加入到淀粉与聚合物混合体系中,形成均匀的分散体系,从而使产品既具有生物降解性又有良好的力学性能。与淀粉共聚的单体常用乙烯、丙烯、丙烯腈、乙酸乙烯脂、丙烯酸胺、丙烯酸机器脂类。已开发的淀粉基塑料主要有:淀粉接枝丙烯、丙烯丁脂、甲基丙烯酸甲脂、苯乙烯等。目前生产PE生物降解膜很常用的化学改性淀粉是淀粉一乙烯一丙烯酸共聚物。

淀粉接枝共聚的途径主要有自由基引发接枝共聚和缩聚接枝共聚。其中自由基引发使淀粉和其他单体接枝共聚的方法研究较为成熟,使用较为普遍。分为物理引发和化学引发。

物理引发法如用放射元素co的1一射线或电子束照射;还可用紫外线照射引发淀粉与多种丙烯单体起接枝共聚反映;也有机械物理引发技术,如撕捏、球磨、冻结后熔化淀粉乳液等,使淀粉受到机械剪切后分子破裂,在破裂点产生自由基。

化学引发法是利用氧化还原作用。常用的引发剂多为铈(Ⅳ)盐、锰(Ⅲ)盐,如硝酸铈铵溶液等。其缺点是铈盐价格较贵。我校的张力田和何小维曾经研究用高锰酸钾为引发剂引发木薯粉与丙稀腈的接枝共聚反应,测出最佳反应条件为:高锰酸钾浓度7.7~8.2×10mol,丙稀腈与淀粉摩尔比6~8,30~350c反应1h;并将木薯粉和加热糊化后的木薯粉分别与高锰酸钾进行接枝共聚,分别皂化其共聚物后测定吸水能力,并比较结果。结果表明:加热糊化木薯粉的接枝百分率、接枝频率和皂化共聚物的吸水能力都比木薯粉有大幅度提高∞]。

其他的化学引发剂还有过氧化氢(或有机过氧化氢物或无机过硫酸盐)+亚铁盐(或亚硫酸钠)、臭氧+氧气、淀粉黄原酸脂+过氧化氢等,此外铜离子能引发淀粉溶液与甲基丙烯酸甲脂起接枝共聚反应。但它们的引发效果都不如铈盐理想∽]。

此外还有阴离子型淀粉接枝法,如美国Purdue大学开发的淀粉接枝聚苯乙烯,采用的就是阴离子聚合反应,分子质量和物性均能有效控制,其中含淀粉20%~30%的淀粉接枝聚合物具有通常聚苯乙烯类似的性质,可以用做瓶子、薄膜等。

福建省粮油技术研究所和福建省塑料技术研究所成功地以普通盐类为引剂,以氧化玉米淀粉为原料,经增水处理,与单体接枝共聚后再分散、增容、共炼、吹塑加工成可生物降解垃圾袋、包装袋和农用地膜以及注塑加工片材。

3.2淀粉基完全生物降解塑料

进入20世纪90年代后,淀粉的主攻方向(特别是国外)是以淀粉为主要原料的完全生物降解塑料并取得了一定进展。

3.2.1淀粉与可降解高聚物共混。

与淀粉共混的可降解合成材料主要为聚乙烯醇(PVA)、聚羟基丁酸脂(PHB)、聚羟基戊酸脂(PHV)、PHB—PHV共聚物、聚己内脂(PCL)等等。这些聚合物可生物降解,产物无害。如PHB降解后产生的3一羟基丁酸,就是人体血液中正常的代谢产物,而且PHB具有热塑性。

目前国外已有几种商品问世,意大利的Nova.ment/Foruzzi公司生产的改性淀粉/改性聚乙烯醇生物降解塑料,商品名为“Mate卜Bi,,,是由60%的淀粉和40%的聚乙烯醇(OVA)组成的具有完全生物降解性的淀粉塑料㈤。此外还有英国的“Biopol”等。这些产品具有良好的力学性能和加工性能,使用后又可做到完全生物降解,对环境无害,但价格昂贵,比PE等通用塑料贵4—8倍,故目前较难推广,只是小批量生产,在医疗卫生和高档化妆品、高附加值产品等行业试用。

国内则有江西科学院应化所、重庆市化工研究所、山西祁县联合化工厂,都成功地研制了PVA和淀粉或改性淀粉共混的塑料,其中江西科学院应化所研制的塑料中淀粉含量达60%嘶]。

淀粉基生物降解塑料的研究进展

作者:何小维, 罗志刚, HE Xiaowei, LUO Zhigang

作者单位:华南理工大学轻工与食品学院,广州,510640

刊名:

食品研究与开发

英文刊名:FOOD RESEARCH AND DEVELOPMENT

年,卷(期):2005,26(5)

被引用次数:5次

参考文献(32条)

1.丁浩塑料工业使用手册 1995

2.邱清华全淀粉热塑性塑料研究进展[期刊论文]-现代工业 1999(09)

3.张钦可完全生物降解塑料 1999(06)

4.R Narayan.W Lafayette Environmentally Degradable Degradable Plastics 1989(79)

5.杜忠学生物降解塑料的开发状况和评价试验方法 1996(01)

6.梁兴荣国外降解塑料发展动向 1993(02)

7.马书斌生物降解塑料研究开发中的几个问题 1993(06)

8.杨惠娣国内外生物降解塑料标准化现状和动向 1998(06)

9.孙家寿可降解塑料的开发动向 1994(03)

10.古平降解塑料及其应用 1999(02)

11.邱威扬塑料淀粉研究进展 1993(12)

12.邱威扬我国的淀粉塑料宜慎重开发 1997(12)

13.黄根龙治理塑料废弃物新技术途径探讨--专论可降解塑料的研究开发[期刊论文]-化学进展 1998(02)

14.陈然可降解塑料的研究开发进展 1998(06)

15.Jan-Chan Huang Biodegradable Plastics:A Review 1990(01)

16.李谊完全降解性淀粉塑性材料的研究 1997(02)

17.裘淑媛生物降解塑料和环境保护[期刊论文]-安庆师范学院学报(自然科学版) 1998(04)

18.罗明典生物可降解塑料制品的发展趋势 1998(02)

19.胡靖BDM型淀粉基生物降解地膜的研制及应用 1994(02)

20.何光波淀粉基生物降解聚合物 1996(02)

21.李道平降解塑料发展动向及反应性双螺杆挤出机的开发和应用 1995(06)

22.李宁生查看详情 1994(02)

23.张力田高锰酸钾引发木薯淀粉与丙烯腈接枝共聚的研究 1988(03)

24.张力田变性淀粉 1992

25.廖正品中国塑料行业考察团赴美考察报告 1994(01)

26.张捷多糖类生物降解材料的研究进展 1995(06)

27.段梦林日本生物降解性塑料的开发动向和进展 1996(03)

28.高建平生物可降解热塑性淀粉的开发 1997(06)

29.张元琴国内外降解塑料的研究进展 1999(01)

30.陈崧哲填充型降解塑料的研究进展 1998(03)

31.陈乐怡发泡聚烯烃技术进展 1990(04)

32.王克智塑料助剂的开发及应用[期刊论文]-塑料科技 1997(01)

相似文献(10条)

1.期刊论文王云芳.王汝敏.赵瑾.郭增昌.WANG Yunfang.WANG Rumin.ZHAO Jin.GUO Zengchang淀粉基环境可降解

高分子材料研究进展-材料导报2005,19(4)

介绍了淀粉的基本性质,阐述了两类淀粉基环境可生物降解高分子材料的研究开发和发展现状,讨论了其制备原理、方法和存在的问题,并指出了发展方向.

2.会议论文陈庆.肖培机械力化学改性在淀粉塑料中的应用研究2005

介绍了机械力化学的概念和发展概况,综述了淀粉微细化在淀粉塑料中的应用和发展概况,展望了机械力化学改性在淀粉塑料中的应用前景和发展方向.

3.学位论文周敏淀粉/聚乙烯塑料中聚乙烯光降解特性研究2001

在降解塑料领域中,淀粉基塑料的开发应用越来越广泛,成为解决塑料垃圾问题的最有效方法之一.该文研究了淀粉/聚乙烯塑料受紫外光照射时淀粉对聚乙烯的光降解特性的影响.

4.期刊论文陈庆.肖培.CHEN Qing.Xiao Pei机械力化学改性在淀粉塑料中的应用研究-塑料工业2005,33(z1)

介绍了机械力化学的概念和发展概况,综述了淀粉微细化在淀粉塑料中的应用和发展概况,展望了机械力化学改性在淀粉塑料中的应用前景和发展方向.

5.会议论文陈庆机械力化学改性在淀粉塑料中的应用研究2008

介绍了机械力化学的概念和发展概况,综述了淀粉微细化在淀粉塑料中的应用和发展概况,展望了机械力化学改性在淀粉塑料中的应用前景和发展方向.

6.会议论文陈庆机械力化学改性在淀粉塑料中的应用研究2006

本文介绍了机械力化学的概念和发展概况,综述了淀粉微细化在淀粉塑料中的应用和发展概况,展望了机械力化学改性在淀粉塑料中的应用前景和发展方向.

7.学位论文董彩虹BT促进淀粉塑料降解及其淀粉包囊制剂的研究1997

该文研究了苏云金杆菌对淀粉聚乙烯塑料中淀粉降解的促进作用;苏云金杆菌的淀粉包囊制剂的试制及其抗紫外线的能力.

8.期刊论文朱常英.由英才.寇小娣.徐家毅.ZHU Changying.YOU Yingcai.KOU Xiaodi.XU Jiayi含淀粉生物降解

型塑料-离子交换与吸附2000,16(2)

本文综述了各种含淀粉塑料的基本组成,性能及应用前景.

9.会议论文张卫英.夏声平.李晓热塑性全降解淀粉塑料的研究与开发2003

淀粉是一种刚性较大而又带有许多支链的生物高分子,天然淀粉的邻近分子间存在氢键,形成微晶结构的完整颗粒,一般结晶度较大。高结晶度的淀粉熔点高于淀粉的分解温度,因此不能象普通塑料那样在通用设备上加工成型。要使淀粉具有热塑性就必须破坏晶区,使其分子结构无序化,这就要求对淀粉进行塑化改性。

赋予淀粉以热塑性往往是通过加入增塑剂来达到的。增塑剂能削弱淀粉分子间的氢键作用,提高分子链的扩散能力,使淀粉在分解前实现微晶的熔融,分子由双螺旋构象转变为无规线团构象,从而使淀粉具备了热塑性加工的可能性。淀粉的塑化通常在塑料混炼设备(如挤出机或开炼机)上完成,淀粉颗粒在增塑剂、机械剪切和热的作用下,发生润涨、破碎直至分子的双螺旋结构打开,最终实现完全熔融。

10.会议论文陈庆.陈坷生物降解淀粉塑料加工中双螺杆挤出机螺杆组合2006

本文在介绍啮合同向双螺杆挤出机特点的基础上,对其在生物降解淀粉塑料加工工艺中的关键问题--螺杆组合进行了探讨,结合双螺杆挤出机每个功能段的作用提出了螺杆最佳组合原则.

引证文献(5条)

1.郑晓燕淀粉基生物降解塑料研究进展[期刊论文]-粮食与油脂 2008(12)

2.符秀科.王建清可降解塑料包装材料的现状及发展[期刊论文]-塑料包装 2008(4)

3.刘学.王佩璋不同处理方法对淀粉/LDPE共混物性能的影响[期刊论文]-塑料 2008(3)

4.陈庆.杨欣宇生物降解塑料中国专利分析研究[期刊论文]-塑料工业 2007(z1)

5.曾方.王文广.夏邦富可生物降解高分子材料的研究进展及应用[期刊论文]-塑料制造 2006(8)

本文链接:https://www.360docs.net/doc/433333199.html,/Periodical_spyjykf200505066.aspx

授权使用:江苏大学图书馆(wfhyjs04),授权号:a6f319f8-811d-478b-8f21-9e1401792598

下载时间:2010年10月19日

淀粉基生物降解塑料的应用研究进展

淀粉精细化学品 淀粉基生物降解塑料的应用研究进展 班级:2010级高分子材料与工程(2)班 姓名:郭艳艳 学号:P102014327 时间:2012-10-22 淀粉基生物降解塑料的应用研究进展 摘要:本文介绍了淀粉的结构和性能,淀粉基塑料的分类,阐述了其降解机理,重点综述了的生物降解材料的应用情况及研究进展概况,并在使用材料出现的问题的基础上提出淀粉基降解塑料的发展趋势。 关键词:淀粉基,降解塑料,生物降解 以淀粉为原料的塑料是具有广泛应用前景的生物可降解材料,它具有来源丰富,价格低廉,可重复再生,易生物降解以及阻氧性能好等优点, 因此用该材料加工的产品不仅是传统一次性塑料制品的极好替代品,同时也是二十一世纪的新型绿色包装材料,将引发包装行业的一次绿色革命。同时,淀粉基生物降解塑料可缓解普通塑料带来的“白色污染“问题,对于保护人类环境,促进人与自然的和谐统一,推动绿色“GDP”增长具有重要意义,符合国家可持续发展战略。 1 淀粉的结构及性能 淀粉分子式为(C6H10O5)n,结构式: 图1.1 天然淀粉是以内部有结晶结构的小颗粒状态存在的,其分子结构有直链和支链两种。对于不同的植物品种,其淀粉颗粒的形状,大小以及直链淀粉和支链淀粉含量的比例都各不同。淀粉颗粒的粒径大都在15~ 100μm。直链淀粉是由α-1,4葡萄糖苷键连接的线性葡聚糖聚合物,相对分子质量为(20~200)×104 ,而支链淀粉是由α-1,4 和α-1,6 糖苷键连接的具有分支结构的葡聚糖聚合物,相对分子质量为(100~400)×106。 天然淀粉分子间存在氢键,溶解性很差,亲水但并不易溶于水。加热时没有熔融过程,300℃以上分解。然而淀粉可以在一定条件下通过物理过程破坏氢键变成凝胶化淀粉或解体淀粉。这种状态的淀粉结晶结构被破坏,分子变得无序化。有两种途径可以使淀粉失去结晶性:一是使淀粉在含水>90%的条件下加热,至60-70℃时淀粉颗粒首先溶胀,而后达到90℃以上时淀粉颗粒消失而凝胶化。二是在水含量<28%的条件下将淀粉在密封状态下加热,塑炼挤出。这种淀粉和天然淀粉颗粒不同,加热可塑,称为热塑性淀粉,这种淀粉可制备淀粉塑料,同时实验研究表明,直链淀粉更适合制备塑料制品,且机械性能优良。 2 淀粉基塑料的分类 2.1 填充型淀粉基塑料 填充型淀粉塑料又称生物破坏性塑料,其制造工艺是在通用塑料中加入一定量的淀粉和其他少量添加剂,然后加工成型,此类产品淀粉含量都不是很高,淀粉含量不超过30%,这是因为淀粉和塑料树脂的极性相差较大,相互黏结性差,增加淀粉含量会造成拉伸强度和断裂伸

淀粉的研究进展

淀粉精细化学品 课题名称:淀粉衍生物絮凝剂的研究进展 姓名:马玉林 学号:P102014101 专业年级:10级化学工程与工艺一班 2012年10月22日

淀粉衍生物絮凝剂的研究进展 马玉林 (西北民族大学,甘肃兰州730100) 【摘要】近年来,全世界对淀粉衍生物絮凝剂的研究、开发、应用方面取得了显著进展。文章对淀粉衍生物絮凝剂的研究进行了综述,指出淀粉絮凝剂在研究中存在的问题和发展趋势,认为改性淀粉絮凝剂是最有发展前景的绿色絮凝剂之一。 【关键词】絮凝剂;改性淀粉;废水处理 近年来,合成有机高分子絮凝剂由于具有相对分子质量大、分子链官能团多的结构特点,在市场占绝对的优势。但随着石油产品价格不断上涨,其使用成本也相应增加,并且合成类有机高分子絮凝剂由于残留单体的毒性,也限制了其在水处理方面的应用。20世纪70年代以来,美、英、日和印度等国结合本国天然高分子资源,开展了化学改性有机高分子絮凝剂的研制工作。经改性后的天然高分子絮凝剂与合成有机高分子絮凝剂相比,具有选择性大、无毒、廉价等显著特点。 在众多天然改性高分子絮凝剂中,淀粉改性絮凝剂的研究、开发尤为引人注目。因为淀粉来源广。价格低廉。并且产物完全可被生物降解,因此,进入20世纪80年代以来,改性淀粉絮凝剂的研制开发呈现出明显的增长趋势,美、日、英等国家在废水处理中已开始使用淀粉生物絮凝剂,进几年,我国研究淀粉衍生物作为水处理絮凝剂也已取得了较大的进展。 1 淀粉类絮凝剂 淀粉的资源十分丰富,自然界中淀粉的含量远远超过其他有机物,是人类可以采用的最丰富的有机资源,也是开发最早、最多的一类天然高分子絮凝剂。淀粉分子带有许多羟基,通过这些羟基的酯化、醚化、氧化和交联等反应,可改变淀粉的性质。淀粉还能与屏息脂、丙烯酸、丙烯酰胺等人工合成高分子单体起连枝共聚反应,分子链上接有人工合成高分子链,使共聚物具有天然高分子和人工合成高分子两者的性质。 目前,改性淀粉已广泛用于食品、石油、造纸、电镀、印染和皮革等工业废水处理、污泥脱水,饮用水净化,重金属离子去除和矿物冶炼。淀粉衍生物絮凝剂主要有以下4种。 1.1阳离子型淀粉衍生物絮凝剂 阳离子型淀粉衍生物絮凝剂可以与水中微粒起电荷中和及吸附架桥作用,从而使体系中的微粒脱稳、絮凝而有助于沉降和过滤脱水。它对无机物质悬浮或有机物质悬浮液都有很好的净化作用,使用的pH范围宽,用量少,成本低。 阳离子淀粉是在碱性介质中,由胺类化合物与淀粉的羟基直接发生亲核取代

淀粉基可降解一次性餐具市场分析

玉米淀粉基降解制品项目可行性研究报告 1.玉米淀粉基降解餐具产品概述: 1.1诠释含义 玉米淀粉基降解环保餐具,是采用天然玉米淀粉及植物纤维为基料,辅之以生物聚酯、多元醇等物质加工而成,其淀粉含量最高可达80%,在土壤和自然环境下可以自然降解,对环境无污染、无破害。节约了石油等不可再生资源,是目前餐饮市场上普遍使用却饱受争议的“消毒餐具”的理想替代品。 1.2优点 1、可降解:在自然界(光和土壤)中具有可自然降解的特性。 2、强度好:可满足消费者使用需求。 3、不渗漏:密封性能好,不渗漏。 4、无异味:以玉米淀粉为原料,产品带有淡淡的爆米花清香。 5、耐温性:可耐高温150℃、低温-40℃,在微波炉和冰箱中亦可放心 使用。 6、抗油脂性:能够耐受食物中的大量油脂。 1.3优势(淀粉的、降解的、环保的、健康的、低碳的) 1、淀粉的——原料天然:以天然玉米淀粉为原料,可持续供应,使天然资源重复使用,循环不息。 2、降解的——安全可降解:原料为天然高分子化合物,能在自然环境下实现降解。 3、环保的——绿色环保:产品使用后在自然环境中能快速被微生物降解,成为植物养料,真正做到源于自然,还于自然,有效解决白色污染带来的环境破坏。 4、健康的——无毒害性:原料天然,生产过程无菌生产,消毒检验严格,产品降解后不会对土壤及空气产生毒害,无二次污染的危害。

5、低碳的——替代性强:可替代以石油为原料的塑料制品和以木材为原料的纸制品。 1.4玉米淀粉基降解制品工艺流程及生产资料 后见附件一、附件二、附件三 1.5建设项目的目的及意义 二十世纪初时,石油和化学工业的迅速发展,塑料以其良好的热性能和化学的稳定性,作为一类新型的材料,浩浩荡荡地进入了人类社会的生活中,给人类社会的工业生产和生活带来了许多方便,其使用价值也得到了广泛的认可,这是积极的方面,但也给人类社会带来了许多负面的影响,特别是人类生活中一次性使用塑料制品(如:农用地膜、餐盒、各种包装袋、饮料杯、防震材料等)。在完成其使用功能后即被丢弃,而其回收利用率很低,大量废弃塑料只能够采取焚烧、填埋、倾倒的简单方式进行处理,从而对自然环境和生态环境造成了严重的污染和破坏,是形成全球变暖,破坏生态的一大公害。国际上称这新的污染源为“白色污染”。 “白色污染”在生活环境中,多次水灾是由于塑料废弃物堵塞了涵洞造成严重的经济损失;废弃塑料通过焚烧之后释放出大量的二恶因及残留的氯化物、重金属离子等有害物质,台湾的大众称之为世纪毒气,严重地危害着人类和生物的生存和繁衍;通过填埋处理,塑料膜需百年后才能分解,隔断了土壤与植物毛细根系的相依相容性,不但阻断了植物根系对低水份、营养的吸收,同时使得植物的根系扎不下去,造成禾苗“吊死”现象。 基于上述多年以来给生态环境造成的危害,许多国家都纷纷把治理“白色污染”当作国策来抓:美国35个州、欧共体以及日本、韩国、新加坡等发达国家相继制定了法规;中国也于1996年4月1日正式颁布了具有划时代意义的《固体废弃物污染环境管理法》;中国七个部委联合发出《通告》,要求从2000年起至年底之前,彻底清除一次性发泡聚苯乙烯(EPS)餐具的生产、销售和使用,以降解塑料制品替代;台湾从2002年起实施禁用购物用塑料袋及塑料类免洗餐具,欧盟各国从2006年5月1日开始对含塑料类包装货物征收货物总值的7%环保税。 随着国际石油资源的日益紧缺,油价不断高涨,节约石油资源、保护能源是当今国际社会和各国政府的重点关注的热点也是摆在各国政府重要议程而本项目的主要原材料是玉米淀粉,是取之不尽的可循环资源,既节约石油资源,保护生态平衡又提高农副产品付加值增加农民的收入。 综上所述足以证明全世界各国各地区政府对日常生活中一次性塑料制品所造成的危害充分重视。纷纷列入政府的重要议事日程中,彻底清除的决心扰然可

小麦中的淀粉酶及其研究进展

小麦中的淀粉酶及其研究进展 摘要:从各个方面来研究了小麦中淀粉酶的功能作用以及它的作用机理,通过研究可知,小麦中的а-淀粉酶和β-淀粉酶对食品的品质的影响起着重要的作用。并通过国内外的研究进展来进一步说明小麦中淀粉酶的研究是很有必要的。最后提到了淀粉酶的添加来弥补某些淀粉酶不足以满足食品加工的小麦。本文主要从小麦中的淀粉酶研究意义,国内外小麦中的淀粉酶的研究近况以及未来的发展方向进行了较为全面的综述。 关键词:小麦;淀粉酶;研究进展 在活细胞中进行着大量的化学反应的特点是速度很快,且能有秩序的进行,从而使得细胞同时能进行各种降解代谢及合成代谢,以满足生命活动的需要。生物细胞之所以能够在常温常压下以极高的速度和很大的专一性进行化学反应是由于其中存在一种称为“酶”的生物催化剂。而在小麦的生长,储存,加工等环节中,其中存在的酶就具有非常重要的作用,小麦中的酶会影响着小麦的储存,加工等品质。小麦粉中的淀粉酶主要有3类,即а-淀粉酶,β-淀粉酶和葡萄糖淀粉酶。其中与面包烘焙有关的主要是а-淀粉酶和β-淀粉酶,而且а-淀粉酶与小麦的储藏品质也有着极其密切的关系。所以对小麦中的淀粉酶进行研究是十分有必要的。 1.研究小麦中的淀粉酶的意义 小麦中的淀粉酶主要有а-淀粉酶,β-淀粉酶和葡萄糖淀粉酶这三类。面粉有很多用途,可以制成各种不同的成品食品。而面粉大多数都是小麦面粉,可见要研究面粉就的研究小麦,并且小麦中的а-淀粉酶,β-淀粉酶与面包烘焙有关,而且а-淀粉酶与小麦的储藏品质也有着极其密切的关系。所以研究小麦中的淀粉酶是非常有意义的。通过研究可以更好地把握不同小麦品种的淀粉酶的性质,来改善淀粉酶,从而来改进食品品质。 1.1小麦中的а-淀粉酶对面包品质的影响 大量的研究已证实,由于淀粉酶在发酵过程中对淀粉分子进行了有益的修饰,进而改善了面包的质地、体积、颜色、货架寿命等方面的性质,具体影响如下[1,2]: 1.1.1 а-淀粉酶对面包品质的影响 ○1а-淀粉酶能增大面包体积。а-淀粉酶是通过适当阻止面筋的形成来使面包体积增加的,

抗性淀粉研究进展

抗性淀粉研究进展 摘要:抗性淀粉是膳食纤维的一种,对于人体健康具有重要的食用价值和保健作用。本文就抗性淀粉的分类、制备方法、对人体的生理功能、及其在食品中的应用进行综述。 关键词:抗性淀粉;生理功能;食品应用 抗性淀粉(resistant starch,RS)是膳食纤维的一种,是人类小肠内不能消化吸收,但能在结肠发酵的淀粉及其分解产物[1]。1982年,英国生理学家Englyst发现并非所有淀粉都能被α-淀粉酶水解,由此提出抗性淀粉这一概念[2]。因为抗性淀粉在小肠内不被消化吸收,而是进入结肠被肠道微生物利用发酵产生短链脂肪酸再被吸收,有利于其能量缓慢释放,此外,还能产生二氧化碳、甲烷等气体维持结肠良好的微生态环境,有研究发现短链脂肪酸还能降低人体的胆固醇,这些功能都改善了人体健康。抗性淀粉的热量较低,热值一般不超过10.0-10.5KJ/g[3],具有膳食纤维的功能特性,但在食品加工能克服膳食纤维的某些缺点,改善食品品质。目前,人们已经将抗性淀粉应用在面条、饼干、酸奶等食品中。本文主要从抗性淀粉的分类、制作方法、健康特性、食品应用方面进行阐述。 1 抗性淀粉的分类 普通淀粉的形状为圆形或椭圆形轮廓,光滑平整;抗性淀粉为不规则的碎石状,表面鳞状起伏[4]。高直连淀粉(如玉米、大麦)是RS的主要来源,一般来说,直链淀粉与支链淀粉的比例比值越大,抗性淀粉的含量越高[5]。此外,抗性淀粉的颗粒大,因其体面积比大,与酶接触机会小,水解速度慢。宾石玉[2]等的研究测定高直连玉米淀粉、玉米、早籼稻糙米、糯米的抗性淀粉的含量分别为44.98%、3.89%、1.52%和0。 1.1 物理包埋淀粉(RS1) 因淀粉包埋在食物基质(蛋白质、细胞壁等)中,这种物理结构阻碍了淀粉与淀粉酶的接触而阻碍淀粉的消化,一般通过碾磨、破碎等手段可破坏包埋体系而转变为易消化淀粉。典型代表:谷粒、种子、豆类。 1.2 抗性淀粉颗粒(RS2) 主要存在水分含量较低的天然淀粉颗粒中,由于淀粉颗粒结构排列规律,晶体结构表面致密使得淀粉酶不易作用,从而对淀粉酶产生抗性,可通过热处理如蒸煮使其糊化失去抗性。典型代表:生的薯类、青香蕉淀粉颗粒。 1.3 回生淀粉(RS3) 食品加工过程中发生回生作用而形成的抗性淀粉。因淀粉颗粒在大量水中加热膨胀最终崩解,在冷却过程中,淀粉链重新靠近、缠绕折叠,定向排列成的紧密的淀粉晶体结构,而不易与淀粉酶结合。典型代表:加热放冷的马铃薯、红薯以及过夜的米饭。 1.4 化学改性淀粉(RS4) 通过化学改性(酯化、醚化、交联作用)或基因改良而引起淀粉分子结构发生变化而不利于淀粉酶作用的淀粉。典型代表:交联淀粉、基质改良粘大米。 1.5 淀粉脂质复合物(RS5) 当淀粉与脂质之间发生相互作用时,直连淀粉和支链淀粉的长链部分与脂肪醇或脂肪酸结合形成的复合物称RS5。脂质存在于RS5淀粉链中的双螺旋中,使得淀粉结构发生改变,不溶于水,且具热稳定性,不易与淀粉酶反应[6]。典型代表:含有淀粉和脂质的谷物和食品。 2 抗性淀粉的制备 从抗性的制备工艺方面,RS3 型抗性淀粉具有生产安全、易于控制及热稳定性好的优点,因此是最具有工业化生产与广阔的应用前景的一类抗性淀粉。抗性淀粉的产率与原料中的直链淀粉含量成正比,随着直链淀粉与支链淀粉的比例增高,抗性淀粉产率由7.61%增大至

小麦抗性淀粉的研究进展

小麦抗性淀粉的研究进展 摘要:该文主要阐述了抗性淀粉的理化性质、制备工艺和遗传特性的研究现状,最后简介其其在食品工业中应用前景。 关键词:小麦、抗性淀粉、RS3 1983 年,英国生理学家 Hans Englyst 首先将一部分在人体肠胃中不被淀粉酶消化的淀粉定义为抗性淀粉(Resistant Starch,简称 RS)[1]。近年来碳水化合物与健康关系的研究发现,抗性淀粉具有提供能量,降低食物热效应[2],调节、保护小肠, 防止糖尿病和脂肪堆积以及促进锌、钙、镁离子的吸收[3]等功能, 因此 RS 已成为近年来碳水化合物研究的热点之一。 抗性淀粉是一种无异味、持水性低、多孔性白色粉末,抗性淀粉至今尚无化学上精确分类,目前大多根据淀粉来源和人体试验结果,将抗性淀粉分为4种类型:RS1(物理包埋淀粉)、RS2(抗性淀粉颗粒)、RS3(回生淀粉)、(化学改性淀粉),其中 RS3是研究和应用最广泛一种。RS3是指糊化后的淀粉在冷却或储存过程中部分重结晶,由于结晶区的出现,阻止淀粉酶靠近结晶区域的葡萄糖苷键,并阻止淀粉酶活性基团中的结合部位与淀粉分子结合,造成不能完全被淀粉酶作用而产生抗酶解性。 小麦是当今产量最大的粮食作物之一。随着小麦深加工的发展,小麦淀粉工业在我国发展迅速,但由于小麦淀粉加工适应性差,其在实际领域中并未得到很好的应用。因此选择以小麦淀粉为原料开发抗性淀粉产品,具有理论和实际上的重大意义。 一、小麦抗性淀粉的理化性质研究 小麦抗性淀粉的数均分子量为3198,重均分子量为7291,抗性淀粉形成过程中,其分子结构特征没有变化[4]。 Behall 等[5]对 RS 的理化特性进行了分析,表明 RS 为白色无异味的多孔性粉末,平均聚合度在 30-200 之间,在 100-165℃之间直链淀粉晶体熔融,产生吸热反应;耐热性高,持水性低,含热量低。X-衍射表明, RS 在空间上形成双螺旋结构,分离的 RS 的衍射图谱显示其为 B 型晶体结构[6]。 邵秀芝等[7]采用微波—酶法制备小麦抗性淀粉,并对其物理性质惊醒了研究。发现其与原小麦淀粉相比,小麦抗性淀粉表面粗糙,形状变得不规则,结晶结构为B 型和 V 型结合体,持水性大于原淀粉,而乳化能力和乳化稳定性均低于原淀粉;在相同溶液浓度条件下,抗性淀粉粘度比原淀粉低得多。 王娟等等[8]利用压热法制备小麦抗性淀粉 RS3,并考察其部分理化性质及结构性质。结果表明,该产品含抗性淀粉 13.89%,透光率较好,持水力、溶解度和膨胀度都随水浴加热温度的升高而上升。其淀粉-碘复合物最大吸收波长为 594 nm,碘吸收曲线在 580~610 nm之间呈较宽的吸收峰。该产品颗粒形状大部分为圆形,偏光十字明显,多呈十字型,且交叉点均位于颗粒中心;起糊温度为68.7 ℃,糊化不易发生,但较易老化。淀粉颗粒结晶结构为 C 型,仍保留了小麦淀粉红外光谱的特征吸收峰。

羟丙基淀粉研究进展

羟丙基淀粉研究进展 [摘要] 综述了羟丙基淀粉的理化性质、分析测试方法,合成工艺及以羟丙基淀粉基的复合变性淀粉,并对羟丙基淀粉研究进行了展望。 [关键字] 羟丙基淀粉性质合成工艺复合变性分析测试 [Abstract] This paper examines the physicochemical properties, the instrumental analytical methods, the synthesis technology of hydroxypropyl starch, and the complex modification of hydroxypropyl starch. And this examination includes a prospect of science and technology of hydroxypropyl starch in the last part. [Keywords] hydroxypropyl starch synthesis technology Physicochemical Properties complex modification Analytical Test 羟丙基淀粉是食品、石油、纺织、印刷、造纸、印染等行业不可缺少的生产助剂,随着科技的发展、经济的繁荣、行业竞争的日益激烈,对羟丙基淀粉使用性能、生产工艺、成本控制也提出了更高的要求。 1 羟丙基化对淀粉理化性质的影响 淀粉羟丙基化是指醚化剂与淀粉葡萄糖单元的羟基作用,使淀粉分子在该位置联接一个或多个羟丙基单元,非离子性的羟丙基与淀粉分子之间以强稳定的醚键联结使得羟丙基淀粉具有非常优秀的耐PH值性能。 1.1 降解性 由于羟丙基化使淀粉分子链间隔变大,结晶破坏,因此随摩尔取代度增加淀粉更易降解;但也有实验显示摩尔取度较低的羟丙基淀粉比原淀粉更易水解,但随着摩尔取代度的增加羟丙基淀粉的水解率和水解难易程度都要低于原淀粉,这种现象在马铃薯淀粉,蜡质玉米淀粉,木薯淀粉中都存在,这是由于摩尔取代度高低不同的羟丙基淀粉水解机理不同造成的。 1.2 降滤失性 亲水性羟丙基的引入破坏了淀粉颗粒的内部结构,弱化了分之间的氢键作用力,明显提高了淀粉对水的包容性,降滤失作用。需要注意的是羟丙基淀粉在水中的溶解度随取代度的提高而增大,随温度升高而增大。 1.3 淀粉糊性质 (1)成糊温度:羟丙基淀粉成糊温度随取代度的增加而降低也是本领域公认的事实,James曾测定羟丙基含量每提高1%(W%),成糊温度降低致少6.5℃。(2)糊化

淀粉基生物降解材料

海南大学 毕业论文(设计) 题目:淀粉基生物降解材料 学号:20110402310001 姓名:陈广平 年级:2011 学院:材料与化工学院 专业:高分子材料与工程(塑料)指导教师:赵富春 完成日期:2014 年11 月23 日

淀粉基生物降解材料 摘要 淀粉基生物降解材料是一类很重要的可降解高分子材料。随着08年政府大力发展可降解塑料政策的出台,淀粉基生物降解材料近几年得到了飞速的发展,各类研究成果层出不穷。淀粉与高分子材料复合方法,淀粉的改性方法也多种多样。本文着重介绍淀粉基生物降解材料的一些基本知识:淀粉基生物降解材料的结构与性质、生物降解的定义及原理、降解性能的影响因素、应用与发展…等。 关键词:淀粉生物降解降解性能应用与发展 合成高分子材料具有质轻、强度高、化学稳定性好以及价格低廉等优点,与钢铁、木材、水泥并列成为国民经济的四大支柱[1]。然而,在合成高分子材料给人们生活带来便利、改善生活品质的同时,其使用后的大量废弃物也与日俱增,给人类赖以生存的环境造成了不可忽视的负面影响[2]。另外,生产合成高分子材料的原料一一石油也总有用尽的一天,因而,寻找新的环境友好型材料,发展非石油基聚合物迫在眉睫,而淀粉基可生物降解材料正是解决这两方面问题的有效途径。 1、淀粉的基本性质 淀粉以葡萄糖为结构单元,分子链呈顺式结构,一般分为直链淀粉和支链淀粉两种。直链淀粉是以ɑ一1, 4-糖苷键连接D一吡喃葡萄糖单元所形成的直链高分子化合物,而支链淀粉是在淀粉链上以ɑ一1, 6-糖苷键连接侧链结构的高分子化合物,分子量通常要比直链淀粉的大很多。通常玉米淀粉中直链淀粉占28%,分子量大约为(0.3×106-3×106),占72% 的支链淀粉分子量则可以达到数亿[3、4] 淀粉是一种多羟基化合物,每个葡萄糖单元上均含有三个羟基。分子链通过

淀粉泡沫材料研究研究进展

淀粉泡沫材料研究研究进展 作者:周江,佟金来源:吉林大学 [摘要]:在概述淀粉材料发泡原理的基础上,综述了淀粉泡沫材料研究与开发的最新进展。阐述了材料组成和发泡工艺参数等因素对淀粉泡沫材料的发泡行为和性能的影响,介绍了淀粉泡沫材料在包装领域的应用,并对未来的研发方向做了展望。 泡沫塑料(如聚苯乙烯泡沫)作为缓;中包装材料被大量使用。由于回收利用的可操作性差以及价格等方面的原因,绝大部分使用过的泡沫包装材料被作为废弃物处理掉的。这些泡沫材料质量轻、体积大而且难于腐烂降解,给环境带来了严重的冲击。采用生物降解材料是解决这一问题的有效途径之一。淀粉作为一种天然高分子,既可再生,又能完全降解。其低廉的价格和广泛的来源,使得淀粉成为制备生物降解塑料的主要原料之一[1-2]。以淀粉为原料研制开发的生物降解泡沫材料,在某些领域已经开始取代聚苯乙烯泡沫材料,它既可以抑制废弃的塑料泡沫包装材料造成的环境污染,又能节约有限的石油资源,对于解决目前全球面临的环境危机和资源危机无疑具有重要的意义。本文综述了这方面研究工作的最新进展并对淀粉泡沫材料在包装领域的应用前景进行了介绍。 1 淀粉材料的发泡 淀粉材料的发泡方法可分为2类:1)升温发泡,即在常压下迅速加热材料使得其中的水分汽化蒸发,从而在淀粉材料中形成多孔结构;2)降压发泡,即在一定的压力下加热材料,使得材料中的水成为过热液体,然后快速释放外部压力造成其中过热的水汽化蒸发,从而使淀粉材料发泡。在淀粉材料的发泡过程中,水的作用是非常特殊和重要的。在发泡前,水是淀粉材料的增塑剂,起着促进淀粉塑化的作用;在发泡过程中它又变成发泡剂,是泡体长大的动力。 淀粉材料的粘弹性是影响泡体长大的主要因素。而淀粉材料的粘弹性不但与温度有关,而且与淀粉的塑化程度及其水含量(或其它增塑剂)有关。为了使淀粉材料发泡,首先必须提供足够的热量,使淀粉材料的温度高于其玻璃化转变温度而处在橡胶态。水的存在将有效地降低淀粉材料的玻璃化转变温度。在发泡过程中,随着水的蒸发消失,材料的玻璃化转变温度不断升高,最终从橡胶态回到玻璃态,从而将体内的孔洞结构保持下来。如果材料的最终状态仍然是橡胶态,则体内的孔洞结构将逐渐塌陷萎缩。 2 淀粉材料发泡工艺 2.1 挤出发泡 挤出发泡技术是利用降压发泡的原理,通过挤出机实现的。淀粉和水以及其它添加剂进入挤出机后,在热和剪切的共同作用下,颗粒淀粉的结晶结构被破坏,并形成淀粉高分子的无序化熔体,即所谓的热塑性淀粉。由于螺杆的挤压和挤出机腔体的限制,加热的淀粉熔体中将建立起很高的压力,使得其中的水成为过热的液体(温度可高达220℃)而不汽化蒸发。当淀粉熔体从挤出机机头挤出后,物料中的压力被释放,过热的水瞬间汽化蒸发,在淀粉熔体中形成多孔结构。同时,物料温度的下降和由于水蒸发造成的材料玻璃化温度的上升,使得热塑性淀粉从高弹态回到玻璃态,从而将其中的多孔结构冻结而形成泡沫材料。用挤出发泡技术制备淀粉泡沫包装材料始于20世纪80年代末期,随后又有多项用挤出发泡技术制备淀粉泡沫材料的专利问世。该方法是目前生产缓冲包装使用的淀粉泡沫松散填充材料(loose fill)的主要方法。 2.2 烘焙发泡 Shogren等人利用食品工业中的烘焙技术,在封闭的模具中加热淀粉糊(温度范围175~235℃)制备出淀粉泡沫材料。与挤出发泡技术相比,用烘焙技术得到的淀粉泡沫材料一般在表明层有较

高分子材料基础论文-淀粉基可降解材料

淀粉基可降解材料的研究、应用现状及发展趋势 摘要:本文介绍了淀粉直接填充型塑料、淀粉/合成高分子共混型塑料和全淀粉型塑料的研究现状、降解性能、应用现状。分析了淀粉基可降解塑料的发展前景和现今存在的问题。关键词:淀粉;可降解;填充型;改性 塑料因具有密度小、强度高和化学稳定性好,以及价格低廉等优点,不仅在我们日常生活中被普遍使用,而且已成为材料领域的四大支柱之一[1]。然而塑料的大量使用,产生了许多无法回收的一次性塑料废弃品,造成了日益严重的“白色污染”,如地下水体污染和土壤污染,动植物资源被破坏,严重危害着人类的生存与健康。 淀粉有着再生、廉价、易保存和便于运输的特点,在一定条件下可进行各种反应,派生出众多衍生物。而淀粉良好的可再生利用性和生物降解性使其成为生物降解材料的极好原料。目前淀粉塑料制品成本虽然比一般塑料高10%~30%,但随着生产规模的扩大及其技术进步,用淀粉作为原料来生产生物降解制品以替代部分塑料制品有着很大的发展潜力。 1 淀粉的结构和性能[2] 淀粉是来源丰富、价格便宜的天然高分子物质。它具有强极性的结晶性质,是由葡萄糖单元组成的多糖类碳水化合物,化学结构式为(C6H10O5)n,n为800-3000。淀粉分子在结构上可分为直链淀粉(amylose)和支链淀(amylopectin)两类。直链淀粉通常以单螺旋结构存在,庞大的支链淀粉分子成束状结构,见Fig.1-1及Fig.1-2。 Fig.1-1 直链淀粉

Fig.1-2 支链淀粉 天然淀粉通常大多天然淀粉都是这两种淀粉的混合物,两者的比例因植物的品种和产地而不同。直链淀粉是葡萄糖以α-1,4-糖苷键结合的链状结构,分子量为20-200万左右;支链淀粉中各葡萄糖单元除α-1,4-糖苷键连接外,还存在α-1,6-糖苷键结构,所以带有分支,约20个葡萄糖单位就有一个分支。分子量在107-109左右。以15-100μm的颗粒存在,玉米淀粉颗粒大小中等,直径为5-26μm,形状为圆形和多角形。直链淀粉含量相对较高,达28%,淀粉糊不透明,具有较好的抗剪切能力。玉米淀粉占全部商品淀粉的80%,价格最为低廉。马铃薯淀粉颗粒属于单粒,为椭圆形,平均粒径50微米,是所有商品淀粉中颗粒最大的。它含21%的直链淀粉,其余为支链结构,支链上有5-6个葡萄糖单元,支链之间平行排列并由于氢键形成具有一定强度的散射状结晶“束”,束间分子杂乱无定型。马铃薯淀粉糊高度透明,但抗剪切能力较差。马铃薯淀粉产量占所有淀粉的8-10%,居第二位。 天然淀粉的高分子链间由于存在氢键,分子间作用力较强,因此天然淀粉的溶解性差,不易溶于水,并且加热不熔融,在加热到300℃以后分解,成型性能较差。为改善其加工工艺性能,一般是通过打开淀粉链间的氢键,使淀粉失去结晶性的方法来实现。其操作方法有两种,一种是加热含水量大于90%的淀粉水溶液,淀粉颗粒在60-70℃间开始溶胀,在温度达到90℃以后淀粉颗粒开始崩裂,高分子链间氢键被打开,产生凝胶化;另一种是在密封状态下加热,塑炼挤出含水量小于28%的淀粉。这种过程中淀粉加热后可以塑化,故称之为热塑性淀粉[3]。 2 淀粉基可降解材料的研究现状 淀粉与其它生物降解聚合物相比,具有来源广泛、价格低廉、易生物降解的优点,因而在生物降解材料领域中具有重要的地位。淀粉塑料也称淀粉基塑料(Starch-based Plastics),

淀粉塑料研究进展

得分:_______ 南京林业大学 研究生课程论文2013 ~2014 学年第二学期 课程号:73414 课程名称:生态环境科学 论文题目:热塑性淀粉材料的研究进展与应用 学科专业:材料学 学号:3130161 姓名:王礼建 任课教师:雷文 二○一四年五月

热塑性淀粉材料的研究进展与应用 王礼建 (南京林业大学理学院,江苏南京210037) 摘要:淀粉与其他生物降解聚合物相比,具有来源广泛,价格低廉,易生物降解的优点因而在生物降解塑料领域中具有重要的地位。本文介绍了淀粉的基本性质、塑化和塑化机理,以及增强体在热塑性淀粉中的应用现状和进展,并对市场应用现状和目前淀粉塑料存在的不足等方面进行了相关的分析。 关键字:淀粉塑料;塑化;增强;市场应用 Research progress and application of thermoplastic starch materials WANG Li-jian (College of Science, Nanjing Forestry University, Nanjing 210037, China) Abstract: Starch has an important status in the biodegradable plastics’ area compared with other biodegradable polymer, because it has a lot of advantages such as a wide range of sources, low cost and easy to be broken down. In this thesis, introduces the basic properties of starch, plastic and plasticizing mechanism, as well as reinforcement application status and progress of the thermoplastic starch, and reinforcement application status and progress of the thermoplastic starch. Aspects of the application and the current status of the market and the presence of starch plastics were insufficient correlation analysis. Key words: Starch plastics; plasticizers; enhanced; market applications 1 淀粉的基本性质 淀粉以葡萄糖为结构单元,分子链呈顺式结构,一般分为直链淀粉和支链淀粉两种。直链淀粉是以α-1,4-糖苷键连接D-吡喃葡萄糖单元所形成的直链高分子化合物,而支链淀粉是在淀粉链上以α-1,6-糖苷键连接侧链结构的高分子化合物,分子量通常要比直链淀粉的大很多。通常玉米淀粉中直链淀粉占28%,分子量大约为(0.3~3×106),占72%的支链淀粉分子量则可以达到数亿[1-2]。 淀粉是一种多羟基化合物,每个葡萄糖单元上均含有三个羟基。分子链通过羟基相互作用形成分子间和分子内氢键,因此淀粉具有很强的吸水性。淀粉与水

淀粉基可降解塑料

淀粉基可降解塑料 摘要:介绍了淀粉的结构,性能,降解塑料的概念、特点,以及淀粉基可降解塑料的分类,分析了淀粉基可降解塑料的优势和存在的问题,并对其作了展望。 关键词:淀粉、可降解塑料、研究现状 背景 目前,世界各国竞相开发和应用降解塑料,如美国、日本、德国等都先后制定了限用或禁用非降解塑料的法规,不少国家还制定了降解塑料的研究开发计划和措施,投入了大量的人力和物力,研制各种真正能完全降解的塑料,因而使降解塑料的研制在这些地区得到迅速发展,北美及欧洲每年的增长速度分别为:17%、 59%【1】。完全降解塑料的使用,无疑促进了环境的良性循环。 1白色污染源 随着塑料工业的快速发展,塑料制品被一次性广泛应用,结果给环境带来了严重的污染,即塑料不易分解也不易回收,塑料废弃物成为污染环境的有害垃圾,对土壤、海洋以及空气的污染巨大,导致了破坏生态平衡的后果。 尤其是曾经风靡全球的小小塑料袋,尽管它不是时尚之物,但由于它方便易用,价格低廉,因而几乎无处不在,成了全球最大的白色污染源。 2塑料工业的原材料来源 塑料工业以石油资源为基础,而到二十一世纪上半期,石油和天然气将面临可能枯竭的窘境,有可能塑料工业也面临着原材料短缺的局面。因而,越来越多学者提倡开发和应用完全降解塑料。因为完全降解塑料具有完全降解能力,降解后不会带来有危害的产物,不会对生态环境造成污染,而且完全降解塑料中还包括一种天然高分子降解塑料,这种塑料材料以农副产品为原料来源,而农副产品资源是来源丰富且取之不尽的再生资源。原料主要是由玉米、大豆、土豆、木薯、桔梗制成的淀粉,以及适量的聚乙烯醇、甘油、核心助剂等,生产出“完全生物降解塑料”的粒料,再以粒料直接生产出各种塑料制品,生产过程基本按照塑料企业原来的加工设备生产,不会对原有生产构架形成冲击【2】。 现状 目前主要有3类生物降解技术:(1)可生物降解的合成高分子材料,如聚乳酸(PLA)和聚乙烯醇(PVA)等;(2)可生物降解聚酯塑料,如,聚羟基丁酸酯(PHB和

大米淀粉的研究进展与应用现状

大米淀粉的研究进展与应用现状 摘要:大米淀粉是一种重要的谷物淀粉,它是大米中最主要的成分,含量高达80%左右,并且大米淀粉以其独特的物理化学性质广泛应用于食品、纺织等行业。本文概述了大米淀粉的颗粒结构、分子结构特点和大米淀粉中的非淀粉组分(蛋白质和脂质)的性质及其对淀粉性能的影响;分析了大米淀粉的特性及其提取方法;最后介绍了大米淀粉和大米变性淀粉的性质及其开发应用情况。 关键词:大米淀粉;研究进展;应用现状 The Research Progress and Application Status of Rice Starch Abstract: Rice starch is a major economic sector of rice. It is widely used in recent years. This paper reviewed the rice starch morphological structure, composition, specific characteristic and extraction process, and the application status of rice starch in various fields. At the end of the article, the application prospect of rice starch is also presented. Key Words: rice starch; research progress; application status 大米是我国及东南亚国家的主要粮食,主要成分是淀粉,含量高达80%左右。大米产量很大,仅我国就年产约1.8亿吨,不过由于其价格较高又是人们的主要口粮,所以一般只在产量集中的部分地区才用于加工淀粉及其深加工产品。因此,和玉米淀粉、薯类淀粉相比,大米淀粉的生产及其深加工相对比较落后。目前,淀粉工业的三大主要原料是玉米、小麦和马铃薯,而大米淀粉只占13%,不到玉米的一半,列第4位,并且,相较玉米、小麦和马铃薯淀粉,大米淀粉的价格一直较高,因而使大米淀粉的广泛应用受到了很大的限制。但是,随着淀粉应用领域的不断拓展、淀粉研究的进一步深入,研究者发现大米淀粉具有一些特殊的结构和性质,决定了它能更好地满足一些特殊应用行业的要求,因此,开发一些附加值较高的大米淀粉及其深加工产品具有深远的意义【1,2】。 1大米淀粉的研究进展 1.1大米淀粉的形态和结构 1.1.1大米淀粉颗粒形态 大米中的淀粉分子是以淀粉颗粒的形式存在,并且淀粉颗粒是透明的。大米淀粉是已知谷物淀粉颗粒中最小的一种,单粒淀粉颗粒大小约为3um~8um,其形状多数呈不规则的多角形,且棱角显著。大米品种不同,其淀粉颗粒大小也有明显的差异,一般糯米的淀粉颗粒比粳米和籼米的大。许多植物淀粉颗粒在细胞的淀粉质体或叶绿体中是以单粒形式存在的,然而,大米淀粉仅以复合淀粉粒形式存在于单个淀粉质体中,呈球形或椭圆形,其内包含约20~60个小淀粉颗粒,并且复合淀粉粒表面有许多孔洞【1,3】。

淀粉基可降解泡沫材料的研究进展

龙源期刊网 https://www.360docs.net/doc/433333199.html, 淀粉基可降解泡沫材料的研究进展 作者:孙迪喻亚格任道欢 来源:《中国科技博览》2013年第16期 [摘要]本文简述了目前淀粉基可降解发泡材料的最新研究进展,综述了国内外淀粉基可降解发泡材料的成型研究进展,并对未来的发展做了展望。 [关键词]淀粉;发泡;发泡成型;生物降解 中图分类号:TS236.9 文献标识码:A 文章编号:1009-914X(2013)16-0273-01 聚苯乙烯,聚丙烯,聚乙烯和聚氯乙烯泡沫塑料的广泛应用已造成严重的白色污染,开发淀粉基可降解泡沫塑料不仅为更好地利用丰富的天然资源开辟了一条新的途径,而且还可以解决白色污染,另外还能缓解生化能源紧缺的危机。本文就国内外淀粉基可降解泡沫塑料的研究进展作一综述,以期为进一步开展绿色缓冲材料的研究提供指导。 1 天然淀粉泡沫塑料 天然淀粉包括玉米淀粉,土豆淀粉,小麦淀粉,蜡质玉米淀粉,高度支化土豆淀粉,木薯淀粉以及西米淀粉等[1,2],一般呈粒状,含有不同比例的直链和支链结构。普通淀粉泡沫塑料大都是开孔结构,泡孔均匀性差,较脆;而高直链淀粉泡沫塑料则形成闭孔结构,泡孔小而且比较均匀,压缩强度较普通淀粉泡沫塑料小,脆性明显降低。 2 变性淀粉泡沫塑料 淀粉是一种强极性的结晶性物质,热塑性差,同时淀粉是亲水性物质,由纯淀粉制备的泡沫塑料不适宜在有水或湿度较大的环境中使用,因而要对淀粉进行改性,以适应生产和应用的要求。改性淀粉包括酯化淀粉,醚化淀粉,接枝共聚改性淀粉,酸水解淀粉,交联淀粉和酶转化淀粉等[3],其中酯化淀粉,醚化淀粉和接枝共聚改性淀粉较为常见。 3 淀粉/合成树脂复合泡沫塑料 3.1 与合成树脂共混 B. Catia 等[4]均各淀粉与聚合物共混挤出,其中包括聚合物A可以与淀粉兼容;B可以与淀粉反应,制得密度为5-13kg/m3,的泡沫塑料。A. Yoshimi等[5]用淀粉与合成树脂PVA和EVOH共混,在非离子表面活性剂,增稠剂及填充材料的存在下,由水发泡制备的淀粉泡沫塑料,具有密度小和表面性能优良等特点。 3.2 与PVA共混

淀粉

淀粉泡沫材料研究进展及其在包装领域的应用 作者:周江整理:无忧论文网录入时间:[09-01-23 11:58:23] 浏览点击数:4 [摘要]:在概述淀粉材料发泡原理的基础上,综述了淀粉泡沫材料研究与开发的最新进展。阐述了材料组成和发泡工艺参数等因素对淀粉泡沫材料的发泡行为和性能的影响,介绍了淀粉泡沫材料在包装领域的应用,并对未来的研发方向做了展望。 泡沫塑料(如聚苯乙烯泡沫)作为缓;中包装材料被大量使用。由于回收利用的可操作性差以及价格等方面的原因,绝大部分使用过的泡沫包装材料被作为废弃物处理掉的。这些泡沫材料质量轻、体积大而且难于腐烂降解,给环境带来了严重的冲击。采用生物降解材料是解决这一问题的有效途径之一。淀粉作为一种天然高分子,既可再生,又能完全降解。其低廉的价格和广泛的来源,使得淀粉成为制备生物降解塑料的主要原料之一[1-2]。以淀粉为原料研制开发的生物降解泡沫材料,在某些领域已经开始取代聚苯乙烯泡沫材料,它既可以抑制废弃的塑料泡沫包装材料造成的环境污染,又能节约有限的石油资源,对于解决目前全球面临的环境危机和资源危机无疑具有重要的意义。本文综述了这方面研究工作的最新进展并对淀粉泡沫材料在包装领域的应用前景进行了介绍。转载于无忧论文网https://www.360docs.net/doc/433333199.html, 1 淀粉材料的发泡 淀粉材料的发泡方法可分为2类:1)升温发泡,即在常压下迅速加热材料使得其中的水分汽化蒸发,从而在淀粉材料中形成多孔结构;2)降压发泡,即在一定的压力下加热材料,使得材料中的水成为过热液体,然后快速释放外部压力造成其中过热的水汽化蒸发,从而使淀粉材料发泡。 在淀粉材料的发泡过程中,水的作用是非常特殊和重要的。在发泡前,水是淀粉材料的增塑剂,起着促进淀粉塑化的作用;在发泡过程中它又变成发泡剂,是泡体长大的动力。 淀粉材料的粘弹性是影响泡体长大的主要因素。而淀粉材料的粘弹性不但与温度有关,而且与淀粉的塑化程度及其水含量(或其它增塑剂)有关。为了使淀粉材料发泡,首先必须提供足够的热量,使淀粉材料的温度高于其玻璃化转变温度而处在橡胶态。水的存在将有效地降低淀粉材料的玻璃化转变温度。在发泡过程中,随着水的蒸发消失,材料的玻璃化转变温度不断升高,最终从橡胶态回到玻璃态,从而将体内的孔洞结构保持下来。如果材料的最终状态仍然是橡胶态,则体内的孔洞结构将逐渐塌陷萎缩。 2 淀粉材料发泡工艺 2.1 挤出发泡 挤出发泡技术是利用降压发泡的原理,通过挤出机实现的。淀粉和水以及其它添加剂进入挤出机后,在热和剪切的共同作用下,颗粒淀粉的结晶结构被破坏,并形成淀粉高分子的无序化熔体,即所谓的热塑性淀粉。由于螺杆的挤压和挤出机腔体的限制,加热的淀粉熔体中将建立起很高的压力,使得其中的水成为过热的液体(温度可高达220℃)而不汽化蒸发。当淀粉熔体从挤出机机头挤出后,物料中的压力被释放,过热的水瞬间汽化蒸发,在淀粉熔体中形成多孔结构。

cczzy淀粉基泡沫塑料的研究 (1)

百度文库- 让每个人平等地提升自我 课程论文 成绩题目:淀粉基泡沫塑料的研究所属系化工与制药工程系 专业化学工程与工艺 学号 06110435 姓名陈征远 任课教师王艳 起讫日期 2013.5-2013.6 地点东南大学成贤学院

搜索引擎1:中国知网 搜索词1:生物降解材料 检索结果: 淀粉基泡沫塑料的研究 王会才2004 摘要:淀粉基泡沫塑料是一种重要的生物降解材料。本文对淀粉进行了增塑、增韧、增强改性,并研究了淀粉的挤出发泡行为。本论文在淀粉塑化性能研究的基础上,采用部分凝胶化淀粉与纤维混合后,加入其余淀粉,由高速混合器混合分散纤维的方法,制备了分散效果较好的纤维增强淀粉体系,讨论了纤维含量对体系拉伸性能的影响;通过选用适当的增塑剂、适当牌号的PV A和合适的增塑工艺,实现了淀粉/PV A共混体系的热塑性加工,讨论了增塑剂、PV A、水分和己内酰胺等对淀粉/PV A体系的物理机械性能、热性能和生物降解性能的影响。在基础材料研究基础上,采用柠檬酸/碳酸钠、OBSH和AC发泡剂对淀粉、纤维增强淀粉和淀粉/PV A共混体系进行了挤出发泡研究,并就体系的发泡倍率和泡孔结构进行了研究。更多还原 讨。 关键词:淀粉;纤维;聚乙烯醇(PVA);增强;共混;生物降解;发泡剂;挤出发泡;发泡倍率;搜索词2:天然生物质材料 检索结果: 淀粉基生物质材料的制备、特性及结构表征 熊汉国2008 随着石油短缺带来的能源危机和废弃塑料引起的“白色污染”日趋严重,对天然生物质材料的研究愈来愈引起各国政府和科学家们的重视与关注。淀粉这类来源广泛的天然高分子多糖,则是生物质材料较理想的选择之一。然而由于淀粉自身的多羟基结构和结晶规整排列,以及由此带来的许多特性,限制了直接将淀粉用于加工或代替塑料薄膜和其它用途的制品,特别是农用地膜,难度更大。为此,本文以淀粉为原料,选用不同的增强剂制备全生物降解包装膜、农用地膜和宠物玩具。根据加工材料的需要,选择不同粒度大小的淀粉,并对其进行特殊的物理和化学修饰,使淀粉分子链形态适应其加工性能。主要研究结果如下:1.纳米二氧化硅改性淀粉基生物降解包装膜的机理通过IR、XPS、XRD及DSC分析技术对纳米二氧化硅改性淀粉基生物降解包装膜的微观结构、原子组成变化、聚集态行为及热特性进行表征和分析,探讨了纳米二氧化硅改性淀粉基生物降解包装膜的机理:纳米二氧化硅不仅同ST和PVA分子间形成氢键,同时还通过化学键作用形成新的C-O-Si键,从而使纳米二氧化硅与ST-PVA分子间形成致密的网络结构,进一步揭示了纳米二氧化硅提高ST-PVA膜性能的本质原因。 【关键词】生物质材料;淀粉;纳米二氧化硅;生物降解;微细化;包装膜;地膜;宠物玩具;搜索引擎2:万方数据库 搜索词1:可降解泡沫塑料 检索结果: 淀粉基可降解泡沫塑料的发泡成型研究进展 刘军军何春霞2008

相关文档
最新文档