淀粉基生物降解塑料的研究进展

合集下载

淀粉基可降解材料的应用及其研究现状徐国皓孟瑶任芯雨张潮

淀粉基可降解材料的应用及其研究现状徐国皓孟瑶任芯雨张潮

淀粉基可降解材料的应用及其研究现状徐国皓孟瑶任芯雨张潮发布时间:2023-07-13T04:42:27.662Z 来源:《国家科学进展》2023年5期作者:徐国皓孟瑶任芯雨张潮[导读] 新材料是现代科技发展之本,可降解材料是国家战略性新兴产业发展方向之一。

随着全球对改善环境的诉求越来越强烈,使用生物可降解材料被认为是根治一次性塑料“白色污染”最有效的解决方案。

淀粉属于天然可再生材料,用廉价的淀粉为原料制备各种高价值的生物质材料,不仅实现了淀粉的华丽变身,而且取代了大量难以降解的传统塑料制品,有效参与到“白色污染”治理当中,促进社会生态体系的建设,对中国双碳战略目标以及全球节能减排具有重要意义。

四川省宜宾市翠屏区西华大学四川宜宾 644000摘要:新材料是现代科技发展之本,可降解材料是国家战略性新兴产业发展方向之一。

随着全球对改善环境的诉求越来越强烈,使用生物可降解材料被认为是根治一次性塑料“白色污染”最有效的解决方案。

淀粉属于天然可再生材料,用廉价的淀粉为原料制备各种高价值的生物质材料,不仅实现了淀粉的华丽变身,而且取代了大量难以降解的传统塑料制品,有效参与到“白色污染”治理当中,促进社会生态体系的建设,对中国双碳战略目标以及全球节能减排具有重要意义。

关键词:淀粉;可降解材料;环境保护一、淀粉基可降解材料的概念淀粉基可降解材料是一类新型的可生物降解材料,通常由淀粉等植物性原料制成,经过一系列的工艺处理使其成为可降解材料。

淀粉基可降解材料可以在自然环境中被微生物分解,变成二氧化碳和水等无害物质,不会对环境造成污染。

在制造过程中,需要添加一定的降解剂,以便使其更容易被微生物分解,加快分解速度。

淀粉基可降解材料可以被广泛应用于制造一次性包装材料、餐具、农业覆盖膜等,是当前环保意识逐渐增强的条件下,替代传统不可降解材料的热门选择。

二、淀粉基可降解材料的优势淀粉基可降解材料是一种具有极大优势的环保材料,其应用前景广泛,具有推动环保、可持续发展的重要作用。

淀粉基塑料的可降解性能研究

淀粉基塑料的可降解性能研究

淀粉基塑料的可降解性能研究随着全球对环境保护意识的增强,传统塑料制品对环境带来的负面影响也越来越受到关注。

作为可替代的环保材料,淀粉基塑料因其良好的可降解性能而备受研究者的关注。

本文将重点讨论淀粉基塑料的可降解性能,并探讨其在环境中的分解机制及应用前景。

首先,淀粉基塑料的可降解性能是其最大的优势之一。

淀粉基塑料以淀粉为主要原料,添加适当的增塑剂、增强剂和降解剂进行配制,具有与传统塑料相似的物理性质。

与传统塑料不同的是,淀粉基塑料在受到外界刺激时,如光照、热、湿度等条件下,可以逐渐分解为碳水化合物和水,并最终进一步分解为二氧化碳和水。

其次,淀粉基塑料的可降解性能受多种因素的影响。

首先是淀粉的类型和含量,不同种类和含量的淀粉对塑料的降解速率有着明显的影响。

一般来说,淀粉的分子量越低、支链结构越多,降解速率就越快。

其次是降解剂的种类和使用量,降解剂的加入可以有效促进淀粉基塑料的降解过程。

最后是制备工艺和环境因素,如温度、湿度等,不同的制备工艺和环境条件会对降解速率产生影响。

淀粉基塑料在环境中的降解主要经历四个阶段。

首先是物理吸湿阶段,淀粉基塑料在湿度的作用下会吸湿膨胀,并开始失去原有的机械强度。

其次是生物降解阶段,湿度作用下,淀粉基塑料会吸收微生物,并通过微生物的作用下逐渐被分解。

第三阶段是溶解阶段,淀粉基塑料在湿度和微生物分解作用下开始溶解,最终形成溶液。

最后是碳氧化合物形成和无机物沉淀阶段,淀粉基塑料的主要降解产物为二氧化碳和水,无机物则通过溶液中的离子形成沉淀。

淀粉基塑料的可降解性能使其在一些特定领域具有广阔的应用前景。

首先,在食品包装领域,淀粉基塑料可以完全代替传统塑料包装,有效减少塑料对食品安全的影响。

其次,在农业领域,淀粉基塑料可以用来制作温室大棚薄膜、农膜等,降解后不会对土壤产生污染。

此外,在医疗器械、日用品等领域也有广泛应用的潜力。

然而,淀粉基塑料的可降解性能也存在一些挑战和局限性。

首先是降解速率相对较慢,与传统塑料相比,淀粉基塑料需要较长的时间才能完全降解。

全淀粉降解塑料的研究进展

全淀粉降解塑料的研究进展

全淀粉降解塑料的研究进展随着塑料产量的不断增长和用途的不断扩大,塑料带给人们便利的同时,也给环境带来大量的固体废弃物形成严重的白色污染,已成为世界性公害。

现行塑料制品的原料是不可再生资源———石油,而全世界的石油储量大约只能再用40多年。

发展非石油基聚合物,研制可在自然环境中降解的可再生资源代替石油生产塑料,已成为热门课题。

生物降解塑料大致分为两种类型:一是天然高分子型,如淀粉、纤维素、甲壳素等;二是化学合成型,如聚己内酯、聚乳酸、聚3 羟基丁酸酯等。

化学合成的降解塑料由于价格昂贵等原因限制了其发展。

在天然高分子中,淀粉来源丰富,取之不尽用之不竭。

淀粉在各种环境中均具有完全的生物降解性已被各国学者公认。

因此,淀粉降解塑料是生物降解塑料研究的重要方面。

1研究现状生物降解塑料是指在一定条件下,在能分泌酵素的微生物(如真菌、霉菌等)作用下可完全生物降解的高分子材料,可分为生物破坏性塑料(biodestructibleplastic)和完全生物降解塑料(biodegradableplastic)[1]。

我国20世纪80年代风行一时的淀粉填充塑料〔w(淀粉)=7%~30%〕,即属于生物破坏性塑料,它只能淀粉降解,其中的PE、PVC等不能降解,一直残留于土壤中,日积月累仍然会对环境造成污染,此类产品已属于淘汰型。

因此我国目前生产的此类淀粉基降解塑料大多是无意义的,真正有发展前途的是全淀粉塑料〔w(淀粉)≥90%〕,其中添加的少量增塑剂也是可以生物降解的。

这类塑料在使用后能完全生物降解,最后生成二氧化碳和水,不污染环境,是近年来国内外淀粉降解塑料研究的主要方向[2~4]。

全淀粉塑料的生产原理是使淀粉分子结构无序化,形成了具有热塑性的淀粉树脂,因此又称为热塑性淀粉塑料。

制备热塑性淀粉的方法主要有4种[5,6]:(1)淀粉与其他高分子产物复合;(2)淀粉与可降解聚合物复合;(3)通过化学反应制备热塑性淀粉;(4)淀粉与增塑剂共挤出成型。

2024年淀粉基生物降解塑料市场前景分析

2024年淀粉基生物降解塑料市场前景分析

2024年淀粉基生物降解塑料市场前景分析引言淀粉基生物降解塑料是一种以淀粉为主要原料制成的塑料,具有生物可降解性和可再生性的特点。

近年来,随着全球环境保护意识的增强和塑料垃圾污染问题的日益严重,淀粉基生物降解塑料逐渐成为塑料市场的热点之一。

本文将分析淀粉基生物降解塑料市场的前景并探讨其发展趋势。

市场概览淀粉基生物降解塑料市场在过去几年取得了快速发展,市场规模不断扩大。

据市场研究公司的数据显示,2019年全球淀粉基生物降解塑料市场规模已达到xx亿美元,并预计未来几年将保持稳定增长。

亚太地区是目前淀粉基生物降解塑料市场的主要消费地区,其市场份额占据了全球的xx%。

市场驱动因素环境问题的关注淀粉基生物降解塑料的生物可降解性使得其具备了取代传统塑料的潜力。

随着全球环境问题引起的关注不断增强,政府和消费者对环保产品的需求日益增长,淀粉基生物降解塑料市场也得到了相应的推动。

政策支持许多国家和地区都出台了一系列支持生物降解塑料发展的政策。

例如,欧洲联盟限制一次性塑料制品的使用,并鼓励使用生物降解塑料替代。

这种政策的推动促使了淀粉基生物降解塑料市场的快速增长。

技术进步淀粉基生物降解塑料的研发和生产技术不断提升,使得其性能和品质稳步提高。

改良后的淀粉基生物降解塑料具有更好的强度、耐热性和耐候性,更符合实际应用需求。

这些技术进步为淀粉基生物降解塑料市场的发展提供了坚实的基础。

市场挑战成本问题目前,淀粉基生物降解塑料的生产成本相对较高,导致其价格较传统塑料要高出一些。

这使得一些消费者在选择时犹豫不决。

因此,缩小生产成本的研发和创新将成为这个市场面临的重要挑战。

性能限制与传统塑料相比,淀粉基生物降解塑料的性能还有一定的局限性。

例如,其热稳定性和耐水性还需要进一步改进。

在一些特殊应用领域,淀粉基生物降解塑料可能无法满足要求,这也限制了其市场应用的范围。

市场趋势淀粉基生物降解塑料与传统塑料结合为了克服淀粉基生物降解塑料的性能限制,一些厂商开始将淀粉基生物降解塑料与传统塑料进行结合。

可降解塑料-淀粉塑料的研究与应用

可降解塑料-淀粉塑料的研究与应用

可降解塑料-淀粉塑料的研究与应用背景资料随着环境保护的呼声日益高涨以及塑料工业的不断发展,可降解塑料走进了人们的视线,并逐渐成为一类重要的高分子材料。

可降解塑料的意义所谓可降解塑料按其降解机理主要分为光降解塑料、生物降解塑料和光/生物双降解塑料。

而我们这里谈的淀粉塑料属于生物降解塑料。

即是指在自然环境下通过微生物的生命活动能很快降解的高分子材料。

淀粉塑料可以运用的可行性淀粉是刚性较强而又含有许多羟基基团的天然高分子,分子内又有许多羟基形成的氢键,它是由许多葡萄糖分子缩聚而成的高聚体,分子式为(C6H10O5)n,根据分子结构不同分为直链淀粉和支链淀粉两种。

直链淀粉可以溶解,聚合度约在100~6000之间,例如玉米淀粉的聚合度在200~1200之间,平均约800,而支链淀粉是不溶解的。

由于淀粉结构中含有大量羟基,因此,它的结晶度较大,一般玉米淀粉的结晶度可达39%,结晶度这样高的淀粉,其熔点不高,无法加工。

因此采用对淀粉进行接枝改性和引入各种增塑剂破坏淀粉的结晶度,使其具有可加工性。

淀粉塑料的研究当今世界对淀粉塑料的研究主要是对玉米-淀粉塑料的研究。

玉米淀粉是分布广泛、价格低廉的天然高分子化合物,是一种完全可生物降解的物质。

但淀粉单独制成的薄膜,质脆且遇水溶化,无实用价值,要制成有用的塑料制品,必须掺合其它物质。

经成型、加工满足需求的制品,生产的薄膜具有生物可降解性,用作农田覆盖而废弃后,即被土壤的微生物吞噬、分解、腐烂,在田地里自然损耗,不污染环境。

本研究使用的原料是玉米淀粉、乙烯一丙烯酸共聚物、氨水、尿素、水等。

其中玉米淀粉需用量占50%以上。

工艺路线为:1乙烯一丙烯酸共聚物的合成2配料3活性共混4螺旋式混料机混溶5挤压6吹塑。

淀粉塑料的应用,发展前景以及不足之处当前,世界上许多国家都在进行以“生物分解树脂”取代现有塑料包装的研究。

”玉米淀粉树脂”具有广阔的发展前景。

这种树脂是以玉米为原料,经过塑化而成。

高分子材料基础论文-淀粉基可降解材料

高分子材料基础论文-淀粉基可降解材料

淀粉基可降解材料的研究、应用现状及发展趋势摘要:本文介绍了淀粉直接填充型塑料、淀粉/合成高分子共混型塑料和全淀粉型塑料的研究现状、降解性能、应用现状。

分析了淀粉基可降解塑料的发展前景和现今存在的问题。

关键词:淀粉;可降解;填充型;改性塑料因具有密度小、强度高和化学稳定性好,以及价格低廉等优点,不仅在我们日常生活中被普遍使用,而且已成为材料领域的四大支柱之一[1]。

然而塑料的大量使用,产生了许多无法回收的一次性塑料废弃品,造成了日益严重的“白色污染”,如地下水体污染和土壤污染,动植物资源被破坏,严重危害着人类的生存与健康。

淀粉有着再生、廉价、易保存和便于运输的特点,在一定条件下可进行各种反应,派生出众多衍生物。

而淀粉良好的可再生利用性和生物降解性使其成为生物降解材料的极好原料。

目前淀粉塑料制品成本虽然比一般塑料高10%~30%,但随着生产规模的扩大及其技术进步,用淀粉作为原料来生产生物降解制品以替代部分塑料制品有着很大的发展潜力。

1 淀粉的结构和性能[2]淀粉是来源丰富、价格便宜的天然高分子物质。

它具有强极性的结晶性质,是由葡萄糖单元组成的多糖类碳水化合物,化学结构式为(C6H10O5)n,n为800-3000。

淀粉分子在结构上可分为直链淀粉(amylose)和支链淀(amylopectin)两类。

直链淀粉通常以单螺旋结构存在,庞大的支链淀粉分子成束状结构,见Fig.1-1及Fig.1-2。

Fig.1-1 直链淀粉Fig.1-2 支链淀粉天然淀粉通常大多天然淀粉都是这两种淀粉的混合物,两者的比例因植物的品种和产地而不同。

直链淀粉是葡萄糖以α-1,4-糖苷键结合的链状结构,分子量为20-200万左右;支链淀粉中各葡萄糖单元除α-1,4-糖苷键连接外,还存在α-1,6-糖苷键结构,所以带有分支,约20个葡萄糖单位就有一个分支。

分子量在107-109左右。

以15-100μm的颗粒存在,玉米淀粉颗粒大小中等,直径为5-26μm,形状为圆形和多角形。

淀粉基生物降解塑料的研究现状和发展方向

淀粉基生物降解塑料的研究现状和发展方向

淀粉基生物降解塑料的研究现状和发展方向
研究背景
近年来,全球范围内的环境污染日益严重,塑料污染的严重性也越来越受到重视。

聚合物材料被广泛地应用于能源、医疗、建筑和交通等领域,作为可快速生产的廉价材料。

由于聚合物材料本身耐久性强,当其被回收使用时,其废弃物将分解在环境中,严重影响生物质圈的健康。

因此,聚合物材料的快速而有效的生物降解已成为当前研究的热点。

聚合物材料被认为是可以用有机化合物降解的有机物质,研究发现,淀粉可以用于快速降解塑料,并且具有实际的可行性。

研究现状
淀粉基生物降解塑料的研究历史最早可以追溯到20世纪90年代末。

这一时期,一些学者利用物理和化学方法,分析了由淀粉、半醇或糖类降解得到的聚合物材料的性质和结构。

之后,随着淀粉降解研究的深入,发现在低活性条件下,色素的形成可以抑制有害微生物的生长速度,减少有机挥发物的释放,进而清除有害物质。

现今,淀粉基生物降解塑料在世界各地的应用不断扩大,研究工作得到了急剧加速。

研究发现,淀粉可以改变塑料的分子结构,减轻其质量,使其变得更容易降解。

此外,研究还发现,淀粉类聚合物材料可以受到植物生长调节剂的调控,以加速降解速度,减少淀粉糖醛酸类降解过程中形成的有害物质。

发展方向
未来,淀粉基生物降解塑料将会越来越受到重视。

应该将研究重点放在以下几个
方面:1)改进淀粉酶的活性;2)改良淀粉的结构,以达到高效降解塑料的效果;3)探索不同塑料表面淀粉的抗菌性;4)从工业废料中获得淀粉,降低生产成本;5)针对淀粉基生物降解塑料的全产业链,形成一整套标准和完美的技术系统,以促进聚合物材料的安全有效回收利用。

生物可降解塑料塑料的最新研究现状

生物可降解塑料塑料的最新研究现状

⽣物可降解塑料塑料的最新研究现状⽣物可降解塑料的研究现状摘要:⽣物可降解材料因其具有可降解的特性越来越受到⼈们的关注。

本⽂主要介绍⽣物可降解塑料的应⽤背景,塑料的最新研究及其成果。

其中可降解塑料包括淀粉基⾼分⼦材料、聚乳酸和PHB。

关键词:⽣物可降解塑料⽩⾊污染淀粉基材料聚乳酸PHB现代材料包括⾦属材料、⽆机⾮⾦属材料和⾼分⼦材料作为现代⽂明三⼤⽀柱(能然、材料、信息)之⼀在⼈类的⽣产活动中起着越来越重要的作⽤。

[1]传统的⾼分⼦塑料在给国民经济带来快速发展,⼈民⽣活带来巨⼤改变的同时也给⼈类的⽣存环境带来了巨⼤的破坏。

当今社会“⽩⾊污染”的问题变得越来越受关注。

这类塑料由于在⾃然环境下难以降解处理,以致造成了城市环境的视觉污染,同时由于它们不能像草⽊⼀样被⽣物降解,还常常引起动物误⾷,并造成⼟壤环境恶化。

塑料制品在⾷品⾏业中⼴泛使⽤,⾼温下塑料中的增塑剂、稳定剂、抗氧化剂等助剂将渗⼊到⾷物中,会对⼈的肝脏、肾脏及中枢神经系统造成损害。

塑料的⼤量使⽤必然会带来如何处理废弃塑料的难题。

传统的塑料处理⽅法主要包括直接填埋、焚烧、⾼温炼油等⽅法。

这些处理⽅法不仅对环境造成破坏,同时也对⼈类健康构成巨⼤威胁。

⽯油、天然⽓等能然已⾯临危机,以⽯油为原料的塑料⽣产将受到很⼤的阻⼒。

为了减少废弃塑料对环境的污染和缓解能然危机,多年来⼈们努⼒开发⽣物可降解材料,⽤以替代普通塑料。

⽣物可降解塑料是指⼀类由⾃然界存在的微⽣物如细菌、霉菌(真菌)和藻类的作⽤⽽引起降解的塑料。

理想的⽣物降解塑料是⼀种具有优良的使⽤性能、废弃后可被环境微⽣物完全分解、最终被⽆机化⽽成为⾃然界中碳素循环的⼀个组成部分的⾼分⼦材料。

⽣物降解过程主要分为三个阶段:(1)⾼分⼦材料表⾯被微⽣物粘附;(2)微⽣物在⾼分⼦表⾯分泌的酶作⽤下,通过⽔解和氧化等反应将⾼分⼦断裂成相对分⼦量较低的⼩分⼦化合物;(3)微⽣物吸收或消化⼩分⼦化合物,经过代谢最终形成⼆氧化碳和⽔。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

_==J962005.v01.26.NO.5食品硪究与开发综述淀粉基生物降解塑料的研究进展何小维罗志刚华南理工大学轻工与食品学院广州510640摘要:我国淀粉资源丰富、价格低廉,淀粉作为可完全生物降解的天然高分子材料日益受到人们的重视。

本文综述了当今淀粉基生物降解塑料的分类、研究方法、发展状况,以及当今淀粉基生物降解塑料发展中存在的一些问题和应用前景。

关键词:淀粉塑料生物降解RESEARCHPROGRESSABOUTB10DEGRADABLEPLAS’11CSBASEDONS’lARCHHEXiaoweiLUOZhigangCollegeofLightIndustryandFoodScience,SouthChinaUniveIsityofTechnology,Guangzhou,510640Abstract:Starchisveryabundantandche印inourcountry.Asacompletelybiodegradablenaturalmacromoleculematerial,starchwasgivenmuchattention.Theclassificationandthemethodsofstudy—ingandthedevelopmentofstaI℃hplasticsaresumm赫zedinthispaper.SomepI.oblemstobeconsid-eredarepmposed,theforegmundisalsoforecast.Keywords:starch;plastics;biodegradation塑料与混凝土、钢铁、木材并称为四大工业材料。

自1997年利奥·柏兰克制得第一个以合成材料树脂为基础的塑料——酚醛树脂以来,几十年间,塑料工业得到了飞速的发展。

特别是20世纪50年代以来,以聚乙烯、聚丙烯、聚苯乙烯等为原料制成的塑料制品被大量使用,极大地促进了生产力的发展。

塑料制品因其具有重量轻、机械性能良好、耐水、耐化学腐蚀、外形美观、制造及安装方便以及价格低廉等特点,在很大程度上迅速代替了金属、木材、玻璃甚至纸制品,被广泛应用于国民经济各个部门。

据统计,全世界每年的塑料产量近1亿t,在三大合成材料中约占其总产量的75%以上,与钢铁的体积产量之比已达到92%。

美国自1974年以来,塑料行业一直发展很快,发展速度为其他工业的2倍。

1979年美国的塑料产量首次超过了钢铁产量。

塑料在美国四大材料中名列第二。

我国于20世纪50年代末期开始发展塑料加工工作,当时着重发展日用塑料制品(如塑料鞋、日用塑料薄膜制品),后开始努力发展农用塑料制品,满足水稻育秧和大棚用膜需要,以提高水稻及蔬菜的产量并延长蔬菜供应时间。

目前我国农地膜和应用耕地面积已为世界之最。

据1996年不完全统计,我国塑料制品总产量已达800万t[1]o塑料的诞生确实给人们的日常生活带过来很广东省自然科学基金(970468)多方便。

然而,随着塑料工业发展到一定的程度,其本身存在的一些隐患也逐渐暴露出来。

塑料的化学稳定性使得塑料在自然界中几乎不被降解,塑料垃圾越来越多,弃于环境中的塑料废弃物、残膜急剧增加,几乎到了随处可见、无处不有的程度。

以我国的塑料包装为例,其中一次性包装材料如以1/3计,每年就有70多万t的塑料废弃物作为垃圾抛弃[2]。

塑料垃圾不仅影响环境美观,而且污染了水源和土壤,危及禽畜及野生动物,给地球生态环境带来了沉重负担。

由于现行塑料主要是以石油基聚合物为基础的,其污染又具有污染范围广、污染物量增长快、处理难、回收利用难、对生态环境危害大等特点。

而且,由于其质量轻,总体积十分惊人。

有资料表明,在日本海域的漂浮物中,有60%是废弃的发泡聚苯乙烯和乙烯基塑料[3|。

以重量计,塑料垃圾的重量也占全球垃圾总量的8%,且在继续增加。

目前对塑料废弃物的处理,主要采用回收、焚烧、掩埋等方法,但效果均不理想。

如做填埋处理,不但占用土地,而且由于一般塑料要经200~400年才会降解因而对土壤造成长期危害;做焚烧处理,会产生有害气体,形成对环境的二次污染;做回收处理,则仅可处理25%的塑料垃圾,且因为回收技术跟不上,使得处理费用过高,并且回收产品的性能和使用价值会大大降低[4]。

因而,越来越多的人提倡开发和应用降解塑料。

_==J982005.V01.26.NO.5食品研究与再发综述美国农业部研制的PE与淀粉的共聚物,采用乙烯一丙烯酸共聚物(EAA)作为增容剂,利用EAA中所含有的羧基和淀粉分子链上的羟基起反应生成脂类,改变了淀粉的表面特性。

经过改性的淀粉在其表面形成了一层与聚乙烯相容性很好的表面层,不仅使淀粉颗粒很容易地分散到聚乙烯中,而且也大大增加了聚乙烯与淀粉之间的结合力[6]。

若用硅烷处理,塑料中淀粉的含量可达6%一0%。

加拿大的St.Lawrence淀粉公司将淀粉经硅烷偶联剂作疏水处理,加入玉米油作为自动氧化剂,当遇到土壤的金属盐时,自动氧化剂形成过氧化氢,使聚合物分子链断裂。

被用于HDPE、LDPE及PS等。

生产的含12%或6%淀粉的含有Ecostar母料的聚烯烃薄膜分别在6个月或3年内分解。

此外改性淀粉乙酸乙脂共聚物与LDPE共混挤出也得到了力学性能良好的淀粉基生物降解塑料[I¨9|。

3.1.2化学改性淀粉填充塑料。

通常是把淀粉与一些烯类单体接枝共聚形成改性淀粉,然后再加入到淀粉与聚合物混合体系中,形成均匀的分散体系,从而使产品既具有生物降解性又有良好的力学性能。

与淀粉共聚的单体常用乙烯、丙烯、丙烯腈、乙酸乙烯脂、丙烯酸胺、丙烯酸机器脂类。

已开发的淀粉基塑料主要有:淀粉接枝丙烯、丙烯丁脂、甲基丙烯酸甲脂、苯乙烯等。

目前生产PE生物降解膜很常用的化学改性淀粉是淀粉一乙烯一丙烯酸共聚物。

淀粉接枝共聚的途径主要有自由基引发接枝共聚和缩聚接枝共聚。

其中自由基引发使淀粉和其他单体接枝共聚的方法研究较为成熟,使用较为普遍。

分为物理引发和化学引发。

物理引发法如用放射元素co的1一射线或电子束照射;还可用紫外线照射引发淀粉与多种丙烯单体起接枝共聚反映;也有机械物理引发技术,如撕捏、球磨、冻结后熔化淀粉乳液等,使淀粉受到机械剪切后分子破裂,在破裂点产生自由基。

化学引发法是利用氧化还原作用。

常用的引发剂多为铈(Ⅳ)盐、锰(Ⅲ)盐,如硝酸铈铵溶液等。

其缺点是铈盐价格较贵。

我校的张力田和何小维曾经研究用高锰酸钾为引发剂引发木薯粉与丙稀腈的接枝共聚反应,测出最佳反应条件为:高锰酸钾浓度7.7~8.2×10mol,丙稀腈与淀粉摩尔比6~8,30~350c反应1h;并将木薯粉和加热糊化后的木薯粉分别与高锰酸钾进行接枝共聚,分别皂化其共聚物后测定吸水能力,并比较结果。

结果表明:加热糊化木薯粉的接枝百分率、接枝频率和皂化共聚物的吸水能力都比木薯粉有大幅度提高∞]。

其他的化学引发剂还有过氧化氢(或有机过氧化氢物或无机过硫酸盐)+亚铁盐(或亚硫酸钠)、臭氧+氧气、淀粉黄原酸脂+过氧化氢等,此外铜离子能引发淀粉溶液与甲基丙烯酸甲脂起接枝共聚反应。

但它们的引发效果都不如铈盐理想∽]。

此外还有阴离子型淀粉接枝法,如美国Purdue大学开发的淀粉接枝聚苯乙烯,采用的就是阴离子聚合反应,分子质量和物性均能有效控制,其中含淀粉20%~30%的淀粉接枝聚合物具有通常聚苯乙烯类似的性质,可以用做瓶子、薄膜等。

福建省粮油技术研究所和福建省塑料技术研究所成功地以普通盐类为引剂,以氧化玉米淀粉为原料,经增水处理,与单体接枝共聚后再分散、增容、共炼、吹塑加工成可生物降解垃圾袋、包装袋和农用地膜以及注塑加工片材。

3.2淀粉基完全生物降解塑料进入20世纪90年代后,淀粉的主攻方向(特别是国外)是以淀粉为主要原料的完全生物降解塑料并取得了一定进展。

3.2.1淀粉与可降解高聚物共混。

与淀粉共混的可降解合成材料主要为聚乙烯醇(PVA)、聚羟基丁酸脂(PHB)、聚羟基戊酸脂(PHV)、PHB—PHV共聚物、聚己内脂(PCL)等等。

这些聚合物可生物降解,产物无害。

如PHB降解后产生的3一羟基丁酸,就是人体血液中正常的代谢产物,而且PHB具有热塑性。

目前国外已有几种商品问世,意大利的Nova.ment/Foruzzi公司生产的改性淀粉/改性聚乙烯醇生物降解塑料,商品名为“Mate卜Bi,,,是由60%的淀粉和40%的聚乙烯醇(OVA)组成的具有完全生物降解性的淀粉塑料㈤。

此外还有英国的“Biopol”等。

这些产品具有良好的力学性能和加工性能,使用后又可做到完全生物降解,对环境无害,但价格昂贵,比PE等通用塑料贵4—8倍,故目前较难推广,只是小批量生产,在医疗卫生和高档化妆品、高附加值产品等行业试用。

国内则有江西科学院应化所、重庆市化工研究所、山西祁县联合化工厂,都成功地研制了PVA和淀粉或改性淀粉共混的塑料,其中江西科学院应化所研制的塑料中淀粉含量达60%嘶]。

淀粉基生物降解塑料的研究进展作者:何小维, 罗志刚, HE Xiaowei, LUO Zhigang作者单位:华南理工大学轻工与食品学院,广州,510640刊名:食品研究与开发英文刊名:FOOD RESEARCH AND DEVELOPMENT年,卷(期):2005,26(5)被引用次数:5次1.丁浩塑料工业使用手册 19952.邱清华全淀粉热塑性塑料研究进展[期刊论文]-现代工业 1999(09)3.张钦可完全生物降解塑料 1999(06)4.R Narayan.W Lafayette Environmentally Degradable Degradable Plastics 1989(79)5.杜忠学生物降解塑料的开发状况和评价试验方法 1996(01)6.梁兴荣国外降解塑料发展动向 1993(02)7.马书斌生物降解塑料研究开发中的几个问题 1993(06)8.杨惠娣国内外生物降解塑料标准化现状和动向 1998(06)9.孙家寿可降解塑料的开发动向 1994(03)10.古平降解塑料及其应用 1999(02)11.邱威扬塑料淀粉研究进展 1993(12)12.邱威扬我国的淀粉塑料宜慎重开发 1997(12)13.黄根龙治理塑料废弃物新技术途径探讨--专论可降解塑料的研究开发[期刊论文]-化学进展 1998(02)14.陈然可降解塑料的研究开发进展 1998(06)15.Jan-Chan Huang Biodegradable Plastics:A Review 1990(01)16.李谊完全降解性淀粉塑性材料的研究 1997(02)17.裘淑媛生物降解塑料和环境保护[期刊论文]-安庆师范学院学报(自然科学版) 1998(04)18.罗明典生物可降解塑料制品的发展趋势 1998(02)19.胡靖BDM型淀粉基生物降解地膜的研制及应用 1994(02)20.何光波淀粉基生物降解聚合物 1996(02)21.李道平降解塑料发展动向及反应性双螺杆挤出机的开发和应用 1995(06)22.李宁生查看详情 1994(02)23.张力田高锰酸钾引发木薯淀粉与丙烯腈接枝共聚的研究 1988(03)24.张力田变性淀粉 199225.廖正品中国塑料行业考察团赴美考察报告 1994(01)26.张捷多糖类生物降解材料的研究进展 1995(06)27.段梦林日本生物降解性塑料的开发动向和进展 1996(03)28.高建平生物可降解热塑性淀粉的开发 1997(06)29.张元琴国内外降解塑料的研究进展 1999(01)30.陈崧哲填充型降解塑料的研究进展 1998(03)31.陈乐怡发泡聚烯烃技术进展 1990(04)32.王克智塑料助剂的开发及应用[期刊论文]-塑料科技 1997(01)1.期刊论文王云芳.王汝敏.赵瑾.郭增昌.WANG Yunfang.WANG Rumin.ZHAO Jin.GUO Zengchang淀粉基环境可降解高分子材料研究进展-材料导报2005,19(4)介绍了淀粉的基本性质,阐述了两类淀粉基环境可生物降解高分子材料的研究开发和发展现状,讨论了其制备原理、方法和存在的问题,并指出了发展方向.2.会议论文陈庆.肖培机械力化学改性在淀粉塑料中的应用研究2005介绍了机械力化学的概念和发展概况,综述了淀粉微细化在淀粉塑料中的应用和发展概况,展望了机械力化学改性在淀粉塑料中的应用前景和发展方向.3.学位论文周敏淀粉/聚乙烯塑料中聚乙烯光降解特性研究2001在降解塑料领域中,淀粉基塑料的开发应用越来越广泛,成为解决塑料垃圾问题的最有效方法之一.该文研究了淀粉/聚乙烯塑料受紫外光照射时淀粉对聚乙烯的光降解特性的影响.4.期刊论文陈庆.肖培.CHEN Qing.Xiao Pei机械力化学改性在淀粉塑料中的应用研究-塑料工业2005,33(z1)介绍了机械力化学的概念和发展概况,综述了淀粉微细化在淀粉塑料中的应用和发展概况,展望了机械力化学改性在淀粉塑料中的应用前景和发展方向.5.会议论文陈庆机械力化学改性在淀粉塑料中的应用研究2008介绍了机械力化学的概念和发展概况,综述了淀粉微细化在淀粉塑料中的应用和发展概况,展望了机械力化学改性在淀粉塑料中的应用前景和发展方向.6.会议论文陈庆机械力化学改性在淀粉塑料中的应用研究2006本文介绍了机械力化学的概念和发展概况,综述了淀粉微细化在淀粉塑料中的应用和发展概况,展望了机械力化学改性在淀粉塑料中的应用前景和发展方向.7.学位论文董彩虹BT促进淀粉塑料降解及其淀粉包囊制剂的研究1997该文研究了苏云金杆菌对淀粉聚乙烯塑料中淀粉降解的促进作用;苏云金杆菌的淀粉包囊制剂的试制及其抗紫外线的能力.8.期刊论文朱常英.由英才.寇小娣.徐家毅.ZHU Changying.YOU Yingcai.KOU Xiaodi.XU Jiayi含淀粉生物降解型塑料-离子交换与吸附2000,16(2)本文综述了各种含淀粉塑料的基本组成,性能及应用前景.9.会议论文张卫英.夏声平.李晓热塑性全降解淀粉塑料的研究与开发2003淀粉是一种刚性较大而又带有许多支链的生物高分子,天然淀粉的邻近分子间存在氢键,形成微晶结构的完整颗粒,一般结晶度较大。

相关文档
最新文档