蛋白质修饰与药物研发课件
《生物制药工程课件PPT》

本课件将介绍生物制药工程的基础知识、工艺流程、应用及发展方向,帮助 大家更全面地了解这个领域。
什么是生物制药工程?生源自制药工程是利用生物技术制备和生产药物的过程,通过基因工程和细胞培养等技术,实现对药物的生产和 改良。
生物制药基础知识
1 DNA
携带遗传信息的分子,指 导蛋白质合成。
基因工程与生物工程应用于生物制药领域,包括基因修饰、蛋白质表达和细胞培养等技术,在药物研发和生产 中起到重要作用。
常用的细胞培养技术
批量培养
将细胞分散在培养基中,随 时间进行生长和繁殖。
连续培养
通过添加新的培养基和去除 旧的培养液以维持细胞的生 长。
悬浮培养
细胞以悬浮状态生长在培养 基中。
生物反应器的种类和使用
生物反应器根据用途和操作方式进行分类,包括批量反应器、连续反应器和 固定床反应器等,用于生物制药过程中的生物合成和培养。
生物反应器的控制方式
生物反应器的控制方式包括温度、pH值、氧气浓度和搅拌速度等参数的控制,以保证生物制药过程的稳定和 高效。
生物反应器设备与操作
生物反应器通常由反应器本体、控制系统和采样系统组成,操作过程中需要进行灭菌、添加培养基和及时监测。
2 RNA
参与蛋白质合成,传递 DNA的信息。
3 蛋白质
生物体结构和功能的基本 组成。
生物制药工程流程简介
1
酵素反应
2
利用酶催化反应加速药物合成。
3
膜分离技术
4
利用膜对分子进行过滤、纯化和浓缩。
生物合成
利用生物体自身的合成能力生产目标产 物。
离子交换层析
利用离子交换树脂分离和净化药物。
基因工程与生物工程应用
化学蛋白质课件

结构成分
许多细胞器和细胞结构中的重要成 分是蛋白质,如细胞膜、染色体、 肌纤维等。
免疫防御
免疫球蛋白是机体免疫防御的重要 物质,可以识别和清除外来抗原, 介导免疫应答。
02
蛋白质的分类
膜蛋白
1 2
膜整合蛋白
与脂质层紧密结合,参与细胞识别、细胞通讯 和物质转运等功能。
跨膜蛋白
跨越脂质双层,具有信号转导、离子通道和转 运等功能。
3
外周膜蛋白
与脂质层非共价结合,参与细胞黏附、细胞信 号转导等功能。
胞内蛋白
细胞骨架蛋白
包括微管、微丝和中间纤维,参与细胞形态维持、细胞运动和物质运输等功能。
细胞连接蛋白
包括锚定连接和黏着连接,参与细胞间相互作用和信号转导等功能。
细胞内酶和辅助蛋白
参与细胞内的化学反应和能量转换等过程。
分泌蛋白
激素蛋白
自身免疫性疾病相关蛋白质
某些自身免疫性疾病,如类风湿关节炎、系统性红斑狼疮等,是由于机体对某些正常蛋白 质产生免疫应答,导致免疫损伤和疾病发生。
蛋白质在药物研发中的应用
01
蛋白质药物
利用蛋白质作为药物分子,可开发出治疗多种疾病的特效药物,如单
克隆抗体药物、重组蛋白药物、疫苗等。
02 03
药物靶点
蛋白质在细胞信号转导、细胞周期调控、免疫应答等生理过程中发挥 重要作用,针对这些蛋白质开发出的药物能够直接作用于疾病发生的 各个环节。
这些修饰方式也参与细胞信号转导、基因调控和细胞周期调控
03
等多种生物学过程。
06
蛋白质与疾病的关系
异常蛋白质与疾病的关系
肿瘤标志物
一些异常蛋白质,如癌胚抗原、甲胎蛋白等,可以在癌症发生时出现,用于肿瘤的早期诊 断和预后评估。
蛋白质的化学修饰

泛素腺苷酸复合物被转移到E2结合酶上。
连接
E3连接酶将活化的泛素分子连接到蛋白质的赖氨酸残基上。
泛素化修饰在生物学中的作用
调控蛋白质的稳定性
01
通过标记需要降解的蛋白质,泛素化修饰可以调控蛋白质的稳
定性。
参与信号转导
02
泛素化修饰可以影响蛋白质的功能,从而参与信号转导过程。
参与细胞周期和DNA修复
磷酸酶
催化蛋白质去磷酸化反应 的酶,将蛋白质上的磷酸 基团去除。
甲基化修饰
将甲基基团添加到蛋白质 的特定氨基酸残基上,调 节蛋白质的活性和功能。
磷酸化修饰在生物学中的作用
信号转导
磷酸化修饰参与细胞内的信号转导过程,调节细 胞反应和功能。
细胞周期和增殖
磷酸化修饰与细胞周期调控和细胞增殖密切相关 ,影响细胞生长和分裂。
04
泛素化修饰的种类
单泛素化
一个泛素分子与蛋白质的特定赖 氨酸残基结合,形成单泛素化修
饰。
多泛素化
多个泛素分子与蛋白质的特定赖氨 酸残基结合,形成多泛素化修饰。
链式泛素化
一个泛素分子的羧基端与另一个泛 素分子的氨基端结合,形成链式泛 素化修饰。
泛素化修饰的酶学机制
活化
泛素分子首先被E1活化酶激活,生成泛素腺苷酸复合物。
重要性
蛋白质化学修饰是生物体内一种重要的调控机制,可以快速 响应生物环境变化,调节蛋白质的活性、定位和稳定性,从 而影响细胞代谢、信号转导、细胞生长和分化等生物学过程 。
蛋白质化学修饰的类型
01
磷酸化
磷酸化是指在蛋白质的丝氨酸、苏氨酸或酪氨酸残基上添加磷酸基团,
通常由蛋白激酶催化。磷酸化可以改变蛋白质的电荷性质和构象,从而
蛋白质组学PPT课件

代谢性疾病蛋白质组学研究通过对糖尿病、肥胖症等代谢 性疾病相关蛋白质的分析,发现了一些与代谢过程密切相 关的关键蛋白质。这些蛋白质涉及糖代谢、脂肪代谢等多 个方面,为药物研发和个体化治疗提供了新的思路和靶点 。同时,对代谢性疾病蛋白质组学的研究也有助于深入了 解疾病的发病机制,为疾病的预防和治疗提供科学依据。
蛋白质组学揭示基因表达 的复杂性
蛋白质组学研究关注基因表达的最终产物蛋白质,揭示了基因表达的复杂性和多样性 。蛋白质的表达和功能受到多种因素的影响 ,如翻译后修饰、蛋白质相互作用等,这些
因素在基因组学研究中难以全面考虑。
蛋白质组学与代谢组学的关系
代谢组学为蛋白质组学提供上下文
代谢组学研究生物体内小分子代谢物的变化,为蛋白质组学提供了上下文和背景。蛋白 质的功能和表达往往与代谢物的变化相互关联,了解代谢物的变化有助于更深入地理解 Nhomakorabea02
蛋白质组学研究技术
蛋白质分离技术
双向凝胶电泳技术
通过改变电泳的pH值和电场强度, 将复杂的蛋白质混合物分离成多 个有序的蛋白质带,以便后续的 鉴定和分析。
蛋白质芯片技术
将蛋白质固定在固相支持物上, 通过与特定的配体或抗体相互作 用,实现对蛋白质的快速、高通 量筛选和检测。
蛋白质免疫沉淀技
术
利用抗体与目标蛋白质的特异性 结合,将目标蛋白质从复杂的混 合物中分离出来,常用于蛋白质 相互作用的研究。
详细描述
癌症蛋白质组学研究通过对癌症细胞和正常细胞蛋白 质表达谱的比较,发现了一系列与癌症发生发展相关 的关键蛋白质。这些蛋白质涉及细胞信号转导、细胞 周期调控、细胞凋亡等多个方面,为癌症治疗提供了 潜在的药物靶点。
案例二:神经退行性疾病蛋白质组学研究
《生物制药》课件

基因工程药物研发流程
从基因克隆、表达载体构建、细胞转 化到药物生产,每一步都需要精心设 计和严格控制。
案例二:细胞治疗技术的临床应用
细胞治疗技术概述
细胞治疗是指利用自体或异体细胞来治疗疾病的方法,具有个体 化、疗效好等优点。
细胞治疗技术分类
根据所用细胞的种类,可以分为干细胞治疗、免疫细胞治疗等。
细胞治疗技术临床应用实例
的合成。
微生物工程技术应用实例
03
如青霉素的生产,通过发酵工程中的微生物培养技术,实现了
大规模生产,为抗生素的广泛应用奠定了基础。
THANKS
感谢观看
生物制药的物质基础
生物制药的物质基础是具有生物活性的蛋白质、多肽、核酸、糖类、脂 类等大分子物质。
03
生物制药的制备方法
生物制药的制备方法包括基因工程、细胞工程、酶工程和蛋白质工程等
生物技术手段。
生物制药的历史与发展
01 生物制药的起源
生物制药的起源可以追溯到20世纪初,当时人们 开始从天然生物体中提取具有药用价值的活性物 质。
02 生物制药的发展历程
随着生物技术的不断发展,生物制药经历了从天 然提取到基因工程、细胞工程等生物技术手段的 转变。
03 生物制药的未来展望
未来生物制药将更加注重个性化治疗和精准医疗 ,同时随着基因编辑技术的发展,基因疗法等新 型治疗手段将逐渐成为主流。
生物制药的分类与特点
按照来源分类
生物制药按照来源可以分为动物源生物药、植物源生物药和微生物 源生物药。
细胞治疗是指利用细胞来治疗疾病的 方法,未来细胞治疗将有更广泛的应 用前景。
05
案例分析
案例一:基因工程药物的研发与生产
基因工程药物概述
蛋白质组学及技术介绍PPT通用课件.ppt

3.二相SDS-PAGE
丙烯酰胺/甲叉双丙烯 酰胺溶液
分离胶缓冲液
10%(w/v)过硫酸铵 溶液
(30.8%T,2.6%C):30%(W/V)丙烯酰胺和 0.8%甲叉双丙烯酰胺的水溶 液。将 300g 丙烯酰胺和 8g 甲叉双丙烯酰胺溶解于去离子水中,最后用去离
研究 内容
蛋白质的研究内容主要有两方面:
1、结构蛋白质组学:主要是蛋白质表达模型的研究,包括蛋白质氨基酸序列 分析及空间结构的解析种类分析及数量确定; 2、功能蛋白质组学:主要是蛋白质功能模式的研究,包括蛋白质功能及蛋白 质间的相互作用。
研究 内容
蛋白质组学可分为三个主要领域: 1、蛋白质的微特性以供蛋白质的规模化鉴定和他们的后翻译饰; 2、“差异显示”蛋白质组学供蛋白质水平与疾病在广泛范围的有力应用比 较; 3、应用特定的分析技术如质谱法(包括串联质谱法、生物质谱法)或酵母 双杂交系统以及其他蛋白质组学研究新技术研究蛋白质-蛋白质相互作用。
该方法所研究的蛋白均是在体内经过翻译后修饰的,并且是可 分离的天然状态的相互作用蛋白复合物,能够反映正常生理条件下的 蛋白质间相互作用
蛋白质相互作用
2、酵母双杂交系统:
该系统利用真核细胞调控转录起始过程中,DN A结合结构域(binding domain,BD)识别DNA上的特异序列并使转录激活结构域(activation domain, AD)启动所调节的基因的转录这一原理,将己知蛋白X和待研究蛋白Y的基 因分别与编码AD和BD的序列结合,通过载体质粒转入同一酵母细胞中表 达,生成两个融合蛋白。若蛋白X和Y可以相互作用,则AD和BD在空间上 接近就能形成完整的有活性的转录因子,进而启动转录,表达相应的报告 基因;反之,如果X和Y之间不存在相互作用,报告基因就不会表达。这样, 通过报告基因的表达与否,便可确定是否发生了蛋白质的相互作用。
蛋白质与药物相互作用分析的研究与开发

蛋白质与药物相互作用分析的研究与开发1. 引言蛋白质与药物相互作用分析是药物研发领域的重要研究方向之一。
通过研究蛋白质与药物之间的相互作用,可以揭示药物的作用机制、优化药物设计以及评估药物的安全性和疗效。
本文将重点探讨蛋白质与药物相互作用分析的研究方法和应用,以及该领域面临的挑战和未来发展方向。
2. 蛋白质与药物相互作用分析方法2.1 结构生物学方法结构生物学方法是蛋白质与药物相互作用分析中常用且有效的手段之一。
通过X射线晶体学、核磁共振和电子显微镜等技术,可以解析蛋白质和药物复合体的三维结构,揭示其相互作用模式和结合位点。
此外,还可以利用计算机模拟技术对复合体进行动力学模拟,预测其稳定性和动力学特性。
2.2 生化分析方法生化分析方法主要包括表面等离子共振、荧光共振能量转移、核磁共振和质谱等技术。
这些方法可以通过检测药物与蛋白质之间的相互作用引起的信号变化,实时监测和定量分析复合体的形成和解离过程。
此外,还可以利用这些方法研究复合体的亲和力、解离常数以及药物与蛋白质之间的动力学参数。
2.3 细胞生物学方法细胞生物学方法主要包括细胞免疫化学染色、蛋白质组学分析以及细胞信号转导等技术。
通过这些方法,可以研究药物与蛋白质相互作用对细胞功能和信号传导的影响,揭示药物作用机制以及其对细胞生理过程的调控。
3. 蛋白质与药物相互作用分析在药物研发中的应用3.1 药物靶点鉴定蛋白质与药物相互作用分析可以帮助鉴定潜在的靶点蛋白,从而为新药发现提供理论依据。
通过筛选化合物与蛋白质库进行相互作用分析,可以发现与药物相互作用的蛋白质,进而确定药物的作用靶点。
3.2 药物分子设计与优化蛋白质与药物相互作用分析可以揭示药物与靶点之间的结合位点和结合模式,为药物设计和优化提供指导。
通过结构生物学方法和计算机模拟技术,可以预测不同化合物与蛋白质之间的相互作用强度和选择性,从而提高药效和减少副作用。
3.3 药效评估蛋白质与药物相互作用分析可以评估药效,并预测其在体内的代谢、转运和排泄情况。
《蛋白质技术》课件

ABCD
蛋白质免疫学鉴定
利用抗体与抗原的特异性结合,对蛋白质进行定 性和定量分析的技术。
蛋白质结晶学技术
通过蛋白质结晶和晶体衍射技术,解析蛋白质三 维结构的技术。
蛋白质纯化与鉴定的实例
血红蛋白的纯化与鉴定
利用凝胶过滤色谱法和亲和色谱法纯 化血红蛋白,通过质谱分析和免疫学 鉴定技术确定其一级结构和分子量。
《蛋白质技术》ppt课件
CONTENTS
目录
• 蛋白质技术概述 • 蛋白质的提取与分离 • 蛋白质的纯化与鉴定 • 蛋白质的修饰与改造 • 蛋白质技术的未来展望
CHAPTER
01
蛋白质技术概述
蛋白质的定义与功能
总结词
蛋白质是生物体内重要的生物大分子,具有多种生物学功能,如催化反应、细胞信号转导、免疫防御 等。
挑战
蛋白质结构的复杂性、蛋白质功能的多样性和蛋白质相互作用的动态性等,给 蛋白质技术的研究和应用带来了巨大挑战。
机遇
随着科技的不断进步,蛋白质技术的研究和应用领域也在不断拓展,为解决人 类面临的健康、环境、能源等问题提供了新的机遇。
蛋白质技术的创新与发展趋势
创新
蛋白质技术的创新主要表现在蛋白质设计和改造、蛋白质相互作用研究、蛋白质 组学和蛋白质芯片等领域。
蛋白质修饰与改造的实例
酶的改造
通过化学修饰和基因工程技术改 造酶,提高其催化效率和稳定性
。
抗体药物的改造
通过基因工程技术改造抗体,提高 其亲和力、特异性和药代动力学性 质。
细胞因子的改造
通过基因工程技术改造细胞因子, 以降低其毒副作用和提高治疗效果 。
CHAPTER
05
蛋白质技术的未来展望
蛋白质技术的挑战与机遇
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蛋白质翻译后修饰
P t t l ti l M difi ti (PTM)
Post-translational Modification (PTM)Enzymes
-PO 3
-CH 3
磷酸化Phosphorylation 甲基化Methylation 酰CH 3CO-NO-乙酰化Acetylation
亚硝基化S-Nitrosylation Ubiquitin SUMO Nedd8泛素化Ubiquitination SUMO 化SUMOylation NEDD 化Neddylation glycan …
y
糖基化Glycosylation …
调控蛋白质修饰的抗肿瘤药物
格列卫(Gl I ti ib)磷酸化
格列卫(Gleevec, Imatinib)硼替佐米(Bortezomib)
沙利度胺(Th lid id )泛素化
沙利度胺(Thalidomide)来那度胺(Lenalidomide)酰化
来那度胺()
伏立诺他乙酰化伏立诺他(Vorinostat)帕比司他(Panobinostat)
泛素⎯蛋白酶体途径
E1泛素激活酶
素结
E2Ub
Ub Ub E3
泛素结合酶Ub
Ub
Ub 泛素连接酶底物蛋白
底物蛋白
DUB K
if K48
DUB
去泛素化酶
Ub
Ub Ub Ub
蛋白酶体
硼替佐米:一个蛋白酶体可逆抑制剂
Post-Tryptic Sit β1
β2
硼替佐米Bortezomib
Glutamyl Site
Site
3
7
ββ第一个抑制蛋白酶体的药物Bortezomib
Chymo-tryptic β4
β6
α第个抑制蛋白酶体的药物
Site
β5
Cross section of βCross section of βring βSide effect. Not specific.
卡非佐米蛋白酶体模型
α
Carfilzomib Irreversible inhibitor
为什么靶向E3泛素连接酶?
¾人类基因组编码600多个E3泛素连接酶
¾E3泛素连接酶具有催化结构的多样性
¾E3泛素连接酶决定了泛素化底物蛋白的选择性3泛素连接酶决定泛素化底物蛋白的选择性
¾针对E3泛素连接酶的药物有更好的选择性和更低的副作用
靶向Mdm2-p53的药物研发
沙利度胺、来那度胺与蛋白质泛素化
沙利度胺来那度胺泊马度胺
CRBN
C U L 4
ROC1
CRL4 E3泛素连接酶
药物诱导底物蛋白与CRBN 结合模型
靶向去泛素化酶的药物研发
E3抑制剂
Ub
Ub
Ub
Ub
Ub
去泛素化酶
底物蛋白
调控底物蛋白功能
底物蛋白
E3泛素连接酶
DUB 抑制剂
去泛素化酶抑制剂
泛素羧基末端水解酶抑制剂Ubiquitin Carboxy-terminal Hydrolase Inhibitors
Ubiquitin Carboxy-terminal Hydrolase
泛素特异性蛋白酶抑制剂Ubiquitin Specific Peptidase Inhibitors
q
小结
蛋白质的翻译后修饰与癌症、神经退行性等疾病•蛋白质的翻译后修饰与癌症神经退行性等疾病密切联系
•蛋白质翻译后修饰系统的多种酶和蛋白复合体可作为药物研发的靶点
课后阅读
•针对蛋白质磷酸化的药物研发
1.Wu P, Nielsen TE, Clausen MH. Small-molecule kinase inhibitors:
an analysis of FDA-approved drugs. Drug Discov Today. 2016,
21, 5-10.
2.Zhang J, Yang PL, Gray NS. Targeting cancer with small
molecule kinase inhibitors. Nat Rev Cancer.2009, 9, 28-39.
•针对蛋白质乙酰化的药物研发
1.Simon RP, et al. KATching-up on small molecule modulators of
lysine acetyltransferases. J Med Chem. 2016, 59: 1249-1270.
2Dekker FJ Haisma HJ Histone acetyl transferases as emerging
2.Dekker FJ, Haisma HJ. Histone acetyl transferases as emerging
drug targets. Drug Discov Today. 2009, 14, 942-948.。