数字图像处理实例集锦

合集下载

人工智能控制技术课件:图像处理案例

人工智能控制技术课件:图像处理案例
之为目标或前景,而图像当中的其他部分则被称为背景,例如人脸识别中的人
脸、矿石分拣中矿石等都是目标或前景。目标通常对应于图像中特定的、具有
独特性质的区域。为了更好识别和分析目标,我们就需要将与目标有关的区域
分离出来,排除背景区域的干扰,以便在此基础上对目标进行特征提取或测量
等。
图像边缘能够反映图像的结构特征信息,并将图像分成不同区域,因此图像边
《人工智能控制技术》
图像优化处理实例
图像处理概述
图像处理技术属于模式识别和优化控制的交叉,许多图像处理算法都用到优化
算法,特别是处理对象特征对比不明显图像,对优化控制的要求更加提高。本
章以图像分割为例,采用遗传算法和粒子群算法对图像进行优化处理,给出了
完成的处理过程,说明进化算法在优化控制中的应用。
原始图
灰度直方图
基于阈值的分割方法
利用灰度直方图当中 [width,height]=size(I);
谷点的灰度值作为全 for i=1:width
局阈值,对图像进行 for j=1:height
分割,就可以实现分
if (I(i,j)>140)
效地改善了分割效果。图像分割是图像处理、模式识别和人工智能等多个领域中一个十
分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图像分割
结果的好坏直接影响对计算机视觉中的图像理解。
图像分割技术介绍
阈值分割技术是最经典和流行的图像
分割方法之一,也是最简单的一种图
像分割方法。此方法的关键在于寻找
法。
基于阈值的分割方法
基于阈值的图像分割方法,其思路在于提取物体与
背景在灰度上的差异,把图像分为具有不同灰度级

用matlab实现数字图像处理几个简单例子

用matlab实现数字图像处理几个简单例子

实验报告实验一图像的傅里叶变换(旋转性质)实验二图像的代数运算实验三filter2实现均值滤波实验四图像的缩放朱锦璐04085122实验一图像的傅里叶变换(旋转性质)一、实验内容对图(1.1)的图像做旋转,观察原图的傅里叶频谱和旋转后的傅里叶频谱的对应关系。

图(1.1)二、实验原理首先借助极坐标变换x=rcosθ,y=rsinθ,u=wcosϕ,v=wsinϕ,,将f(x,y)和F(u,v)转换为f(r,θ)和F(w,ϕ).f(x,y) <=> F(u,v)f(rcosθ,rsinθ)<=> F(wcosϕ,wsinϕ)经过变换得f( r,θ+θ。

)<=>F(w,ϕ+θ。

)上式表明,对f(x,y)旋转一个角度θ。

对应于将其傅里叶变换F(u,v)也旋转相同的角度θ。

F(u,v)到f(x,y)也是一样。

三、实验方法及程序选取一幅图像,进行离散傅里叶变换,在对其进行一定角度的旋转,进行离散傅里叶变换。

>> I=zeros(256,256); %构造原始图像I(88:168,120:136)=1; %图像范围256*256,前一值是纵向比,后一值是横向比figure(1);imshow(I); %求原始图像的傅里叶频谱J=fft2(I);F=abs(J);J1=fftshift(F);figure(2)imshow(J1,[5 50])J=imrotate(I,45,'bilinear','crop'); %将图像逆时针旋转45°figure(3);imshow(J) %求旋转后的图像的傅里叶频谱J1=fft2(J);F=abs(J1);J2=fftshift(F);figure(4)imshow(J2,[5 50])四、实验结果与分析实验结果如下图所示(1.2)原图像(1.3)傅里叶频谱(1.4)旋转45°后的图像(1.5)旋转后的傅里叶频谱以下为放大的图(1.6)原图像(1.7)傅里叶频谱(1.8)旋转45°后的图像(1.9)旋转后的傅里叶频谱由实验结果可知1、从旋转性质来考虑,图(1.8)是图(1.6)逆时针旋转45°后的图像,对比图(1.7)和图(1.9)可知,频域图像也逆时针旋转了45°2、从尺寸变换性质来考虑,如图(1.6)和图(1.7)、图(1.8)和图(1.9)可知,原图像和其傅里叶变换后的图像角度相差90°,由此可知,时域中的信号被压缩,到频域中的信号就被拉伸。

精品课件-HALCON数字图像处理-第10章 HALCON相关实例

精品课件-HALCON数字图像处理-第10章  HALCON相关实例
HALCON数字图像
2、基于表面的三维匹配 【例10.6】基于表面的三维匹配实例,如图所示。
(a)原图
(d)模型场景和关 键点的可视化
HALCON数字图像
(b)选择表面模(板c区)域待搜索图像
(e)基于表面模 板的3D匹配结果
10.5 图像拼接
图像拼接(image mosaic)技术是将一组相互间重叠
字符的识别主要包含两个部分,第一个部分:将图像中的单个 字符分割出来;第二个部分:将分割出来的字符进行分类。其中 字符识别主要由字符分割、特征提取、字符分类三部分组成。
HALCON数字图像
10.1 字符分割识别
【例10.1】字符识别实例如图10-1所示。 关键点: (1) 获取单个字符的区域region(具体依据情况使用图 像增强,区域分割) (2) 选取合适的字符库,使用分类器识别字符
(a)原图 边缘映射图
HALCON数字图像
(b)3D模型 (c)匹配结果及位姿显示图
2、基于表面的三维匹配
基于表面3D模型匹配一般由下面几步组成: (1)创建表面模型所需的3D对象模型
(2)从上面的3D对象模型创建表面模型 (3)访问代表搜索数据的3D对象模型 (4)使用表面模型在搜索数据中搜索对象 (5)销毁匹配结果的句柄、所有的3D对象模型和表 面模型
(b)
二维条形码识别及实例 1.二维条码定位及解码 不同码制的二维条码具有不同的特性,彼此具有不同的 寻像图形或定位图形,因此所采用的定位方法也有所不同。 以Data Matrix条码为例,其定位图形则是由构成L形的两 条黑实线进行定位。Data Matrix二维条码如图所示。
HALCON数字图像
HALCON数字图像
10.3 去雾算法

数字图像处理第二版夏良正著

数字图像处理第二版夏良正著

数字图像处理第二版夏良正著(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如条据书信、合同协议、演讲致辞、规章制度、应急预案、读后感、观后感、好词好句、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as policy letters, contract agreements, speeches, rules and regulations, emergency plans, reading feedback, observation feedback, good words and sentences, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please pay attention!数字图像处理第二版夏良正著数字图像处理第二版(夏良正著)数字图像处理是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。

数字图像处理项目实例

数字图像处理项目实例
图11-8 中值滤波
工程实例 2.阈值分割 本例采用判别分析法(Otsu法)确定分割阈值为112,分割
效果如图11-9所示。
图11-9 阈值分割
工程实例 3.形态学处理 由图11-9可知,经阈值分割的图像中,还包含一些较大的
噪声。这里采用形态学方法去除这些较大的噪声。具体做法 是用3×3的结构元素对图11-9进行两次腐蚀操作,处理结果 如图11-10所示。
工程实例
(2)对数变换增强。对数变换将窄带低灰度输入图像值 映射为宽带输出值。基数越大,低灰度增强效果越好,高灰度 区域压缩能力越强。不同参数值增强结果如图11-17所示。
工程实例
图11-17 不同(1+r)值的增强结果
工程实例 不同(1+r)值的增强图像评价结果如表11-2所示。
工程实例 利用上述方法,对图11-18(a)所示的原始遥感图像进行去
工程实例
图11-14 遥感图像去雾流程图
工程实例
1.参数选择与 DCP算法处理 经过大量观测与统计,在大部分无雾图像的无天空区域, 像素中至少有一个颜色通道存在极低的亮度值。为了更好地 实现遥感图像去雾,需对参数窗口大小Ω(x)、透射因子t(x)的 下限值t0和大气光线A 进行最佳值选择。本实例优先使用 Ω(x)=5、t0=0.1和 A=215/255进行 DCP去雾,去雾前后的图像 分别如图11-15(a)、(b)所示,可见去雾后的图像比原始图像更 清晰,但存在亮度失真问题,仍需进一步处理。
工程实例 细胞计数和细胞面积统计结果如图11-12所示。
图11-12 细胞计数及面积统计
工程实例
6.小结 细胞计数是生物医学图像处理中一个重要的研究内容。 当拍摄的图像中细胞和细胞液颜色差别明显时,判别分析法 通常能估计一个好的阈值,将二者良好分开。细胞通常存在 粘连现象,通过形态学腐蚀可去掉一些粘连程度较轻的连接 细胞,但对多个粘连紧密的细胞,这种方法并不一定有效。最 后,简单将区域像素数大于1000的细胞认为是两个细胞,虽简 化了处理过程,但在一些情况下,容易造成计数错误。

数字图像处理的应用实例

数字图像处理的应用实例

数字图像处理的应用实例一.伽玛射线成像伽马射线成像的主要用途包括核医学和天文观测。

在核医学中,这种处理是将放射性同位素注射到病人体内,当这种物质衰变时放射出伽马射线,然后用伽马射线检测器收集到的放射物产生图像。

图1.6(a)显示了一幅利用伽马射线成像得到的骨骼扫描图像,这类图像用于骨骼病理(例如感染或肿瘤)定位。

图1.6(b)显示了另一种叫做“正电子放射断层”(PET)的核成像,其原理与1.2节提到的X射线断层术一样。

然而,与使用外部X射线源不同,它给病人注射放射性同位素,同位素衰变时放射出正电子。

当正电子遇上一个电子时两者湮没并放射出两束伽马射线。

这些射线被检测到后利用断层技术的基本原理创建断层图像。

示于图l. 6(b)的图像是构成病人三维再现图像序列的一幅样品。

这幅图像显示脑部和肺部各有一个肿瘤,即很容易看到的小白块。

大约在1500年前,天鹅星座中的星星发生大爆炸,产生了一团过热的稳定气云(即天鹅星座环),该气云以彩色阵列形式发光。

图1.6(c)显示了在伽马射线波段成像的天鹅星座环。

与图1.6(a)和(b)不同,该图像是利用成像物体自然辐射得到的。

最后,图1.6(d)显示了一幅来自核反应器电子管的伽马辐射图像,在图像的左下部可以看到较强的辐射区。

二.X射线成像X射线是最早用于成像的电磁辐射源之一。

最熟悉的X射线应用是医学诊断,但是,X射线还被广泛用于工业和其他领域,像天文学。

用X射线管产生用于医学和工业成像的X射线。

X射线管是带有阴极和阳极的真空管。

阴极加热释放自由电子,这些电子以很高的速度向阳极流动,当电子撞击一个原子核时,能量被释放并形成x射线辐射。

X射线的能量由另一边的阳极电压控制,而X射线的数量由施加于阴极灯丝的电流控制。

图1.7(a)显示了一幅位于X射线源和对X射线能量敏感的胶片之间的病人胸部图像。

X射线的强度受射线穿过病人时的吸收量调制,最终能量落在胶片上并使其感光,这与光使照相胶片感光是一样的。

数字图像处理技术的应用案例

数字图像处理技术的应用案例

数字图像处理技术的应用案例随着计算机科技的不断发展与应用,数字图像处理技术越来越受到人们的关注和重视,它带来的应用与发展前景也日益广泛。

数字图像处理技术主要是针对数字图像进行操作、处理、重构或改变其特征的技术,可以帮助人们更好地理解和分析图像信息,能够应用于医学、科研、安全等众多领域中,本文将重点讲述数字图像处理技术的应用案例。

一、医学领域数字图像处理技术在医学领域的应用越来越广泛,它可以用于体成像、诊断、治疗等方面。

例如,医学影像处理技术就是数字图像处理技术在医疗领域中的一个重要应用。

医学影像处理技术可以通过对数字影像进行处理和分析,提高医生诊断率,降低错误率,提高病人的治疗效果,为人们的健康保驾护航。

二、科研领域数字图像处理技术在科研领域的应用也非常广泛,例如,在材料学领域,这种技术可以用来研究材料的结构和性质,便于人们更好地了解材料的性能优劣。

此外,在天文学、地质学等领域中,数字图像处理技术也广泛应用于图像的处理、分析及识别等方面,有助于科学家更好地探索未知领域,促进科学发展。

三、安全防护领域数字图像处理技术在安全防护领域的应用非常广泛,如在视频监控中,数字图像处理技术可以用于目标追踪、行为分析、图像识别等方面,提高安全性、管理效率,降低安全风险。

此外,数字图像处理技术还可以用于身份识别和信息加密等方面,保障个人隐私和社会安全。

四、娱乐艺术领域数字图像处理技术在娱乐艺术领域的应用也非常广泛,如数字图像处理技术在影视制作领域中的应用,可以通过效果制作、特技合成等手段,实现画面特效的创新与打造,为影片增色添彩。

此外,数字图像处理技术还可以用于游戏设计、动画绘制等方面,给人们带来视觉与认知上的享受。

总之,数字图像处理技术是一个极具实用性的技术,它的应用范围广泛,可以帮助人们更好地理解并加工图像信息,提高人们处理信息的精度和效率,为各领域的发展和研究奠定坚实基础。

数字图像处理技术的发展和应用将是一个长期而且具有广阔空间的领域,我们有理由相信,在不久的将来,数字图像处理技术一定会发挥更加重要的作用。

数字图像处理案例

数字图像处理案例

手写数字识别
手写数字识别是光学字符识别 技术的一个分支。
研究的对象:如何利用电子计 算机自动辨认人手写的阿拉伯 数字。
研究背景
手写数字识别的应用范围广泛,阿 拉伯数字组成的各种编号和统计数 据如:邮政编码、统计报表、财务 报表、银行票据等等。
在整个OCR领域中,最为困难的就 是脱机手写字符的识别。
这里我们取N=5,经实验证明能够 满足实际需要。
特征提取的具体实现
1)搜索数据区,找出手写数字的上下左 右边界。 2)将数字区域平均分为5×5的小区域。 3)计算5×5的每一个小区域中黑像素所 占比例,第一行的5个比例值保存到特 征的前5个,第二行对应着特征的6~10 个,依此类推。
构构造造样样品品特特征征库库
欧式距离
设有两个样品Xi、Xj的特征值分别为:
xi1
Xi
xi 2
xi1,
xi2 ,
xin
, xin T
x j1
X
j
x
j
2
x j1, x j2 ,
xjn
T
, x jn
若采用欧式距离法来计算的两样品之间的距离
,则两样品距离: Di2j
T
Xi X j
任务:对这个案例进一步分析
讨论一下 1)怎样找到数字的位置? 2)提取哪些特征? 3)怎样建立样品特征库? 4)采用何种识别的决策? 5)实现的流程的核心代码?
特特征征提提取取
样样品品特特征征库库的的建建立立
点击【训练样品设计】下拉列表框, 为手写的数字选择其对应的类别。
简单手写数字识别系统设计
简单手写数字识别系统主要构成:
➢ 特征提取
➢ 识别(模版匹配法)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Fourier变换的频率特性
返回
Fourier变换的低通滤波
返回
Fourier变换的高通滤波
返回
8.3 二维Fourier变换的应用
2. Fourier变换在图像压缩中的应用
变换系数刚好表现的是各个频率点上的 幅值。在小波变换没有提出时,用来进行压 缩编码。考虑到高频反映细节、低频反映景 物概貌的特性。往往认为可将高频系数置为 0,骗过人眼。
实例集锦
实 例 钝化
中值滤波去除噪声
中值滤波去除噪声
中值滤波去除噪声
中值滤波去除噪声
中值滤波去除噪声
中值滤波去除噪声
中值滤波 去雀斑
中值滤波 去雀斑
中值滤波 去雀斑
高斯滤波 去雀斑
高斯滤波 去雀斑
高斯滤波 去雀斑
高斯滤波 去雀斑
局部中值滤波 去雀斑
局部中值滤波 去雀斑
对比度增强
直方图均衡化
图像锐化
实 例 锐化
USM
USM
USM
USM
USM
USM
查找边缘
查找边缘
查找边缘
查找边缘
查找边缘
照亮边缘
照亮边缘
照亮边缘
照亮边缘
照亮边缘
4 边缘检测

Lenna Sobel
4 边缘检测
j 2 u0 N v0 N
F u, v
N N F u , v F u 2 2
7 数字图像处理和傅立叶变换
7 数字图像处理和傅立叶变换
8.3 二维Fourier变换的应用
1.Fourier变换在图像滤波中的应用
首先,我们来看Fourier变换后的图像, 中间部分为低频部分,越靠外边频率越高。 因此,我们可以在Fourier变换图中,选择 所需要的高频或是低频滤波。
v 0, 1, , N 1
N 1 x 0
F ( x, v) exp[ j2ux / N ]
u , v 0, 1, , N 1
例:分离性
f(x,y)
F(u,y)
F(x,v)
F(u,v)
空间域与频率域
空间域与频率域
7 数字图像处理和傅立叶变换
7 数字图像处理和傅立叶变换
采样数减少一半
7 数字图像处理和傅立叶变换
7 数字图像处理和傅立叶变换
7 数字图像处理和傅立叶变换
7 数字图像处理和傅立叶变换
• 2)频谱的频域移中
傅立叶变换以零点为中心,导致谱图象最亮点 在图象的左上角。 为符合正常习惯,将F u , v 的原零点从左上角 移到显示屏的中心。 F u u0 , v v0 e
边 界

Lenna Prewitt
4 边缘检测
边 界

Lenna Roberts
4 边缘检测
边 界
实 例 FFT
空间域与频率域
实际图像的傅立叶变换
下图给出两幅实际图像和他们的傅里叶频谱图。图(a)的图像反 差比较柔和,反映在傅里叶频谱上低频分量较多,频谱图中心 值较大(中心为频域原点)。图(b)的图像中有较规则的线状物, 反映在傅里叶频谱上也有比较明显的射线状条带。
(a)
(b)
二维傅立叶变换性质
• 分离性 对二维函数作傅立叶变换可以分为两步进行:首先视某一 个方向变量为常数,对另一个方向作一维傅立叶变换,然 后再对得到的变换结果作另一个方向上的一维傅立叶变换:
1 F ( x, v) N N
1 F (u , v) N
N 1
f ( x, y) exp[ j2vy / N ] y 0
Fourier变换的压缩原理
压缩率为:3.3:1 压缩率为:2.24:1 压缩率为:1.7:1
另一幅图像效果
ห้องสมุดไป่ตู้
Fourier变换的压缩原理
压缩率为:16.1:1 压缩率为:10.77:1 压缩率为:8.1:1
返回
实 例 同态滤波
相关文档
最新文档