颗粒材料平均场理论的多尺度方法_理论方面

颗粒材料平均场理论的多尺度方法_理论方面
颗粒材料平均场理论的多尺度方法_理论方面

SJTU多尺度材料模拟与计算

Dislocation and Stacking Fault Name:Wu lingling(user023) Student number:016050910054 1 Calculations of Lattice constant and volume modulus Using molecular dynamics,we can simulate crystals in edge dislocation,screw dislocations and stacking fault, also we can calculate the dislocation strain energy and dislocations. Comparing the method of molecular dynamics calculation values and theoretical, we can analysis its error.Through this experiment, deepen para fault, fault, and the understanding of molecular dynamics simulation. For edge dislocation, strain for per unit length: 20ln 4(1)e e Gb R E r πn =? For a screw dislocation, strain for per unit length: 20ln 4s e Gb R E r π = Molecular dynamics is dislocation of strain energy method: ()/MD dislocated ref E E E L =? In actual crystal structure, the closed normal stacking sequence may be damaged and staggered, which named the stacking fault.Cambium mistake almost do not produce lattice distortion, but it undermines the integrity of the crystal and the normal cyclical, anomalous diffraction effect in the electronic, allowing the energy of the crystal increased, this part of the increased energy is called the stacking fault energy. The mathod using Molecular dynamics to calculation approach stacking fault: SFE = tot ref E E S γ? 2 Results and Analysis 2.1 helical dislocation -91512.1172811518-(-91519.9264975819)7.80921643s E ev =

多尺度方法在复合材料力学研究中的进展

多尺度方法在复合材料力学分析中的研究进展 摘要简要介绍了多尺度方法的分量及其适用围,详细论述了多尺度分析方法在纤维增强复合材料弹性、塑性等力学性能中的研究进展,最后对多尺度分析方法的前景进行了展望。 关键词多尺度分析方法,复合材料,力学性能,细观力学,均匀化理论 1 引言 多尺度科学是一门研究不同长度尺度或时间尺度相互耦合现象的跨学科科学,是复杂系统的重要分支之一,具有丰富的科学涵和研究价值。多尺度现象并存于生活的很多方面,它涵盖了许多领域。如介观、微观个宏观等多个物理、力学及其耦合领域[1]。空间和时间上的多尺度现象是材料科学中材料变形和失效的固有现象。 多尺度分析方法是考虑空间和时间的跨尺度与跨层次特征,并将相关尺度耦合的新方法,是求解各种复杂的计算材料科学和工程问题的重要方法和技术。对于求解与尺度相关的各种不连续问题。复合材料和异构材料的性能模拟问题,以及需要考虑材料微观或纳观物理特性,品格位错等问题,多尺度方法相当有效。 复合材料是由两种或者两种以上具有不同物理、化学性质的材料,以微观、介观或宏观等不同的结构尺度与层次,经过复杂的空间组合而形成的一个多相材料系统[2]。复合材料作为一种新型材料,由于具有较高的比强度和比刚度、低密度、强耐腐蚀性、低蠕变、高温下强度保持率高以及生物相容性好等一系列优点,越来越受到土木工程和航空航天工业等领域的重视。 复合材料是一种多相材料,其力学性能和失效机制不仅与宏观性能(如边界

条件、载荷和约束等)有关,也与组分相的性能、增强相的形状、分布以及增强相与基体之间的界面特性等细观特征密切相关,为了优化复合材料和更好地开发利用复合材料,必须掌握其细观结构对材料宏观性能的影响,即应研究多尺度效应的影响。 如何建立起复合材料的有效性能和组分性能以及微观结构组织参数之间的关系,一直是复合材料研究的重点,也是复合材料研究的核心目标之一。近年来,随着细观力学的发展和渐近均匀化理论的深化,人们逐渐认识并开始研究复合材料宏观尺度和细观尺度之间的联系,并把二者结合起来。本文综述了多尺度分析法在纤维增强复合材料力学性能中的研究进展,并对多尺度分析方法的发展进行了展望。 2 纤维增强复合材料力学性能分析中的多尺度方法 目前,纤维增强复合材料的研究方法可分为宏观力学和细观力学方法两种。复合材料宏观力学方法[3]是从唯象学的观点出发,基于均匀化假设,将复合材料当做宏观均匀介质,视增强相和基体为一体,不考虑组分相的相互影响,仅考虑复合材料的平均表现性能。宏观力学方法中的应力、应变不是基体和增强相的真实应力、应变,而是在宏观尺度上的某种平均值。 复合材料细观力学[4]的目的是建立复合材料宏观性能同其组分材料性能及细观结构之间的定量关系,是将微观结构形态特征量与宏观力学分析相综合,来建立两个不同尺度之间的联系,细观力学是介于宏观力学与微观力学之间的重要分支学科,对研究跨尺度效应的力学问题,既有重要的理论价值,也有重要的工程应用前景,是当前力学研究的国际前沿性问题。

多尺度方法综述

跨原子/连续介质(第一类)多尺度分析的各种方法按照其控制方程的类型可分成两类,基于能量的方法和基于力平衡的方法 一、基于能量的方法 假定系统的总能量由原子区,握手区(可无),连续介质区构成 tot A H C ∏=∏+∏+∏ 其中,握手区和连续介质区的能量是由有限元法近似求得的。 基于能量的方法一个最大的缺陷是很难消除耦合能量的非物理效应“鬼力”。鬼力产生的原因: 假设全区域采用原子进行计算,则其能量为: ,,atom atom A atom C ∏=∏+∏ 对位移进行求导,可得 ,,atom A atom C f u u α αα?∏?∏=--?? 在平衡时:,,atom A atom C u u αα ?∏?∏=-?? 同理,对于无握手区的多尺度能量法,在平衡时,满足方程: A C u u αα?∏?∏=-?? 同时因为在两种方法中,,A atom A ∏=∏ 即对于多尺度能量法需满足方程:,C Atom C u u αα ?∏?∏=?? 因为在多尺度能量法的计算中,连续介质区的能量是由有限元法近似求得的,与原子计算的能量不一致,所以会产生“鬼力”。 1. QC 法(1998, Tadmor E B, OrtizMand Phillips R 1996 Quasicontinuum analysis of defects in solids Phil. Mag. A 73 1529–63) 在之前的报告中阐述过,本周的阅读中暂无改进内容 2. CLS 法(1999,Broughton JQ, Abraham F F, BernsteinNand KaxirasE1999 Concurrent coupling of length scales: methodology and application Phys. Rev. B 60 2391–403) 提出该方法的作者是基于自身对于MEMS (Micro-Electro-Mechanical

多尺度耦合理论

多尺度耦合理论

何国威、白以龙 中国科学院力学研究所,非线性力学国家重点实验室 多尺度力学是当代科学技术发展的需求和前沿。在生物科学,材料科学,化学科学和流体力学中,许多重要问题的本质都表现为多尺度,它们涉及从分子尺度到连续介质尺度上不同物理机制的耦合和关联。例如,在生物和化学科学里,在分子尺度上的不同性态产生了生物体尺度上的复杂现象;在固体破坏中,不同尺度的微损伤相互作用产生更大尺度上的裂纹导致材料破坏;在流体力学中,不同时空尺度的涡相互作用构成复杂的流动图案。这些问题的共同特点是不同尺度上物理机制的耦合和关联。只考虑单个尺度上某个物理机制,不可能描述整个系统的复杂现象。因此,多尺度力学的核心问题是多过程耦合和跨尺度关联。 多尺度力学是传统的针对多尺度问题研究的发展,但有着本质的不同。它们都研究不 能通过解耦进行求解的多尺度耦合问题。但是,传统的多尺度问题具有相似性或弱耦合,即:不同尺度上的物理过程具有相似性,因此我们可以求相似解;或者,不同尺度上的物理过程具有弱耦合,因此我们可以采用平均法求解。然而,多尺度力学的研究对象具有多样性和强耦合,即:不同尺度上的物理过程既不具有相似性,耦合也不再是弱的了。因此,传统的相 似解和平均法对多尺度力学的问题都不适用。 动力系统理论和统计力学为多尺度现象的研究提供了基本方法。在一个给定尺度上的物理过程可以用动力学方程描述,而动力学方程的建立主要依赖于经典力学和量子力学。问题的关键在于不同尺度上物理过程的相互耦合。如果可以忽略耦合,单个尺度上的物理过程完全可以由经典力学或量子力学描述,剩下的就是类似于解方程那样的认识过程,原则上并不是什么困难的事情。在平衡态统计物理里,不同尺度之间物理过程耦合的基本假设是基于等概率原理的统计平均。但是,大多数多尺度问题涉及统计力学中非平衡态的非线性演化过程,不同的尺度之间存在强耦合或敏感耦合,不能简单地采用绝热近似、统计平均以及微扰等方法处理,而必须将不同尺度耦合求解。特别是存在敏感耦合的情形,小尺度上的某些无序性细节在非线性演化过程中可能被强烈地放大,变成大尺度上的显著效应。统计力学为处理这类问题提供了一个基本出发点。一个直接的方法是从第一原理出发,利用分子动力学,计算分子尺度上的所有细节,然后求得连续介质尺度上的物理性质。但是,由于现有计算机的限制,从第一原理出发的直接法并不现实。一个比较现实的方法是寻找中间尺度进行过渡,它包括基于区域分解的准连续方法和基于粗粒化的粒子动力学法。这些构造模型的方法在不同的问题上都取得了一定程度的成功,但是,它们都不具有普适性。最新的发展是建立在齐次化方法上的非均匀齐次法,它试图给出解决跨尺度关联问题的一般框架。 现代力学中两个典型的多尺度问题是流体湍流和固体破坏,它们既有共同点,但又有 所区别:流体湍流表现为不同尺度上多个物理过程的耦合,它没有尺度分离;固体破坏表现为不同尺度上物理机制的跨尺度关联,它具有尺度分离。现详细讨论如下: (1)流体湍流: 在流体湍流里,不同尺度上的涡相互作用构成了复杂的流动图案,它们具有不同的物理机制而又相互耦合。在上个世纪,针对不同尺度上物理过程相似的问题,流体力学家发展了求相似解的方法;针对不同尺度上物理过程耦合较弱的问题,流体力学家发展了小参数摄动法。正是相似解和摄动法解决了航空航天中诸如湍流边界层这样的重大问题,形成了力学史上的一个黄金时代。但是,现在对湍流问题的研究与过去有了根本的不同,它表现为要认识不同尺度上不同的物理过程的强耦合。对于这类问题,经典的相似解和摄动法并不适用。 因此,必须发展能解决多尺度现象里多样性和强耦合问题的理论和数值方法。 湍流具有从耗散尺度到积分尺度的连续谱,它没有尺度分离,因此平均法并不适用。 统计物理为湍流的多尺度模型提供了工具。一般而言,湍流的统计特性可以用矩和概率密度函数描述。但是,矩方程含有非线性引起的高阶矩耦合,概率密度函数方程含有耗散引起的

复合材料板弯曲行为分析的高阶多尺度方法

复合材料板弯曲行为分析的高阶多尺度方法 王自强 摘要 复合材料具有良好的物理、力学性能,在航空航天和日常工业用品中已得到广泛应用, 它们经常被制备成板或者壳的形式。因此,针对复合材料板的宏‐细观模型、性能预测、优化设计,以及复合材料板在各种物理和力学荷载作用下的弯曲行为分析已经成为一个十分重要的研究领域。本文主要研究复合材料板静、动力弯曲行为分析的高阶多尺度方法,其结果将为复合材料板的设计和性能预测提供理论支持。 本文的第一部分研究周期性复合材料板在静力作用下弯曲行为分析的高阶双尺度方法。首先,从三维的线弹性方程出发,在细观上定义三维的局部单胞函数,并利用它求出均匀化系数和定义出均匀化方程。其次,利用Reissner-Mindlin位移模式求解均匀化方程后,把得到的局部单胞函数和均匀化解组装成复合材料板弯曲问题位移场的二阶双尺度逼近解。然后,分析了该近似解在点点意义下的对原始方程的近似性和在能量模意义下的整体近似性。最后,给出了典型算例,其数值结果说明了算法的有效性。 本文的第二部分研究周期性复合材料板在稳态热‐力耦合作用下弯曲行为分析的高阶双尺度方法。首先,从三维的稳态热‐力耦合方程出发,在细观上定义能够反映温度增量对位移场影响的三维的局部单胞函数,并利用它求出均匀化系数和定义均匀化方程。其次,对于均匀化的温度场采用积分投影近似,均匀化位移场采用Reissner-Mindlin位移模式求解。然后,由它们组装出温度和位移场的高阶双尺度渐近展开式并给出计算温度场和位移场的二阶双尺度算法,进一步得到温度梯度、位移、应变和应力的二阶双尺度算法。分析了二阶双尺度近似解在点点意义下对原始方程的近似性和在能量模意义下的整体的近似性。最后,给出了数值算例,其数值结果表明算法的有效性。 本文的最后一部分研究周期性复合材料板在瞬态热‐力耦合作用下的弯曲行为分析的高阶双尺度方法。首先,从三维的瞬态热‐力耦合方程出发,在细观上定义能够反映应变率对温度场影响以及温度增量对位移场影响的三维局部单胞函数,并利用它们求出均匀化系数和定义均匀化方程。其次,对于均匀化温度场采用积分投影近似和均匀化的位移场采用Reissner-Mindlin位移模式求解。最后,由高阶的双尺度渐近展开式给出计算温度场和位移场的二阶双尺度算法,进一步可以得到温度梯度、应变和应力的二阶双尺度算法。并分析了二阶双尺度近似解在点点意义下的对原始方程近似性和在能量模意义下的整体的近似性。 高阶多尺度方法可以作为解决类似问题的一个有效工具,可以应用新型复合材料结构的研究、设计及其工程实践。 关键词:复合材料板,弯曲问题,热‐力耦合问题,高阶多尺度方法,近似性分析

复合材料强度参数预测的多尺度分析方法

复合材料强度参数预测的多尺度分析方法 余新刚 摘要 复合材料宏观力学性能的理论预测是对复合材料及其结构一体化优化设计的基础,复合材料力学性能预测包括刚度参数和强度参数的预测。到目前为止,对于复合材料刚度参数的预测已经有很多成熟的理论和方法,然而对于强度参数的预测仍然是一个难题。在众多成熟的刚度预报方法中,基于均匀化理论的多尺度方法是一种适应于周期性构造复合材料的,通用、高效、精确的方法。本文主要研究复合材料强度参数预报的多尺度分析方法。 首先,本文针对具有周期性构造的复合材料,将其强度参数分解为局部拉伸、弯曲和扭转三种单因素的强度行为,采用直杆拉伸、弯曲和扭转三种承载模型,给出了周期性复合材料的线弹性强度预测方法,主要结果是:推导了用于强度参数预测的多尺度公式,给出了周期性复合材料直杆在拉伸、弯曲和扭转状态下的应变场表达式。通过大量的数值算例,以及与试验数据的对比,验证了算法的可行性和有效性。此外,作为一个典型的应用实例,对四步法编织复合材料的强度进行了分析。首先将计算结果与试验数据进行了对比,以验证多尺度分析方法在四步法编织复合材料强度预测方面的有效性。随后对四步法编织复合材料的强度进行了深入研究,给出了细观特征参数:纤维体积含量和编织角,对强度的影响,其结果对编织复合材料的设计和优化具有一定的参考价值。 论文的第二部分研究了随机构造复合材料强度参数预测的多尺度计算方法,在介绍了一种含大量随机颗粒分布复合材料数值模拟算法的基础上,发展并实现了针对这种三维区域的四面体网格剖分算法,为进一步的强度分析提供了高质量的数值模型。进而,本文针对随机颗粒分布复合材料的特点,将其表征为具有周期性随机分布颗粒的复合材料,推导了基于统计概念的多尺度分析的强度预测公式,给出了直杆均匀拉伸、悬臂梁纯弯曲和圆形常截面柱体扭转的应变场表达式,以及统计意义下的随机分布复合材料的线弹性强度预测算法,并进行了大量的数值试验。通过与物理试验数据的对比,验证了算法的有效性。 关键词:周期复合材料,随机复合材料,四步法,多尺度分析,强度预测

6-1 计算机辅助材料设计与模拟概述

第六章计算机辅助材料设计与模拟 第一节 概述 第二节 材料设计基础 第三节 材料设计软件及应用 第四节 金属材料的热加工工艺模拟 第五节 计算机辅助材料设计与模拟举例 --------------------------------------------------- 第一节 材料设计概述 6.1.1材料设计的定义、范围与层次 6.1.2多尺度材料设计及其耦合 6.1.3材料设计的途径(第五章已经涉及到了数据库) 第二节 材料设计基础 6.2.1 材料设计的结构基础(原子结构,晶体结构,电子结构,相结构) 6.2.2 量子力学第一性原理简介(着重介绍密度函数理论) 6.2.3材料热力学,动力学和相图 (热力学原理,计算方法,数据库) 6.2.4 概率损伤设计(材料寿命预测与可靠性评价) 第三节 材料设计软件及其应用 (简单介绍软件的特点,基本功能,典型应用。具体细节请查阅软件主页和相关链接。) 6.3.1 第一性原理计算软件(参见量子化学软件中文网) 6.3.1.1 ABINIT(功能全,适于学习,可运行于Windows 操作系统的免费软件) 6.3.1.2 VASP (材料研究中最为广泛使用和接受的量化软件) 6.3.1.3 Cerius2 (功能模块多) 6.3.1.4 Material studio(功能模块多) 6.3.2 材料热力学和相图计算软件 6.3.2.1 Thermo-Calc (http://www.thermocalc.se/) 6.3.2.2 FACTSage (http://www.factsage.co m) 6.3.2.3 PANDAT (https://www.360docs.net/doc/433755164.html, 6.3.3 概率设计与可靠性评价软件 6.3.3.1 NESSUS (美国西南研究院为美国宇航局(NASA)开发的一个概率设计与可靠性设计软件 第四节 金属材料的热加工工艺模拟 6.4.1铸造过程计算机模拟 6.4.2压力加工计算机模拟 6.4.3 材料热处理计算机模拟 6.4.4 材料组织结构计算机模拟(断裂,晶粒长大的模拟) 6.4.5 焊接过程计算机模拟 第五节 计算机辅助材料设计与模拟举例 6.4.1 金属材料的设计(合金相,相图与材料设计) 6.4.2 陶瓷材料的设计(过渡金属掺杂ZnO稀磁半导体材料??)

多尺度模拟方法概述 计算传热学作业

《计算传热学》学期作业 多尺度模拟方法概述 摘要:本文简单介绍多尺度模拟的思想,应用及存在的问题。 关键词:数值模拟;多尺度模拟 世界的本质是多尺度的,在不同的尺度下物质表现出不同的特征。如流体在分子尺度下表现为离散的不确定的粒子,而在宏观尺度下表现为连续的确定性的介质。在不同的时间和空间尺度下由于其尺度特性的不同,往往所采用的方法也不同,如图1[1]所示。 图1各种空间时间尺度下适用的模拟方法 文献[2]利用Kn数来鉴定何种特征尺度下流体流动适合用何种方法。Kn数的物理意义是分子平均自由程与特征长度的比值。 Kn<10-3,流动符合连续介质假设,可用N-S方程; 10-310,分子流动,可用分子动力学模拟方法。 模拟方法大致可分为宏观方法,介观方法,微观方法。宏观方法即流动符合

连续介质假设,传热的空间尺度和时间尺度符合傅立叶导热定律;微观方法是从分子运动碰撞理论来建立方程;介观方法是介于微观方法和宏观方法之间。这三种方法各有优缺点。宏观方法不能揭示微观的物理现象,但是方法成熟,应用方便。微观或介观方法更适合描述极端尺度的物理现象,但是计算量巨大,方法不成熟,工程应用极少。如果在采用宏观方法的过程中,可将微观尺度的信息带入,建立一种微观——宏观耦合的多尺度模拟方法可以结合两者的优点,又可以削弱两者的缺点。 多尺度问题表现[3]为: 已知一个模型的宏观描述, 但这种宏观描述在某些局部区域失效, 必须要用低尺度微观非线性描述代替。模型的微观特性既受制于宏观上的作用因素, 又可能显著影响宏观性能。但微观结构, 性能与状态何时、以怎样的途径去影响宏观性能并不清楚。 假定一个给定系统的微观行为可以使用微观模型变量u表示, 系统的宏观行为用宏观模型变量U表示, 那么宏观模型变量U与微观模型变量u可以通过压缩乘子Q或者重构算子R联系起来: U=Qu RU=u 多尺度模拟的难度在于两种尺度的耦合,即如何建模。建模的策略有两种[4-6]:一种策略是先在较低的尺度上建模, 然后将结果放入高尺度模型中, 这是一个从小尺度到大尺度的递阶过程。但低尺度建模的理论是一个重要问题。采用这种策略的方法一般称作信息传递的多尺度方法或递阶的多尺度方法另一种策略是在不同尺度上同时建模, 将区域分成不同尺度定律控制的区域, 这些区域可以重叠也可以不重叠,在交界处实现连接。在这种策略中, 区域之间的连接也是一个重要问题采用这种策略的方法一般称作并发(一致) 的多尺度方法。 国内外许多学着都致力于开发多尺度模拟方法,主要是介观宏观耦合和微观宏观耦合。多尺度模拟可用于分析材料、化学、能源工程等领域的问题,特别是微小装置的结构、流动和传热问题。随着微纳米科学技术的发展诞生出一个新的技术领域,微/纳机电系统(Micro/Nano ElectroMechanical System,M/NEMS)。微机电系统在工业、通信、环境、生物、医疗和航空航天等领域有着十分广阔的应用前景。 对于M/NEMS 尺度来说,分子动力学模拟虽可提供原子尺度信息,但只能考虑几百万个原子,处理的规模太小;而连续介质力学模拟不能提供接触区域(通常只有几层原子)微观结构的变化;因而不利于人们全面地揭示微/纳尺度下各种现象的相关性。多尺度模拟在一个系统的不同区域内采用不同的模型。例如,在发生较大变形的区域采用量子力学或分子动力学模型,在Kn数较大的区域采用分子动力学模拟或格子Boltzmann方法,以获得该区域的原子尺度信息;在变

15 多尺度材料建模

22.54 中子与物质的相互作用及应用(2004年春季) 第十五讲(2004年4月15日) 多尺度材料建模 参考文献 S. Yip, "Synergistic Science", Nature Materials 2, 3 (2003). This commentary is attached as Chap15(S).pdf. 材料发现与创新 我们社会中各种科技企业对新材料的需求日益增长,这就要求成功的材料设计是基于整体分析的,在合成与处理方法中,对材料基本性能和特性的了解是与创新结合在一起的,并进一步与性能分析、使用寿命预计、环境评估和经济学研究联系起来。实际中材料的发现与创新是一个多学科高度综合的过程,依赖于多种科学和工程团体的贡献,因此也就需要在不同学科之间的有效交流,跨越传统的界限来进行合作。 在材料研究所涉及到的所有领域中,计算都显著地推进了研究工作的进展,通过第一原理全能量计算对半导体材料电子学性能的定量理解就是一例;另外,通过对聚合体流变行为的建模,实现了对热塑过程设计的改进。随着科学计算和可视化在功能上的日益强大与使用便捷,建模变得越来越普遍,不仅是仿真、分析和预测,还包括数据库生成和虚拟测试。 材料研究是一个异常活跃和多学科交织的领域[1]。大学、工业界和政府研究实验室中的科学家和工程师们在其中扮演了重要的角色。爆炸性增长的材料研究协会会议与期刊如MRS Bulletin和Nature Materials见证了这一点。也有一些杂志是针对材料建模与模拟的,如the Journal of Computer-Aided Design[2]和Modeling and Simulation in Materials Science and Engineering[3],还有其它一些越来越多的会议论文集。 还有另外一个因素增加了材料建模的重要性,即政府部门注意到了模拟和建模是可靠的,能够作为实验验证的补充(并将最终取代之)。一些国防部、能源部资助的项目是针对高性能计算的开发与实现的,而这些高性能计算的目的是以更高的效率和更低的成本(有时候人员安全也是要考虑的)来实现目标任务。例如High Performance Computing Modernization Program[5]和the Accelerated Strategic Computing Initiative,后者是与the Science-Based Stockpile Stewardship紧密相关的,而这本身又是一个规模空前、责任重大的国家项目[6]。 由于材料建模的能力在深度和广度都在增加,因此材料的分子工程也变得更加切实。这是每个材料科学家和工程师长久以来的梦想,创造出来的新材料不仅性能优越、使用寿命延长、对环境影响小,而且不必考虑成本问题。尽管计算机辅助的材料设计落在计算机辅助的分子(药品)设计之后,它还是取得了重要的进展,尤其是在微电子、光学和磁应用方面的功能材料领域[7]。与之形成对比的是,对于结构材料来说,机械、热学和化学(合金,腐蚀等)等现象对可靠和具有预测性的建模提出了严峻的挑战。因此,对于理解和控制这些现象最有希望的方法是有效地将几种建模技术结合起来,每种技术只适合一种特定的长度和时间尺度。这个概念被称作多尺度材料建模。 在材料建模中的长度/时间尺度 在许多科学问题中,一个简单的物理现象可以通过几种层次或长度(时间)尺度来进行检验。例如,海浪冲上沙滩的复杂运动可以通过看电影的方式来观察,也可以观察构成波浪

材料设计考试答案

1.材料设计有哪几个发展阶段? 金属、陶瓷,塑料等各种材料的发展都经历了简单到复杂、宏观到微观、表面到本质、盲目到理性、偶然到必然、经验到理论的过程。 如果把它们的发展历程和研究开发都认为是具有材料设计的内涵,那么,可将材料设计分为以下几个阶段: 1. 经验设计阶段 2. 科学组织设计阶段 3. 相结构设计阶段 4. 原子结构层次设计阶段 2.材料设计范围是什么? 材料设计应包括理论、模型、计算、实验和统计等几部分。 一般认为材料设计应包含从材料制备到应用的全过程。 材料计算、材料制备、材料评价和性能检测的过程基本上完成了一个材料设计周期。 材料计算、材料制备、材料评价和性能检测之间的快速重复是材料发展的主要手段。 3.材料设计的层次? 材料设计可分为: 微观层次、介观层次、宏观层次三个层次; 也称为微观层次、连续模型层次、工程应用层次; 微观设计层次(micro):空间尺度在1 nm量级,是原子、电子层次的设计 连续模型层次(continuum):典型尺度在1μm量级,这时材料被看成连续介质,不考虑其中单个原子、分子的行为; 工程设计层次(Macro):尺度对应于宏观材料,涉及大块材料的加工和使 用性能的设计研究。 材料设计也有划分为:纳观(nano)、介观(meso)微观(micro)、宏观(macro 4.材料设计有哪些特点?

A.多尺度-关联模型: 多尺度蕴藏于物质世界、科学技术和工程的诸多领域: 宇宙形成、生命现象、大气环流,材料的成型与应用,以及物理和化学中的量子效应等。空间和时间方面的跨尺度与跨层次现象,以及相应的多尺度耦合反映了物质世界构造的基本性质。 材料科学将发展为材料系统科学,材料设计也必将是系统设计。不同结构 层次与不同性质的理论需要沟通,逐步形成有机联系的知识体系。 单一层次的设计必将被多层次设计所代替。多层次设计必须要建立多尺度 材料模型(multiscale materials modeling, MMM) 和各层次间相互关联的数 理模型。 多尺度-关联模型 ①大尺度原子模拟方法; ②原子模拟的边界技术; ③原子模拟方法与有限元方法偶和技术; ④本构关系逼近法; B.经验设计和科学设计并存与兼容 C.材料设计将逐渐综合化 D.材料设计将逐步计算机化 5.材料设计的主要类型和方法有哪些? 一般认为:材料设计(materials design)是指通过理论计算来预报新材料的组分、结构与性能,或者说通过计算设计来“订做”具有特定性能的新材料。 实际认为:材料设计不仅是指开发新材料,传统材料的设计和加工制备工艺过程中的设计和控制在实现生产中显得更为重要。 类型:复合材料设计表面技术设计,新材料开发设计,纳米材料与技术的设计,材料加工过程设计与控制 材料设计方法:计算机技术(专家系统人工神经网络),数学工具(有限元法、遗传算法、分形理论、小波分析、拓扑法等),软件与数据库

材料科学研究的部分名词解释

一、名词解释 【材料科学与工程学科定义】材料科学与工程学科以数学、力学及物理、化学等自然科学为基础, 以工程学科为服务和支撑对象,是一个理工结合、多学科交叉的新兴学科,其研究领域涉及自然科学、 应用科学和工程科学。 【材料】材料是具有一定性能,可以用来制作器件、构件、工具、装置等物品的物质;材料是人 类用以做成有用东西的物质 【移植法】将某学科的原理、方法或技术用于研究分支科学或其它学科技术领域的理论、技术 或方法问题。它是通过横向、纵向联想和类比等方法进行的。所以和类比、联想法有密切联系或相 似。 【原型启发法】对自然现象进行观察、探索受到启发来进行科学研究和创造发明的。启发是从其 他失误、现象中得到启示后,找出解决某一问题的途径。起启发作用的事物称为原型 【散耗结构】指从环境输入能量或(和)物质,使系统转变为新型的有序状态,即这种形态依靠不断地耗散能量或(和)物质来维持。一个远离平衡的开放系统,在不断与外界交换物质和能量的过程中,自动从无序状态转化而形成的有序结构-非平衡有序结构。 【蠕变】指金属在恒定应力作用下,随着时间的延长发生的缓慢而持续的形变( 非弹性变形inelastic deformation)。某一温度和应力下蠕变性能合格的指标:100h和低于0.1%。 【超塑性】材料在特定的组织状态(如超细晶或复合材料) ,在一定温度和形变速率下表现出极高塑性的现象。衡量超塑性高低的指标:塑性高(100%或以上),温度越低或形变速率越高。 【仿生学】从材料的观点研究生物材料的结构和功能特点,并用以设计和制造先进复合材料,是当前国际上一大热点 【材料设计】材料设计是依据积累的实验规律和总结的科学原理制备预先确定目标性能材料的科 学。 【多尺度材料模型】一般是由连续介质和介观层次、微观层次及原子层次材料模型组成。即连续 介质和介观层次(模型直径大于10-4m)微观层次(大约10-6m~10-4m)及原子层次(约10-10m~10-6m)材 料模型。 【材料设计专家系统】具有相当数量的各种背景知识,并能运用这些知识解决材料设计中有关问 题的计算机程序系统 【有限元法】将结构物质看成是由有限个划分的单元组成的整体,以单元结点的位移或结点力 作为基本未知量求解。 【物理模型】对具有相同物理本质特征事物的抽象。在工程技术中,就是利用物理模型模拟实际系 统的行为和过程的方法。 【数值模拟】数值模拟是以实际系统和模型之间数学方程式的相似性为基础的。 【分子动力学方法】一种确定性方法,跟踪每个粒子的运动。求解所有粒子的运动方程,模拟原 子的路径相关的基本过程。

超分子自组装材料的多尺度模拟研究方法

超分子自组装材料的多尺度模拟研究方法 1.1引言 超分子化学是研究基于分子间非共价键相互作用而形成的具有一定结构和功能分子聚集体的化学,在与材料科学、生命科学、信息科学、纳米科学与技术等学科的交叉融合中,超分子化学已发展成超分子科学,是21世纪新概念和高技术的重要源头之一。相较于传统化学上所研究的共价键,超分子化学的研究对象是一些较弱且具有可恢复性的分子间相互作用,如氢键、金属配位、xπ堆积、疏水效应等,这些分子间弱相互作用是促进分子识别的关键,对超分子体系的分子识别和组装有着重要意义12。 超分子材料的性能取决于基本构筑单元的分子结构,在更大程度上依赖于这些构筑单元经过自组装得到的介观尺度聚集体的结构与相态,而自组装过程又是影响超分子聚集体结构及其功能的关键因素。超分子自组装过程的影响因素极其复杂,与传统凝聚态物质相比,超分子体系具有更高的流动性及环境依赖性,而正是体系热涨落及外部环境的约束性共同导致超分子体系的新行为,主宰体系演化的机制己从凝聚态物理传统的相互作用能量机制转变为动力学和熵效应的共同作用。外部影响因素或者体系自身的耗散作用能够驱动超分子体系自组装形成各种丰富的结构,从而具有不同的功能及应用范围。

超分子体系自身结构的特点使得体系演化速度慢、松弛时间谱分布宽4.例如,单链聚合物的空间尺度从化学键键长(100m)延伸到链旋转半径(103m),而相应的时间尺度从化学键的振动(10-15可延伸到整条聚合物链的松弛和扩散(105s)。如果考虑聚合物链之间的缠结效应,聚合物链的松弛时间会更长阿。超分子自组装过程也涵盖非常大的空间和时间尺度:超分子材料的形成需要从基本构筑单元的分子尺寸(10°m)过渡到典型有序功能结构的尺寸(10m),此外有序功能结构转变动力学往往发生在微秒或更长的时间尺度上10l对于超分子材料体系而言,由于实验手段的一些限制,许多情况下很难获得这些复杂分子结构在多个尺度上的结构及动力学性质。虽然计算机硬件和算法在近些年得到快速发展,计算机模拟已经成为在各个层面研究超分子自组装材料体系不可或缺的组成部分,但到目前为止还没有一种模拟方法能够同时描述超分子组装体系微观结构、介观组装形貌及宏观材料功能等多个尺度上的性质。因此建立有效的多尺度模拟方法,增强不同尺度模拟方法之间的衔接和信息传递是一项十分紧迫的任务,这也是发展多尺度模拟方法的核心目标。由于缺少单一的模拟方法应用于超分子材料体系的多尺度分析,因此发展多尺度模拟方法的主要任务是把不同尺度上的模拟方法进行完善,同时发展对这些单一尺度模拟方法进行有效连接的手段传统意义上的计算机模拟方法是 随着计算机的发明一起发展起来的。根据研究体系运动的确定性与否分为分子动力学方法21和蒙特卡罗方法1两大类。分子动力学方法是建立在经典力学基础之上,通过求解粒子的运动方程来模拟体系随

多尺度方法与Jacobi解解读

多尺度方法与Jacobi解 本文研究了托卡马克系统与电磁轴承系统的多尺度方法和托卡马克系统的Jacobi解问题.首先综述了非线性振动理论及多尺度理论的研究背景、国内外研究现状以及已经取得的成果,介绍了非线性振动和多尺度方法,长期项的产生和对方程的影响以及Jacobi椭圆函数展开法等基本理论,然后在第四章和第五章详述了本文的主要研究工作.其主要内容有如下两方面:( 1 )应用多尺度法研究了托卡马克系统和变刚度主动电磁轴承系统,得到两个系统在一阶时间尺度下的三阶平均方程和二阶时间尺度下的五阶平均方程,并通过参数控制分别得到两个系统三阶与五阶平均方程同次项的一致性定理.( 2 )利用改进的Jacobi椭圆函数展开法给出了托卡马克系统在三阶与五阶平均方程同次项一致性条件下的解析解,借助Maple软件给出解的结构图,该研究结果对进一步研究该类方程具有重要理论意义和应用价值.最后,说明了当前关于多尺度方法和Jacobi解研究的热点问题,结合自己的研究结果,对当前的热点问题做了进一步研究的介绍和展望. 同主题文章 [1]. The exact solutions to (2+1)- dimensional nonlinear Schr dinger equation' [J]. 原子与分子物理学报. 2004.(01) [2]. 孟庆苗. 球对称动态黑洞周围时空中标量粒子的自发辐射' [J]. 山西师范大学学报(自然科学版). 2004.(03) [3]. 蒋元林. Gauss—Jacobi求积公式的收敛阶' [J]. 苏州大学学报(工 科版). 1981.(00) [4]. 孟庆苗. Vaidya-Bonner黑洞的自发辐射' [J]. 贵州师范大学学报(自然科学版). 2004.(03) [5]. 郭冠平. 耦合非线性KdV方程组的Jacobi椭圆函数求解' [J]. 商丘师范学院学报. 2004.(05) [6]. 付彦超,杨自闯,叶春生. 二维稳态渗流场计算的有限元方法算法研究' [J]. 科技信息(学术研究). 2008.(26) [7]. 郭唏娟,常福清. Jacobi、Gauss-Seidel迭代收敛的准则' [J]. 工程数学学报. 1992.(03)

多尺度方法应用

多尺度方法 1.多尺度方法的意义 很多自然科学和工程的问题都具有多尺度的特征。例如,高雷诺湍流的涡有大小不同的尺度,材料的微损伤有大小不同的尺度,多孔介质的孔径大小存在着不同的尺度等。然而,在实际应用中却常常忽略多尺度特征而采用经验模型。这些模型在应用中取得很大的成功,但经验模型也存在本身的局限性,主要体现在:(1)由于模型的误差大,导致很多问题求解的精度不高; (2)完全忽略细观结构的影响,不能完全反映问题本身的自然特征; (3)缺乏可靠的理论基础。 因此,对于很多问题,需要建立能反映自然属性、精度更高且具有理论基础的多尺度模型。在建立多尺度模型的同时,首先必须考虑问题自身的特征。按照问题的特征可以把多尺度问题分为以下几类: 第一类:这类多尺度问题包含了孤立的瑕点或奇异点,比如裂痕、断层、突变以及接触线。对于这类问题,只需要在孤立的瑕点火奇异点附近建立细观尺度的模型,其它区域满足某个宏观模型即可。这样细观尺度的模型只需在很小的计算区域里求解。 第二类:这类多尺度问题存在相关的宏观模型,但宏观模型不清晰,不能直接用于求解。典型的一个例子是均匀化问题,这时系数aε(x)=a(x,xε?),其中ε表示细观尺度,虽然与宏观变量x相关的宏观模型确实存在,但宏观模型不明确。 第三类:这类问题是包含第一类和第二类特征的多尺度问题。 第四类:这类多尺度问题的习惯结构具有强烈的不规则性,难以找到相关的宏观模型。 随着多尺度模型的发展,还会出现更多类型的多尺度问题,对各类多尺度问题的求解引起了人们广泛的关注,也推动了多尺度计算方法的发展。很多科学和工程问题都存在多尺度问题,多尺度模拟是一个典型的跨学科问题,它涉及到数学、化学、物理、工程、计算机科学、环境科学等学科,越来越受到科学家的重视。目前为止,已经有一些经典的多尺度计算方法,如多重网格方法、均匀化方

多尺度方法在力学中的应用

多尺度方法在力学中的应用 作者杨陶令张鹏 指导老师苏先樾 1.背景概述 多尺度科学是一门研究各种不同长度或者时间尺度相互耦合现象的一门科学。多尺度科学的研究领域十分宽广,涵盖的学科之多难以一一罗列。在诸如流体动力学、复合材料力学、生物力学、环境科学、化学、地质学、气象学和高能物理之类的各门科学中,多尺度科学及其相应的方法发挥着相当重要的作用。正如同随机现象和非线性科学受到了广泛的重视一样,多尺度科学因其处于当代科学的许多极富挑战性问题的核心地位,未来的发展前途不可限量。 在材料科学领域中,材料的动态特性就是多尺度的问题。金属的塑性变形问题是从位错流动着手研究的,但是位错理论本身并不能预测塑性流动率和屈服强度——位错与晶界、点缺陷以及原子振动之间的相互作用才是导致诸如应变强化和材料强度特性动态变化等现象的主导因素。所以将固体的微观结构与原子层次的组成成分相结合来预测固体材料的宏观特性,就是材料科学的宏伟理想,并可期望达到人工设计材料的终极目标。 在气象学领域中,在大气环流模拟中计算尺度的典型数量级为100km,但是局部降水量、水汽含量以及某些风暴系统的数量级则要

小得多,因而必须在较小尺度层次上进行模拟,这也是典型的多尺度问题,应该用多尺度方法来处理。 必须说明的是,正是因为多尺度科学广泛的应用背景,多尺度方法作为一种研究的手段和方法,在各种截然不同的研究领域的应用过程中,往往与该研究领域的具体背景相结合,具有一定的特殊性。从算法的角度来说,与线性方程组的解法等常规算法不同的是,目前多尺度方法本身没有固定的算法格式,它所体现的更多的是一种研究的需求和应用的思想,在程序上的实现必须结合具体的研究模型,这将在下文中得到充分的体现。 2.多尺度的力学分析方法 在多尺度的分析方法中已经发展了若干力学分析的方法,目前比较典型算法有:宏观-细观平均化计算方法、材料强度的统计计算方法等。下面将详细介绍这两种方法。 2.1宏观-细观平均化计算方法 典型的宏观-细观平均化算法是:利用材料的细观周期性的胞元模型和强调宏观与细观之间相连接的广义自洽模型相结合所进行的计算。首先讨论胞元模型。胞元是材料的一个基本结构,它嵌含材料的细观几何和相结构的要素。就复合材料来说,胞元应嵌含颗粒形状、颗粒百分比、颗粒分布几何、基本结构、界面状况等要素。自洽方法是考虑宏观和细观交互作用的研究方法。广义自洽方法则是将平均化

多尺度耦合理论

何国威、白以龙 中国科学院力学研究所,非线性力学国家重点实验室 多尺度力学是当代科学技术发展的需求和前沿。在生物科学,材料科学,化学科学和流体力学中,许多重要问题的本质都表现为多尺度,它们涉及从分子尺度到连续介质尺度上不同物理机制的耦合和关联。例如,在生物和化学科学里,在分子尺度上的不同性态产生了生物体尺度上的复杂现象;在固体破坏中,不同尺度的微损伤相互作用产生更大尺度上的裂纹导致材料破坏;在流体力学中,不同时空尺度的涡相互作用构成复杂的流动图案。这些问题的共同特点是不同尺度上物理机制的耦合和关联。只考虑单个尺度上某个物理机制,不可能描述整个系统的复杂现象。因此,多尺度力学的核心问题是多过程耦合和跨尺度关联。 多尺度力学是传统的针对多尺度问题研究的发展,但有着本质的不同。它们都研究不 能通过解耦进行求解的多尺度耦合问题。但是,传统的多尺度问题具有相似性或弱耦合,即:不同尺度上的物理过程具有相似性,因此我们可以求相似解;或者,不同尺度上的物理过程具有弱耦合,因此我们可以采用平均法求解。然而,多尺度力学的研究对象具有多样性和强耦合,即:不同尺度上的物理过程既不具有相似性,耦合也不再是弱的了。因此,传统的相 似解和平均法对多尺度力学的问题都不适用。 动力系统理论和统计力学为多尺度现象的研究提供了基本方法。在一个给定尺度上的物理过程可以用动力学方程描述,而动力学方程的建立主要依赖于经典力学和量子力学。问题的关键在于不同尺度上物理过程的相互耦合。如果可以忽略耦合,单个尺度上的物理过程完全可以由经典力学或量子力学描述,剩下的就是类似于解方程那样的认识过程,原则上并不是什么困难的事情。在平衡态统计物理里,不同尺度之间物理过程耦合的基本假设是基于等概率原理的统计平均。但是,大多数多尺度问题涉及统计力学中非平衡态的非线性演化过程,不同的尺度之间存在强耦合或敏感耦合,不能简单地采用绝热近似、统计平均以及微扰等方法处理,而必须将不同尺度耦合求解。特别是存在敏感耦合的情形,小尺度上的某些无序性细节在非线性演化过程中可能被强烈地放大,变成大尺度上的显著效应。统计力学为处理这类问题提供了一个基本出发点。一个直接的方法是从第一原理出发,利用分子动力学,计算分子尺度上的所有细节,然后求得连续介质尺度上的物理性质。但是,由于现有计算机的限制,从第一原理出发的直接法并不现实。一个比较现实的方法是寻找中间尺度进行过渡,它包括基于区域分解的准连续方法和基于粗粒化的粒子动力学法。这些构造模型的方法在不同的问题上都取得了一定程度的成功,但是,它们都不具有普适性。最新的发展是建立在齐次化方法上的非均匀齐次法,它试图给出解决跨尺度关联问题的一般框架。 现代力学中两个典型的多尺度问题是流体湍流和固体破坏,它们既有共同点,但又有 所区别:流体湍流表现为不同尺度上多个物理过程的耦合,它没有尺度分离;固体破坏表现为不同尺度上物理机制的跨尺度关联,它具有尺度分离。现详细讨论如下: (1)流体湍流: 在流体湍流里,不同尺度上的涡相互作用构成了复杂的流动图案,它们具有不同的物理机制而又相互耦合。在上个世纪,针对不同尺度上物理过程相似的问题,流体力学家发展了求相似解的方法;针对不同尺度上物理过程耦合较弱的问题,流体力学家发展了小参数摄动法。正是相似解和摄动法解决了航空航天中诸如湍流边界层这样的重大问题,形成了力学史上的一个黄金时代。但是,现在对湍流问题的研究与过去有了根本的不同,它表现为要认识不同尺度上不同的物理过程的强耦合。对于这类问题,经典的相似解和摄动法并不适用。 因此,必须发展能解决多尺度现象里多样性和强耦合问题的理论和数值方法。 湍流具有从耗散尺度到积分尺度的连续谱,它没有尺度分离,因此平均法并不适用。 统计物理为湍流的多尺度模型提供了工具。一般而言,湍流的统计特性可以用矩和概率密度函数描述。但是,矩方程含有非线性引起的高阶矩耦合,概率密度函数方程含有耗散引起的

相关文档
最新文档