带式输送机传动滚筒设计
带式输送机传动滚筒受力分析及结构设计

带式输送机传动滚筒受力分析及结构设计摘要:传动滚筒作为带式输送机的关键部件,其结构性能的好坏直接影响着带式输送机的可靠性和使用寿命。
根据传动滚筒的结构类型、材料和工作载荷,对输送机传动滚筒受力状况做了理论分析,运用有限元分析软件对输送机传动滚筒进行了静力分析,得出滚筒在载荷作用下的应力和变形分布规律。
为传动滚筒的设计提供了有利的理论依据。
关键词:带式输送机;传动滚筒前言滚筒是带式输送机主要的传动部件,根据在输送机中所起作用可分为传动滚筒和改向滚筒。
传动滚筒用来传递牵引力和制动力矩;而改向滚筒主要起改变输送带的运行方向以完成拉紧、返回等各种功能。
二者在工作状态下的受力情况不同,故结构也不同。
滚筒由滚筒轴、轴承座、轮毂、辐板、筒壳等部分组成。
带式输送机的传动滚筒有焊接和铸焊2种结构形式。
本文以某矿用传动滚筒为例:滚筒直径为1600mm,传动滚筒扭矩为428kNm,合力为2596kN,筒壳材质为Q235A。
1、传动滚筒的受力分析在带式输送机中,传动滚筒相当于带传动中的主动轮,而从动滚筒相当于从动轮。
驱动滚筒正常工作时承受轴端输入扭矩作用旋转,同时还受输送带和滚筒之间摩擦力的作用,以及输送带对滚筒的压力作用,如图1所示。
图1滚筒上的张力变化图假设输送带是理想的挠性体,可以任意弯曲,没有弯曲应力、质量和厚度。
输送带在滚筒上的围包角为α,在围包角内存在滑动弧λ和静止弧γ,即α=λ+γ。
两端输送带的张力差为F1-F2,此差值等于滚筒轴上输入的扭矩值。
输送带的张力变化可按欧拉公式计算,输送带任一点的张力Fθ=F2eμθ(1)输送带在相遇点的极限张力F1ma某=F2eμα(2)式中θ——输送带单元所在圆周角,0按式(2)给出的输送带在滚筒上的张力线如图1所示的acb线。
在实际运行中,相遇点张力F12变。
由此可求出作用在传动滚筒单位面积上的载荷,在滑动弧λ内,滚筒单位表面上的正压力Pμθθ=2Fθ/(BD)=2F2e/(BD)单位表面的摩擦力fθ=μPμθθ=2μF2e/(BD)静止弧γ内滚筒不受摩擦力,单位表面上的正压力P=2F1/(BD)式中D——滚筒筒壳直径;B——输送带宽度。
带式输送机传动系统的设计

带式输送机传动系统的设计概述带式输送机是一种常见的物料搬运设备,广泛应用于矿山、港口、粮食加工等行业。
带式输送机的传动系统是保证其正常运行的关键部分,设计合理的传动系统可以提高设备的传输效率和可靠性。
本文将围绕带式输送机传动系统的设计展开讲解,包括传动方式的选择、传动元件的参数计算以及选型等方面。
传动方式选择目前常见的带式输送机传动方式有两种:电动辊筒传动和电动滚筒传动。
电动辊筒传动电动辊筒传动是一种较为简单的传动方式,其结构由电动机、减速机和辊筒组成。
电动机通过减速机将转速降低,然后通过辊筒与输送带接触,从而传递动力。
电动辊筒传动的优点是结构简单、维护方便,适合于短距离、小负载的输送机。
然而,对于长距离、大负载的输送机,电动辊筒传动的动力传递效率较低,且易于产生滑跑现象。
电动滚筒传动电动滚筒传动是一种较为复杂的传动方式,其结构由电动机、减速机和滚筒组成。
电动机通过减速机将转速降低,然后通过滚筒与输送带接触,从而传递动力。
相较于电动辊筒传动,电动滚筒传动的动力传递效率更高,且能够承受较大的负载。
然而,其结构较为复杂,维护和调试难度较高。
在选择传动方式时,需要根据具体的输送机工作条件和要求来决定。
对于长距离、大负载的输送机,建议选择电动滚筒传动;而对于短距离、小负载的输送机,则可以选择电动辊筒传动。
传动元件参数计算在传动系统的设计中,需要进行各个传动元件的参数计算,以确保其能够满足工作条件和要求。
电动机的选择电动机的选择应考虑输送机的工作负载和运行速度。
通常,在确定输送机的工作负载和传动比后,可以根据相关的电动机性能参数来选择适合的电动机。
常见的电动机类型有交流电动机和直流电动机,根据具体的应用情况来选择。
减速机的选择减速机的选择应考虑输送机的传动比和输出转速。
通常,在确定输送机的传动比和工作条件后,可以根据相关的减速机性能参数来选择适合的减速机。
常见的减速机类型有齿轮减速机和行星减速机,根据具体的应用情况来选择。
带式运输机传动装置的设计

机械设计基础课程设计说明书带式运输机传动装置的设计A-5-------同轴式二级圆柱齿轮减速器的设计一.设计说明用于带式运输机的同轴式二级圆柱齿轮减速器;传动装置简图如右图所示;视情况可增加一级带传动或链传动;(1)带式运输机数据运输机工作轴转矩T=5300N·m运输带工作速度v=0.9m/s运输带滚筒直径D=450mm2工作条件单班制工作,空载启动,单向、连续运转,工作中有轻微振动;运输带速度允许速度误差为±5%;3使用期限工作期限为十年,检修期间隔为三年; 4生产批量及加工条件小批量生产;2.设计任务详见基本要求1选择电动机型号;二.选择电动机型号电动机是最常用的原动机,具有结构简单、工作可靠、控制简单和维护容易等优点;电动机的选择主要包括选择其类型和结构型式、容量功率和转速、确定具体型号;选择电动机类型根据任务书要求可知:本次设计的机械属于恒功率负载特性机械,且其负载较小,故采用Y型三相异步电动机全封闭结构即可达到所需要求;2、选择电动机容量工作机所需的功率其中带式输送机的效率电动机的输出功率其中η为电动机至滚筒主动轴传动装置的总效率,包括V带传动、一对齿轮传动、两对滚动轴承及联轴器等的效率,η值计算如下:由机械设计基础课程设计表10-1查得V带传动效率,一对齿轮传动的效率,一对滚动球轴承传动效率,联轴器效率,因此所以根据选取电动机的额定功率使,并由机械设计基础课程设计表10-110查得电动机的额定功率为确定电动机转速:滚筒转速为:取V带传动的传动比范围为:取单级齿轮传动的传动比范围为:则可得合理总传动比的范围为:故电动机转速可选的范围为:在这个范围内的电动机的同步转速有和两种,综合考虑电动机和传动装置的情况再确定最后的转速,为降低电动机的重量和成本,可选择同步转速为;根据同步转速查机械设计基础课程设计表10-110确定电动机型号为,其满载转速;此外,电动机的中心高、外形尺寸、轴伸尺寸等均可查表得出;三.选择联轴器,设计减速器总传动比的计算与分配电动机确定后面,根据电动机的满载转速和工作装置的转速,就可以计算传动装置的总传动比;总传动比的分配是个比较重要的问题;它将影响到传动装置的外轮廓尺寸、重量、润滑等许多问题;1、计算总传动比2、分配各级传动比为使带传动的尺寸不至过大,满足,可取,则齿轮的传动比传动装置的运动和动力参数计算传动装置的运动和动力参数是指各轴的转速、功率和转矩,这些参数是设计传动零件齿轮和带轮和轴时所必需的已知条件;计算这些参数时,可以按从高速轴往低速轴的顺序进行;1、各轴的转速2、各轴的功率3、各轴的转矩最后,将计算结果填入下表:轴名参数电动机轴Ⅰ轴Ⅱ轴滚筒轴转速n/r/min970323.3374.3374.33功率P/KW1110.5610.199.94转矩T/N.M108.3311.91309.221277.1传动比 i3 4.351效率η0.960.9650.975传动零件的设计计算设计时,一般先作减速器箱外传动零件的设计计算,以便确定减速器内的传动比及各轴转速、转矩的精确数值,从而使所设计的减速器原始条件比较准确;第一节减速器外传动零件的设计本传动方案中,减速器外传动即电动机与减速器之间的传动,采用V带传动;V 带已经标准化、系列化,设计的主要内容是确定V带型号和根数,带轮的材料、直径和轮毂宽度、中心距等;1、求计算功率查机械设计基础表13-8得,故2、选V带型号根据,由机械设计基础图13-15查出此坐标点位于B型号区域;3、求大、小带轮基准直径查机械设计基础表13-9,应不小于125mm,现取,由机械设计基础式13-9得式中;由机械设计基础表13-9,取;4、验算带速带速在范围内,合适;5、求V带基准长度和中心距初步选取中心距由机械设计基础式13-2得带长查机械设计基础表13-2,对B型带选用;再由机械设计基础式13-16计算实际中心距6、验算小带轮包角由机械设计基础式13-1得合适;7、求V带根数由机械设计基础式13-15得令,查机械设计基础表13-3得由机械设计基础式13-9得传动比查机械设计基础表13-5得由查机械设计基础表13-7得,查机械设计基础表13-2得,由此可得取5根;8、求作用在带轮轴上的压力查机械设计基础表13-1得,故由机械设计基础式13-17得单根V带的初拉力作用在轴上的压力9、带轮结构设计带轮速度,可采用铸铁材料;小带轮直径,采用实心式;大带轮直径,采用轮辐式;传动比及运动参数的修正外传动零件设计完成后,V带的传动比随之确定;用新的传动比对减速器内轴Ⅰ的转速、转矩数值进行修正;1、对轴Ⅰ转速的修正2、对轴Ⅰ转矩的修正最后,将修正结果填入下表:轴名参数电动机轴Ⅰ轴Ⅱ轴滚筒轴转速n/r/min970316.9974.3374.33功率P/KW1110.5610.199.94转矩T/N.M108.3318.141309.221277.1传动比 i 3.06 4.351效率η0.960.9650.975减速器内传动零件的设计减速器内的传动零件主要是指齿轮轴;本传动方案中的减速器采用直齿圆柱齿轮进行传动;直齿圆柱齿轮传动设计需要确定齿轮的材料、模数、齿数、分度圆、顶圆和根圆、齿宽和中心距等;1、选择材料及确定许用应力小齿轮用调质,齿面硬度,,机械设计基础表11-1,大齿轮用调质,齿面硬度,,机械设计基础表11-1;由机械设计基础表11-5,取,,2、按齿面接触强度设计设齿轮齿面按7级精度制造;取载荷系数机械设计基础表11-3,齿宽系数机械设计基础表11-6;小齿轮上的转矩取机械设计基础表11-4齿数取,则;故实际传动比;模数齿宽,取,,这里取;按机械设计基础表4-1取,小齿轮实际的分度圆直径,大齿轮实际的分度圆直径;齿顶高齿根高小齿轮齿顶圆直径小齿轮齿根圆直径大齿轮齿顶圆直径大齿轮齿根圆直径中心距3、验算轮齿弯曲强度齿形系数机械设计基础图11-8,机械设计基础图11-9 ,由机械设计基础式11-54、齿轮的圆周速度对照机械设计基础表11-2可知选用7级精度是合宜的;轴Ⅱ运动参数的修正内传动零件设计完成后,齿轮的传动比随之确定;用新的传动比对减速器内轴Ⅱ的转速、转矩数值进行修正;1、对轴Ⅱ、工作装置转速的修正2、对轴Ⅱ、工作装置转矩的修正最后,将修正结果填入下表:轴名参数电动机轴Ⅰ轴Ⅱ轴滚筒轴转速n/r/min970316.9974.0474.04功率P/KW1110.5610.199.94转矩T/N.M108.3318.141314.351282.1传动比 i 3.06 4.281效率η0.960.9650.975轴的设计计算第一节高速轴Ⅰ的计算已知轴Ⅰ传递的功率,转速,小齿轮的齿宽,齿数,模数,压力角,载荷平稳;1、初步估算轴的直径查机械设计基础表14-1轴的常用材料及其主要力学性能表,选取45号钢作为轴Ⅰ的材料,并进行调质处理;查机械设计基础表14-2常用材料的值和C值,取;由机械设计基础式14-2得考虑到有键槽的存在,轴径加大5%左右即取;2、轴的结构设计1确定轴的结构方案右轴承从轴的右端装入,靠轴肩定位;齿轮和左轴承从轴的左端装入,齿轮右侧端面靠轴肩定位,齿轮和左轴承之间用定位套筒使左轴承右端面得以定位,左右轴承均采用轴承端盖,齿轮采用普通平键得到圆周固定;2确定轴的各段直径轴结构示意图1轴段安装带轮,轴径取不大于70mm的标准值,这里取;2轴段安装轴承端盖,取;3轴段安装轴承,轴径为轴承内径的大小 ;查机械设计基础课程设计续表10-35:选取深沟球轴承6311,轴承内径,外径,轴承宽;这里取;轴两端安装轴承处轴径相等,则6段取;4轴段安装齿轮,齿轮内径,齿轮的轴向定位轴肩,取;3确定轴的各段长度结合绘图后确定各轴段长度如下:1轴段的长度取根据带轮结构及尺寸;2轴段总长度根据外装式轴承端盖的结构尺寸,起厚度,还有箱体的厚度取10mm;3轴段轴承的宽挡油环的长度和;4轴段因为小齿轮的齿宽为80mm,轴段的长度应比零件的轮毂短2-3mm,5轴段长度15mm;6轴段轴承的宽挡油环的长度和;3、按弯扭合成强度对轴Ⅰ的强度进行校核已知:转矩,小齿轮分度圆直径;圆周力径向力法向力1绘制轴受力简图如下2绘制垂直面弯矩图如下垂直面内的轴承支反力:水平面内的轴承支反力:由两边对称,知截面C的弯矩也对称;截面C在垂直面弯矩为3绘制水平面弯矩图如下截面C在水平面上弯矩为:4绘制合弯矩图如上5绘制扭矩图如上扭矩:6当量弯矩计算扭矩产生的扭转力按脉动循环变化,取α=0.6,截面C处的当量弯矩:7校核危险截面C的强度判定危险截面为第四段轴的中心面,轴的材料选用45钢,调质处理,查机械设计基础表14-1得;查机械设计基础表14-3查得则:∴该轴强度足够;第二节低速轴Ⅱ的计算已知轴Ⅱ传递的功率,转速,大齿轮的齿宽,齿数,模数,压力角,载荷平稳;1、初步估算轴的直径查机械设计基础表14-1轴的常用材料及其主要力学性能表,选取45号钢作为轴Ⅰ的材料,并进行正火处理;查机械设计基础表14-2常用材料的值和C值,取;由机械设计基础式14-2得根据联轴器结构及尺寸,取;2、轴的结构设计1确定轴的结构方案右轴承从轴的右端装入,靠轴肩定位;齿轮和左轴承从轴的左端装入,齿轮右侧端面靠轴肩定位,齿轮和左轴承之间用定位套筒使左轴承右端面得以定位,左右轴承均采用轴承端盖,齿轮采用普通平键得到圆周固定;(2)确定轴的各段直径轴结构示意图由图中个零件配合尺寸关系知;,,,;3确定轴的各段长度结合绘图后确定各轴段长度如下:1轴段的长度取根据联轴器结构及尺寸;2轴段总长度根据外装式轴承端盖的结构尺寸,其厚度,还有箱体的厚度取10mm;3轴段轴承的宽挡油环的长度和;4轴段因为大齿轮的齿宽为75mm,轴段的长度应比零件的轮毂短2-3mm;5轴段;6轴段;3、按弯扭合成强度对轴Ⅱ的强度进行校核已知:转矩:,大齿轮分度圆直径;圆周力径向力法向力(1)绘制轴受力简图如下(2)绘制垂直面弯矩图如下垂直面内的轴承支反力:水平面内的轴承支反力:由两边对称,知截面C的弯矩也对称;截面C在垂直面弯矩为3绘制水平面弯矩图如下截面C在水平面上弯矩为:(4)绘制合弯矩图如上5绘制扭矩图如上扭矩:6当量弯矩计算扭矩产生的扭转力按脉动循环变化,取α=0.6,截面C处的当量弯矩:7校核危险截面C的强度判定危险截面为第四段轴的中心面,轴的材料选用45钢,正火处理,查机械设计基础表14-1得;查机械设计基础表14-3查得则:∴该轴强度足够;键的选择与强度验算1、高速轴Ⅰ上键的选择与校核(1)最小直径处:1选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3强度校核:轴所受转矩;查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键;(2)齿轮处1)选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3)强度校核:查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键;2、低速轴Ⅱ上键的选择与校核1最小直径处1选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3强度校核:轴所受转矩;查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键2齿轮处:1选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3)强度校核:查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键;滚动轴承的选择及联轴器的选择第一节滚动轴承的选择根据设计条件,轴承预计寿命:小时1、计算高速轴处的轴承对于高速轴处的轴承选择,首先考虑深沟球轴承;初选用6311型深沟球轴承,其内径为55mm,外径为120mm,宽度为29mm,极限转速脂:5300r/min;极限转速油:6700r/min;因轴承工作温度不高、载荷平稳,查机械设计基础表16-8及表16-9,取;由于轴向力的影响可以忽略不计,即,取X=1,Y=0.则当量动载荷,转速n=316.99r/min,小时,;由机械设计基础式16-3得:所需径向基本额定动载荷查机械设计基础课程设计表10-35得:,故选用6311型深沟球轴承符合要求;2、计算低速轴处的轴承对于低速轴处的轴承选择,考虑深沟球轴承,初选6018型深沟球轴承,其内径为90mm,外径为140mm,宽度为24mm,极限转速脂:4300r/min;极限转速油:5300r/min;因轴承工作温度不高、载荷平稳,查机械设计基础表16-8及表16-9,取;由于轴向力的影响可以忽略不计,即,取X=1,Y=0.则当量=74.04r/min,小动载荷,转速n2时,;由机械设计基础式16-3得:所需径向基本额定动载荷查机械设计基础课程设计表10-35得:,故选6018型深沟球轴承符合要求;第二节联轴器的选择轴Ⅰ与V带轮通过键连接来传递力和扭矩,不需用联轴器;轴Ⅱ与滚筒之间用联轴器联接实现力和扭矩的传递;需选用合适的联轴器;考虑此运输机的功率不大,工作平稳,考虑结构简单、安装方便,故选择弹性柱销联轴器;计算转矩按下式计算:式中 T——名义转矩;N·mm;——工作情况系数;KA取K=1.5,则A=74.04r/min输出轴输出段直径为d=80mm;轴Ⅱ的转速为n2查机械设计课程上机与设计表14-5,可选择YL14或YLD14型弹性联轴器;第七章减速器润滑与密封1、润滑齿轮圆周速度,采用油池润滑,圆柱齿轮浸入油的深度约一个齿高,大齿轮的齿顶到油底面的距离≥30~60mm;选择油面的高度为40mm;并考虑轴承的润滑方式,计算:高速轴:低速轴:;所以选用脂润滑,润滑脂的加入量为轴承空隙体积的,采用稠度较小润滑脂;2、密封为了防止润滑油或脂漏出和箱体外杂质、水及灰尘等侵入,减速器在轴的伸出处、箱体的结合面处和轴承盖、窥视孔及放油孔与箱体的结合面处需要密封;轴伸出处的滚动轴承密封装置采用毛毡圈密封,由机械原理课程上机与设计表15-15可得,其中输入轴按密封圈密封处直径:,选择毛毡圈尺寸:;输出轴按密封圈密封处直径:;选择毛毡圈尺寸:;第八章减速器附件选择1、轴承端盖轴承端盖全部采用外装式轴承端盖,并根据机械设计课程上机与设计表13-4与表15-3进行选择;1、高速轴的轴承端盖轴承外径,螺栓直径,端盖上螺栓数目6;,,,,,取,,取;2、低速轴的轴承端盖:轴承外径,螺栓直径,端盖上螺栓数目6;,,,,,取,, 取2、通气器减速器工作时,由于箱体内部温度升高,气体膨胀,压力增大,使得箱体内外压力不等;为使箱体内受热膨胀的气体自由排出,以保持箱体内外压力平衡,不致使润滑油沿分箱面或轴伸密封件处向外渗漏,需要顶部或直接在窥视孔盖板上设置通气器;本设计将通气器安装在窥视孔盖板上;选用通气帽根据机械设计课程上机与设计表15-5进行选择;3、窥视孔窥视孔用于检查传动零件的啮合、润滑及齿轮损坏情况,并兼做注油孔,可向减速器箱体内注入润滑油,观察孔应设置在减速器箱盖上方的适当位置,以便直接进行观察并使手能伸入箱体内进行操作,平时观察孔用盖板盖住;查机械设计基础课程设计表5-16,取窥视孔孔盖的结构尺寸如下:150200100150M620 6个124、油标为指示减速器内油面的高度符合要求,以便保持箱内正常的油量,在减速器箱体上需设置油面指示装置;本设计选用长形油标,油标尺中心线与水平面成45度,注意加工油标凸台和安装油标时,不与箱体凸缘或吊钩相干涉;查机械设计课程上机与设计表15-10,选择A80 GB1161油标;5、放油孔及放油螺塞为排放减速器箱体内油污和便于清洗箱体内部,在箱座油池的最低处设置放油孔,箱体内底面做成斜面、向放油孔方向倾斜1度到2度,油孔附近作成凹坑,以便污油排尽;平时用放油螺塞将放油孔堵住圆柱螺纹油塞自身不能8、地脚螺栓为防止减速器倾倒和振动,减速器底座下部凸缘应设有地脚螺钉与地基连接;地脚螺钉为M24 取4个;9、箱体设计箱盖壁厚:10mm,箱座底凸缘厚度:10mm,地脚螺钉直径:24mm;数目:4个,轴承旁联结螺栓直径:16mm;。
带式输送机(传动滚筒)

带式输送机设计(传动滚筒部分)摘要带式输送机是用于散料输送的重要设备,滚简作为带式输送机的重要部件,其作用更是举足轻重。
通过了解滚筒的作用,及滚筒在当今社会的发展现状,对输送机的分类有所认识。
结合任务书的要求,首先对输送带的带宽,及所需牵引力的计算和确定。
查阅资料了解到滚筒的结构,及滚筒失效的常见原因和方式。
并结合计算数据合理确定滚筒的直径。
并结合所算数据对传动滚筒装置的组成件进行计算,并结合任务及相关要求进行校验。
进而得到合理的设计尺寸。
使设计得到较为准确的数据。
关键词: 传动滚筒结钩组成BELT CONVEYOR DESIGN(TRANSMISSIONROLLER PART)ABSTRACTBelt conveyor is an important equipment for powder conveying, roll Jane as an important part of a belt conveyor, its role is very important.By understanding the role of the drum, and roller in today's society, the development status of to recognize the classification of the conveyor. Combined with the requirements of the specification, first of all, the bandwidth of the conveyor belt, and the required traction calculation and determined. Check data to know the structure of the roller, and the common failure modes of the drum and the way. And combining with calculation data reasonably determine the diameter of the cylinder. And combined with the numerical data for calculation, transmission roller device of a calibrated and connecting with the requirements and related tasks. Reasonable design size is obtained. Make the design get more accurate data.KEY WORDS:transmission roller structur constitute目录前言 (1)第1章绪论 (2)1.1 滚筒在国民经济中的作用 (2)1.2 传动滚筒的发展状况 (3)1.3 结构与种类 (5)1.3.1 按驱动方式分 (5)1.3.2 按轴承内孔大小分 (5)1.3.3 按外形分 (6)1.3.4 特殊滚筒 (6)1.4 传动滚筒的研究目的和意义 (7)第2章带式输送机的设计计算 (8)2.1 已知原始数据及工作条件 (8)2.2 计算步骤 (9)2.2.1 带宽的确定: (9)2.2.2 输送带宽度的核算 (11)2.3 运行阻力及牵引力 (11)2.3.1 附加特种阻力计算 (12)2.3.2牵引力 (13)第3章传动滚筒的结构设计 (14)3.1 滚筒失效形式与许用应力的确定 (14)3.1.1 传动滚筒的失效形式 (14)3.1.2 失效产生的原因 (14)3.1.3 滚筒许用应力的确定 (15)3.2传动滚筒结构设 (16)3.2.1 传动滚筒最小直径的确定 (17)3.2.2 传动滚筒的直径验算 (17)第4章滚筒组成件 (19)4.1 滚筒覆盖胶 (19)4.2 传动滚筒轴直径的计算 (19)4.2.1滚筒轴受力分析 (19)4.2.2 轴的强度校核 (21)4.3确定轴承及转子作用力 (21)4.3.1求轴承反力 (22)4.3.2校核轴的强度 (22)4.3.3精确校核轴的疲劳强度 (22)4.3.4对轴端键强度进行验算 (24)4.4轴承寿命的计算 (25)4.4.1轴承的选用 (25)4.4.2球左右轴承的支反力 (25)4.4.3计算左右轴承寿命 (26)4.5 辐板厚度的确定 (26)4.6滚筒轴与辐板间的力矩分配 (29)4.7轮毂尺寸的确定 (30)结论 (32)谢辞 (33)参考文献 (34)前言带式输送机是用于散料输送的重要设备之一。
DT型固定带式输送机滚筒

D
A
L
L1
L2
K
M
N
500
500
850
600
1097
505.5
115
70
—
650
500
1000
750
1280
588.5
135
90
—
630
800
500
1300
950
1580
738.5
135
90
—
630
1661
771
175
130
80
800
1000
630
1500
1150
1861
871
175
130
80
800
559
DT5B5
1000
659
DT5B6
1400
400
1860
1600
1962
1312
259
DT6B2
500
1990
3520
454
DT6B3
630
514
DT6B4
800
606
DT6B5
1000
792
BT6B6
1250
995
DT6B7
DTⅡ型固定带式输送机滚筒(传动)
B(mm)
L(mm)
D(mm)
轴承型号
DTⅡ05A7204S
3544
DTⅡZ1122
DTⅡZ1322
3234
DTⅡ05A7223 YZ
DTⅡ05A7224
3329
DTⅡ05A7223S
DTⅡ05A7224S
1400
矿用带式输送机传动滚筒的优化设计

( n  ̄ Ⅳf f Si  ̄ ad Ten4g ,  ̄ iar 22 0 .C i Ah i [ v矿 c n n eh coy H n r 3 0 1 ht e  ̄)
Ab t a t h rvn r m sa man p r o n e o v y ra d i o n c ig d s u p d n o n .s a t ime e ,d u h l s r c :T e d i g d u i i a t fa mi e h h ̄ n e o n t c n e t ik s p o i g p it h f d a tr r m s el i s n t i k e s a d r da l t ik e s ac av y ac lt d wi x e i n r l T e sr t t o dt n ft e d ii g d m ,t e hc n s n a ilp ae t c n s r l a sc l uae t e p r h , h me t mua o f o me t t l h c n i o s o rvn r eg i h u h o t z d d sg t t t eo t z d d sg t o n a e nmu w ih sⅡ tre u ci nwe e c n u td fral a a tr t m・ p i e e ir wi h p i e e in meh d a d r t mi i m e g t mi h mi d a a g t n t r o d c e o l p rmees i f o
式、辐条式 、 整体辐板式 3种。另外,滚筒表面也
有光 面 、包 胶 、铸胶 等型 式 ;其 中 ,以钢 板焊 接装 配辐板 式铸 胶滚筒 应用最 为广 泛 。
[3]带式输送机传动装置设计-1
![[3]带式输送机传动装置设计-1](https://img.taocdn.com/s3/m/283d122bc4da50e2524de518964bcf84b9d52df1.png)
带式输送机传动装置设计带式输送机是一种连续输送物料的设备,其工作原理是:由电动机提供动力,经减速器减速后驱动滚筒旋转,使带式输送机在滚筒上输送物料,同时,在滚筒与托辊之间的皮带上输送物料。
带式输送机广泛应用于矿山、冶金、电力、煤炭、化工等部门,是一种长距离连续运输设备。
带式输送机在煤矿中使用最多,也是煤矿生产中的重要设备之一。
它可与采煤工作面的运输系统相结合,组成连续输送带式输送机系统,完成物料的提升和输送任务。
带式输送机输送物料的方式有两种:一种是沿机身长度方向上进行纵向输送,另一种是在机身长度方向上进行横向输送。
两种输送方式对输送带的强度、刚度、弯曲强度和抗扭转强度都有不同的要求。
当输送机采用纵向输送时,所选用的输送带要满足承载能力大、强度高和允许横向位移大等要求。
带式输送机传动装置主要由驱动装置、中间传动装置、制动装置和卸载装置组成。
在传动装置中驱动装置又分为软启动和硬启动两种:软启动是指传动系统在启动初期(软启动)时,由电动机带动滚筒作一定的转速运转,使传动系统获得一个比较大的起动转矩;主要内容及完成情况本课题涉及一种带式输送机传动装置,包括驱动装置、中间传动装置、制动装置和卸载装置,其中驱动装置包括电动机和减速器;中间传动装置包括滚筒、托辊和导向槽;制动装置包括制动机构和卸载器;卸载装置包括托辊、导向槽和卸载器。
该设计结构简单,易于实现,能够满足煤矿井下带式输送机的运行要求,适用于煤矿井下带式输送机的传动系统设计。
1、通过查阅有关技术资料,确定本课题所研究的主要内容为:设计带式输送机传动装置的设计;传动机构的设计;以及电气控制系统的设计。
2、根据带式输送机传动系统中所采用的机械传动原理、机械传动方式以及各种不同类型传动结构方式,确定带式输送机传动系统所采用的机械部件或电子部件的功能。
包括:(1)确定输送带在机槽中运动时所受摩擦阻力及摩擦力,以及在机槽中运行时所受拉力,并确定其作用力方向;(2)确定驱动电机及减速器的型号、功率和参数,确定其技术性能和技术指标;(3)确定托辊、滚筒及其导向槽的结构型式和尺寸;(4)根据所选机械部件或电子部件与输送机系统的连接方式,确定其连接方式;(5)根据输送机系统所需供电功率和总效率要求,选择合适的供电电源及供电方式;3、根据所研究机械部件或电子部件的功能和技术指标,确定各机械部件或电子部件之间相互位置关系,并进行三维实体建模。
皮带输送机滚筒直径的选型设计

315
250
200
250
250
200
500
500
400
315
400
315
250
315
315
250
630
630
500
400
500
400
315
400
400
315
800
800
630
500
630
500
400
500
500
400
1000
1000
800
630
800
630
500
630
630
500
1250
1250
考虑如下影响滚筒直径的因素值:①附加弯曲应力;②输送带许用强度利用率;③输送带承受弯曲载荷的频率;④输送带表面的面比压;⑤使用地点与条件;⑥覆盖胶或其上的高花纹的变形量。
根据上述关系滚筒直径按如下几项原则确定:首先由RMRT值确定A型滚筒直径,
(1)当RMBT=60~100%时, 由式确定的标准滚筒直径作A型;
C型:弯向滚筒,输送带的方向改变小于30°
1、最小推荐滚筒直径确定:
滚筒直径不包括由橡胶、陶瓷或类似材质制作的承受磨损的保护层,凸面滚筒的最小直径至少必须等于规定的最小值。
滚筒直径D(单位mm)由下式确定:D=C·d
式中:C——与输送带芯层材质挠曲有关的一个系数
d——输送带芯层厚度或钢绳芯直径(mm)
序号
滚筒直径D(mm)
毫米
滚筒直径D(in)
英尺
1
200
8
2
250
10
3
315
12.6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要带式输送机是用于散料输送的重要设备,适用于矿山机械。
传动滚筒作为带式输送机的重要部件,其作用更是举足轻重。
滚筒是带式输送机的主要传部件,它的作用有两个:一是传递动力,二是改变输送带运行方向。
带式输送机滚筒的设计质量,关系到整个输送机系统的性能、安全性和可靠性。
目前,国内滚筒的设计一般采用近似公式,对于中小型滚筒已经能够满足工程需求,但对于大型滚筒这种设计方法其结果与工程实际有一定的差距,它的安全性和可靠性难以保障。
由于缺乏精确的计算方法,如果盲目的增大安全系数,会使结构尺寸变大,重量增加,强度得不到显著的提高同时又增加了成本。
本设计首先对带式输送机滚筒结构的设计计算方法进行了分析研究,修正了有关计算公式,完善并统一了设计计算内容,对带式输送机传动滚筒进行了严谨的数学推导,在大量的参考了国内该部分的相关教材和资料的基础上,结合了一定的实践而编写的。
由于传动滚筒的适用范围不断扩大,对其需求量也不断增加。
故对滚筒设计有一定的必要性。
在对滚筒设计中要充分了解主要部件的工作特性,合理进行选型设计和性能匹配。
关键字:带式输送机传动滚筒AbstractBelt conveyor is used for the important bulk conveying equipment, suitable for mining machinery. Transmission roller as an important part of the belt conveyor, and its function is more critical. The cylinder is a belt conveyor of the main parts, its action has two: one is to transfer power, 2 it is to change the conveyor belt running direction. Belt conveyor roller design quality, relationship to the whole conveyor system performance, safety and reliability. At present, the domestic roller design general use of the approximate formula, for small and medium-sized roller has been able to meet the engineering requirements, but for large drum the design method and the results have a big gap between the actual engineering, it is difficult to guarantee the safety and reliability. Because of the lack of accurate calculation method, if blind increase safety coefficient, can make the structure size change, increase the weight, strength not rise significantly increased again at the same time the cost.This design first of belt conveyor roller structure, the calculating method of analysis and study of the fixed related calculation equations, perfect and unified design calculation content, to the belt conveyor roller drive the rigorous mathematical reasoning, in a large number of reference in this part of the relevant material and material, and on the basis of the practice of combining must be written.By driving roller, the scope of application of expansion, the demand is on the increase. So the roller design had some necessity. In the design of roller to fully understand the main parts of the characteristics, the reasonable selection of design and performance match.Key word: belt conveyor transmission roller目录前言 (1)第一章绪论 (2)1.1 滚筒在国民经济中的作用 (2)1.2 传动滚筒的发展状况 (3)1.3 国内外研究现状 (5)1.4 结构与种类 (6)1.4.1 按驱动方式分 (6)1.4.2 按轴承内孔大小分 (6)1.4.3 按外形分 (7)1.4.4 特殊滚筒 (7)1.5 传动滚筒的研究目的和意义 (8)第二章传动滚筒的设计 (10)2.1 传动滚筒的选择及其传动理论 (10)2.1.1 传动滚筒直径的确定 (12)2.1.2 滚筒的性能特点及其选用 (14)2.2 传动滚筒的设计 (15)2.2.1 传动滚筒筒壳内外表面的应力 (15)2.2.2 传动滚筒接盘应力 (17)2.2.3 传动滚筒结构参数的设计 (19)2.3 滚筒通体外径D与厚度t之间的关系 (19)2.4 传动滚筒的轴径d、筒壳厚度h、接盘辐板厚度t、接盘支点1l等参数关系 (21)2.4.1 设计变量 (21)2.4.2 弯扭矩计算 (23)2.4.3 求最大当量弯矩 (24)2.4.4 轴的强度校核 (24)2.4.5 接盘内应力的计算 (24)2.4.6 边界约束条件确定的参数关系 (24)2.4.7 各段轴径之间的参数关系 (25)D之间的参数关系 (25)2.4.8 滚筒体的最大直径为D与最小直径12.4.9 滚筒体总长度与滚筒体L的中部圆柱部分的长度b的关系 (25)第三章典型传动滚筒的设计 (26)3.1 滚筒体 (26)3.2 轴的设计 (31)3.2.1 轴的材料的选择 (31)3.2.2 轴径的初步估算 (31)3.2.3 轴的结构设计 (32)3.3 滚筒胀套连接的选择与校核 (33)3.3.1 胀套连接的常见问题 (33)3.3.2 胀套的选择 (34)3.3.3 胀套的校核 (35)3.4 接盘的设计与计算 (37)3.5 支座的选择 (38)3.5.1 支座的选型 (38)3.5.2 支座的材料选择 (38)3.5.3 支座的结构设计 (38)3.6 轴承的选则和寿命的校核 (39)3.6.1 轴承的选择 (39)3.6.2 滚筒轴承寿命的校核 (40)3.6.3 基本额定寿命 (40)3.6.4 基本额定动载荷和轴承寿命的计算 (41)3.6.5 计算轴承支反力1r F ,2r F (41)3.6.6 轴承寿命的计算 (41)3.7 键的选择与校核 (42)3.7.1 键连接的选择 (42)3.7.2 联接的强度计算 (42)总 结 (45)致 谢 (47)参考文献 (48)前言带式输送机是用于散料输送的重要设备之一。
其结构特别简单,运行平稳可靠,能耗低,对环境污染小,便于集中控制和实现自动化,管理和维护方便,在连续装载的条件下可实现连续运输,因此,在国民经济各部门特别是煤炭和矿山运输系统中应用十分广泛。
由于其适用范围的不断扩大和对其需求量的不断增加,带式输送机的设计和制造技术也有了长足发展。
传动滚筒作为带式输送机的重要部件,起作用更是举足轻重。
众所周知,零部件的工作特性,对整机性能有重要影响,加之用户和使用环境的千变万化,带式输送机中的传动滚筒的设计不仅还会涉及其初步设计和零部件的选型设计,并且还越来越多地涉及零部件的设计,充分了解主要零部件的工作特性,合理的进行造型设计和性能匹配。
第一章绪论传动滚筒是一种驱动装置,它主要应用于固定式和移动式的带式输送机设备,也是带式输送机的重要组成部分,它的结构和工作原理对带式输送机整体特性影响很大。
本章先介绍传动滚筒在国民经济中的作用,然后是滚筒的发展状况。
1.1 滚筒在国民经济中的作用由于滚筒具有结构紧凑,传动率高,噪声低使用寿命长,运转平稳,工作可靠,密封性好。
占据空间小,安装维修方便等优点,并且适合在各种恶劣环境条件下工作,包括潮湿、泥泞、粉尘多的环境,所以目前国内外已将电动滚筒广泛应用于采矿、冶炼、煤炭、交通、能源、粮食、烟草、化工、建材、邮电、航空、农林、印刷、商业等各个生产建设领域。
滚筒在国民经济中的作用随着现代化工业的发展,传动滚筒作为传动链已广泛应用于各种生产线中的辊子输送机和辊道输送机,用来输送城建物品。
进入20世纪70年代以后,传动滚筒的应用场所扩展的十分迅速。
例如,锥形传动滚筒,使辊道输送机转弯成为轻而易举的事。
所以,飞机场、邮电局能用它来分拣行李物品、包裹等货物。
两端直径达、中间直径小、类似双曲线形状的电动滚筒,可以应用于林场运送原木。
经过专门设计,可以制成卷绕钢丝绳、电缆等柔性绳索的卷绕滚筒,并且可以在滚筒内部装上安全可靠的制动装置和防止逆转装置。
经过特殊制造的传动滚筒,可以输送高温物料和高温钢胚。
有的特殊传动滚筒可以在化纤加工过程中作为脱水轧辊使用。
如果在滚筒体的圆柱面上焊接螺旋形叶片,还可以制成轻巧的螺旋输送机。
此外,双速,三速或无级变速的电动滚筒已广泛应用与超级市场和技术精密型产品的生产线上。
专门制造的隔爆型传动滚筒可以用在易燃、易爆的环境中。
近年来,还有人试图将微型电动滚筒应用到旅游服务行业。
例如,宾馆、饭店中的擦鞋机,窗帘卷帘机等等。
总之,随着传动滚筒设计,制造技术的不断改进以及高新技术的引入,传动滚筒的应用范围越来越广泛,传动滚筒在国民经济各个领域中的作用也越来越重要。
随着科学技术的不断进步,其应用场所更是越来越广泛,其发展前景也相当可观。