算法分析设计回溯法求解装载问题实验报告

合集下载

回溯法的实验报告

回溯法的实验报告

一、实验目的1. 理解回溯法的概念和原理;2. 掌握回溯法的基本算法设计思想;3. 通过实例验证回溯法的正确性和效率;4. 深入了解回溯法在实际问题中的应用。

二、实验内容1. 实验一:八皇后问题2. 实验二:0/1背包问题3. 实验三:数独游戏三、实验原理回溯法是一种在解空间树中搜索问题解的方法。

其基本思想是:从问题的起始状态开始,通过尝试增加约束条件,逐步增加问题的解的候选集,当候选集为空时,表示当前路径无解,则回溯到上一个状态,尝试其他的约束条件。

通过这种方法,可以找到问题的所有解,或者找到最优解。

四、实验步骤与过程1. 实验一:八皇后问题(1)问题描述:在一个8x8的国际象棋棋盘上,放置8个皇后,使得任意两个皇后都不在同一行、同一列和同一斜线上。

(2)算法设计:- 定义一个数组,用于表示棋盘上皇后的位置;- 从第一行开始,尝试将皇后放置在第一行的每一列;- 检查当前放置的皇后是否与之前的皇后冲突;- 如果没有冲突,继续将皇后放置在下一行;- 如果冲突,回溯到上一行,尝试下一列;- 重复上述步骤,直到所有皇后都放置完毕。

(3)代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn Truedef solve_n_queens(board, row):if row == len(board):return Truefor col in range(len(board)):if is_valid(board, row, col):board[row] = colif solve_n_queens(board, row + 1):return Trueboard[row] = -1return Falsedef print_board(board):for row in board:print(' '.join(['Q' if col == row else '.' for col in range(len(board))]))board = [-1] 8if solve_n_queens(board, 0):print_board(board)2. 实验二:0/1背包问题(1)问题描述:给定一个背包容量为W,n件物品,每件物品的重量为w[i],价值为v[i],求在不超过背包容量的前提下,如何选取物品,使得总价值最大。

回朔法实验报告

回朔法实验报告

一、实验目的1. 理解回溯法的基本原理和适用场景。

2. 掌握回溯法在解决实际问题中的应用。

3. 通过实验,提高编程能力和算法设计能力。

二、实验背景回溯法是一种在计算机科学中广泛应用的算法设计方法。

它通过尝试所有可能的解,在满足约束条件的前提下,逐步排除不满足条件的解,从而找到问题的最优解。

回溯法适用于解决组合优化问题,如0-1背包问题、迷宫问题、图的着色问题等。

三、实验内容本次实验以0-1背包问题为例,采用回溯法进行求解。

1. 实验环境:Windows操作系统,Python 3.7以上版本。

2. 实验工具:Python编程语言。

3. 实验步骤:(1)定义背包容量和物品重量、价值列表。

(2)定义回溯法函数,用于遍历所有可能的解。

(3)在回溯法函数中,判断当前解是否满足背包容量约束。

(4)若满足约束,则计算当前解的价值,并更新最大价值。

(5)若不满足约束,则回溯至前一步,尝试下一个解。

(6)输出最优解及其价值。

四、实验结果与分析1. 实验结果本次实验中,背包容量为10,物品重量和价值列表如下:```物品编号重量价值1 2 62 3 43 4 54 5 75 6 8```通过回溯法求解,得到最优解为:选择物品1、3、4,总价值为22。

2. 实验分析(1)回溯法能够有效地解决0-1背包问题,通过遍历所有可能的解,找到最优解。

(2)实验结果表明,回溯法在解决组合优化问题时具有较高的效率。

(3)在实验过程中,需要合理设计回溯法函数,以提高算法的效率。

五、实验总结通过本次实验,我们了解了回溯法的基本原理和适用场景,掌握了回溯法在解决实际问题中的应用。

在实验过程中,我们提高了编程能力和算法设计能力,为今后解决类似问题奠定了基础。

在今后的学习和工作中,我们将继续深入研究回溯法及其应用,以期为解决实际问题提供更多思路和方法。

算法设计与分析:回溯法-实验报告

算法设计与分析:回溯法-实验报告

应用数学学院信息安全专业班学号姓名实验题目回溯算法实验评分表指导教师评分标准序号评分项目评分标准满分打分1 完成度按要求独立完成实验准备、程序调试、实验报告撰写。

202 实验内容(1)完成功能需求分析、存储结构设计;(2)程序功能完善、可正常运行;(3)测试数据正确,分析正确,结论正确。

303 实验报告内容齐全,符合要求,文理通顺,排版美观。

404 总结对实验过程遇到的问题能初步独立分析,解决后能总结问题原因及解决方法,有心得体会。

10实验报告一、实验目的与要求1、理解回溯算法的基本思想;2、掌握回溯算法求解问题的基本步骤;3、了解回溯算法效率的分析方法。

二、实验内容【实验内容】最小重量机器设计问题:设某一个机器有n个部件组成,每个部件都可以m个不同供应商处购买,假设已知表示从j个供应商购买第i个部件的重量,表示从j个供应商购买第i个部件的价格,试用回溯法求出一个或多个总价格不超过c且重量最小的机器部件购买方案。

【回溯法解题步骤】1、确定该问题的解向量及解空间树;2、对解空间树进行深度优先搜索;3、再根据约束条件(总价格不能超过c)和目标函数(机器重量最小)在搜索过程中剪去多余的分支。

4、达到叶结点时记录下当前最优解。

5、实验数据n,m,]][[jiw,]][[ji c的值由自己假设。

三、算法思想和实现【实现代码】【实验数据】假设机器有3个部件,每个部件可由3个供应商提供(n=3,m=3)。

总价不超过7(c<=7)。

部件重量表:重量供应商1 供应商2 供应商3 部件1 2 3 3部件2 1 2 2部件3 3 4 1部件价格表:价格供应商1 供应商2 供应商3 部件1 2 3 3部件2 1 3 1部件3 1 1 3【运行结果】实验结果:选择供应商1的部件1、供应商1的部件2、供应商3的部件3,有最小重量机器的重量为4,总价钱为6。

四、问题与讨论影响回溯法效率的因素有哪些?答:影响回溯法效率的因素主要有以下这五点:1、产生x[k]的时间;2、满足显约束得x[k]值的个数;3、计算约束函数constraint的时间;4、计算上界函数bound的时间;5、满足约束函数和上界函数约束的所有x[k]的个数。

算法分析与设计实验报告--回溯法

算法分析与设计实验报告--回溯法

算法分析与设计实验报告--回溯法实验目的:通过本次实验,掌握回溯法的基本原理和应用,能够设计出回溯法算法解决实际问题。

实验内容:1.回溯法概述回溯法全称“试探回溯法”,又称“逐步退化法”。

它是一种通过不断试图寻找问题的解,直到找到解或者穷尽所有可能的解空间技术。

回溯法的基本思路是从问题的某一个初始状态开始,搜索可行解步骤,一旦发现不满足求解条件的解就回溯到上一步,重新进行搜索,直到找到解或者所有可能的解空间已经搜索完毕。

2.回溯法的基本应用回溯法可用于求解许多 NP 问题,如 0/1 背包问题、八皇后问题、旅行商问题等。

它通常分为两种类型:一种是通过枚举所有可能的解空间来寻找解;另一种则是通过剪枝操作将搜索空间减少到若干种情况,大大减少了搜索时间。

3.回溯法的解题思路(1)问题分析:首先需要对问题进行分析,确定可行解空间和搜索策略;(2)状态表示:将问题的每一种状况表示成一个状态;(3)搜索策略:确定解空间的搜索顺序;(4)搜索过程:通过逐步试探,不断扩大搜索范围,更新当前状态;(5)终止条件:在搜索过程中,如果找到了满足要求的解,或者所有的可行解空间都已搜索完毕,就结束搜索。

4.八皇后问题八皇后问题是指在一个 8x8 的棋盘上放置八个皇后,使得任意两个皇后都不在同一行、同一列或同一对角线上。

通过回溯法可以求解出所有的可能解。

实验过程:回溯法的实现关键在于搜索空间的剪枝,避免搜索无用的解;因此,对于八皇后问题,需要建立一个二维数组来存放棋盘状态,以及一个一维数组来存放每行放置的皇后位置。

从第一行开始搜索,按照列的顺序依次判断当前的空位是否可以放置皇后,如果可以,则在相应的位置标记皇后,并递归到下一行;如果不能,则回溯到上一行,重新搜索。

当搜索到第八行时,获取一组解并返回。

代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn True实验结果:当 n=4 时,求得的所有可行解如下:```[[1, 3, 0, 2],[2, 0, 3, 1]]```本次实验通过实现回溯法求解八皇后问题,掌握了回溯法的基本原理和应用,并对回溯法的核心思想进行了深入理解。

实验报告4.回溯算法

实验报告4.回溯算法

算法设计与分析实验报告实验名称_____回溯算法_____学院________数学与计算机学院____ 班级_______信科00000___________ 学号_______6666666666__________ 姓名_____000000________________ 2016年月日{if(((a+b)==24)||((a-b)==24)||((a*b)==24)||(b!=0&&a%b==0&&a/b==24)){//如果经过上面的计算得到解while(!route.empty()){node now=route.front();printf("%d%c%d=%d\n",now.a,now.oper,now.b,now.sum);//依次输出前面的计算过程route.pop();}if((a+b)==24){if(b>a) swap(a,b);printf("%d+%d=%d\n",a,b,a+b);}if((a-b)==24) printf("%d-%d=%d\n",a,b,a-b);if((a*b)==24) {if(b>a) swap(a,b);printf("%d*%d=%d\n",a,b,a*b);}if(a%b==0&&b!=0&&(a/b)==24) printf("%d/%d=%d\n",a,b,a/b);//a/b比较特殊,要求结果必须是整数flag=true;//表示找到解,一旦找到任何一个解就退出}return ;}queue <node> temp=route;node x;x.a=a,x.b=b,x.sum=a+b,x.oper='+';if(b>a) swap(x.a,x.b);temp.push(x);dfs(cur+1,a+b,num[cur+1],temp);//(((a*b)*c)*d) 模型temp=route;x.a=a,x.b=b,x.sum=a*b,x.oper='*';if(b>a) swap(x.a,x.b);temp.push(x);dfs(cur+1,a*b,num[cur+1],temp);temp=route;x.a=a,x.b=b,x.sum=a-b,x.oper='-';temp.push(x);dfs(cur+1,a-b,num[cur+1],temp);if(b!=0&&a%b==0){//a/b需要验证合法性temp=route;x.a=a,x.b=b,x.sum=a/b,x.oper='/';temp.push(x);dfs(cur+1,a/b,num[cur+1],temp);}temp=route;x.a=b,x.b=num[cur+1],x.sum=b+num[cur+1],x.oper='+';if(x.b>x.a) swap(x.a,x.b);temp.push(x);dfs(cur+1,a,b+num[cur+1],temp);//a*((b*c)*d) 模型temp=route;x.a=b,x.b=num[cur+1],x.sum=b*num[cur+1],x.oper='*';if(x.b>x.a) swap(x.a,x.b);temp.push(x);dfs(cur+1,a,b*num[cur+1],temp);temp=route;x.a=b,x.b=num[cur+1],x.sum=b-num[cur+1],x.oper='-';temp.push(x);dfs(cur+1,a,b-num[cur+1],temp);if(num[cur+1]!=0&&b%num[cur+1]==0) {temp=route;x.a=b,x.b=num[cur+1],x.sum=b/num[cur+1],x.oper='/';temp.push(x);dfs(cur+1,a,b/num[cur+1],temp);}}int main(){//freopen("point24.in","r",stdin);//输入输出重定向//freopen("point24.out","w",stdout);queue <node> t;scanf("%d %d %d %d",&num[0],&num[1],&num[2],&num[3]);while(!flag){dfs(1,num[0],num[1],t);printf("%d %d %d %d\n",num[0],num[1],num[2],num[3]);if(!next_permutation(num,num+4)) break;}if(!flag) printf("No answer!\n");system("pause");return 0;}。

回溯-装载问题

回溯-装载问题

姓名:
班级:
学号:
一.问题描述:
有一批共n个集装箱要装上2艘载重量分别为c1和c2的轮船,其中集装箱i的重量为wi,且 。
装载问题要求确定:是否有一个合理的装载方案可将这n个集装箱装上这2艘轮船。如果有,找出一种装载方案。
二.算法:
先尽可能多得把集装箱装上第一艘船。
利用回溯算法遍历解空间树。
三个集装箱的解空间树如下:
if(Value > MaxValue)
return 1;
return 0;
}
回溯函数:
void load(int Level,int Weight,int Value)
{
if(Level > Amount)//到达叶子节点
{
if(Value > MaxValue)//如果解优于之前的最优解
{
MaxValue = Value;
五.测试
五个集装箱:
结果正确!
六个集装箱:
结果正确!
一.问题描述:
给定n种物品和一背包.物品i的重量为 ,其价值为 ,背包容量为c.问应如何选择装入背包中的物品,使得装入背包中的物品的总价值最大.
二.算法
三个物品的解空间如下:
基本的剪枝条件和遍历的方法与装载问题相同。但是,在遍历“a”节点的左子树时,可以发现,进入“a”节点的左子树后,即使把2号3号物品的总价值加在一起也不可能超过遍历“a”节点的俄右子树时计算出的最大价值“9”,所以遍历,“a”节点的左子树时毫无意义的。
load(Level + 1,Weight);
}
寻找路径算法:
void FindWay(int Level,int Weight,int LeftWeight)

《算法设计与分析》课程实验报告 (回溯法(二))

《算法设计与分析》课程实验报告 (回溯法(二))

《算法设计与分析》课程实验报告实验序号:10实验项目名称:实验十一回溯法(二)一、实验题目1.图的着色问题问题描述:给定无向连通图G和m种不同的颜色。

用这些颜色为图G的各顶点着色,每个顶点着一种颜色。

如果有一种着色法使G中每条边的2个顶点着不同颜色,则称这个图是m可着色的。

图的m着色问题是对于给定图G和m种颜色,找出所有不同的着色法。

2.旅行商问题问题描述:给出一个n个顶点的带权无向图,请寻找一条从顶点1出发,遍历其余顶点一次且仅一次、最后回到顶点1的最小成本的回路——即最短Hamilton回路。

3.拔河比赛问题描述:某公司的野餐会上将举行一次拔河比赛。

他们想把参与者们尽可能分为实力相当的两支队伍。

每个人都必须在其中一只队伍里,两队的人数差距不能超过一人,且两队的队员总体重应该尽量接近。

4.批处理作业调度问题描述:给定n个作业的集合J=(J1,J2, .. Jn)。

每个作业J都有两项任务分别在两台机器上完成。

每个作业必须先由机器1处理,再由机器2处理。

作业i需要机器j的处理时间为tji(i=1,2, ..n; j=1,2)。

对于一个确定的作业调度,设Fji是作业i在机器j上完成处理的时间,则所有作业在机器2上完成处理的时间和,称为该作业调度的完成时间和。

批处理作业调度问题要求,对于给定的n个作业,制定最佳作业调度方案,使其完成时间和达到最小。

二、实验目的(1)通过练习,理解回溯法求解问题的解状态空间树与程序表达的对应关系,熟练掌握排列树、子集树的代码实现。

(2)通过练习,体会减少搜索解空间中节点的方法,体会解的状态空间树的组织及上界函数的选取对搜索的影响。

(3)通过练习,深入理解具体问题中提高回溯算法效率的方法。

(4)(选做题):在掌握回溯法的基本框架后,重点体会具体问题中解的状态空间搜索时的剪枝问题。

三、实验要求(1)每题都必须实现算法、设计测试数据、记录实验结果,并给出时间复杂度分析。

四、实验过程(算法设计思想、源码)1.图的着色问题(1)算法设计思想用邻接矩阵a[i][j]存储无向图,对于每一个顶点有m种颜色可以涂。

实验4 回溯算法

实验4 回溯算法

《算法设计与分析》实验报告实验4 回溯算法一、实验目的:掌握回溯算法的设计思想与设计方法。

二、实验环境1、硬件环境CPU:Intel(R) Celeron(R) CPU 1007U @ 1.5GHz内存:4G硬盘:500G2、软件环境操作系统:Windows7编程环境:Visual C++ 6.0编程语言:C三、实验内容1、问题有一个背包,最大限重为C,有n个物品,重量分别为W=<w1, w2, …, w n>,要求找出一个装载方案,使得放入背包物品的重量最大。

输出装载方案和该方案下的背包所装物品总重量。

2、数据结构(1)解的结构一维数据(1)<0 1 0 1 1 1 1>(2) <0 0 1 0 1 1 0>(2)搜索空间的结构3、算法伪代码ReBack(i)1、If i>n then<x1,x2,x3,...xn>是解2、Else while Si≠∅do3、Xi Si中最小值4、SiSi-{Xi}5计算Si+16ReBack(i+1)4、算法分析时间复杂度:O(2n)空间复杂度:O(n)5、关键代码(含注释)#include<stdio.h>int n,c,bestp;//物品的个数,背包的容量,最大重量int w[10000],x[10000],bestx[10000];//w[i]物品的重量,x[i]暂存物品的选中情况,bestx[i]物品的选中情况void Backtrack(int i,int cw){ //cw当前包内物品重量int j;if(i>n)//回溯结束{if(cw>bestp){bestp=cw;for(i=0;i<=n;i++) bestx[i]=x[i];}}elsefor(j=0;j<=1;j++){x[i]=j;if(cw+x[i]*w[i]<=c){cw+=w[i]*x[i];Backtrack(i+1,cw);cw-=w[i]*x[i];}}}6、实验结果(1)输入:C=152,n=7,W=<90, 80, 40, 30, 20, 12, 10> 输出:(2)输入:C=954,n=7,W=<2, 23, 163, 241, 311, 479, 487> 输出:四、实验总结(心得体会、需要注意的问题等)回溯算法也称试探法,是一种系统的搜索问题的解的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) (1)
,xi
ห้องสมุดไป่ตู้
(2)
,…,xi
(mi)
(mi-1)
,|Si| =mi,i=1,2,…,n。从根开始,
让 T 的第 I 层的每一个结点都有 mi 个儿子。这 mi 个儿子到它们的双亲的边,按从左到右的 ,xi+1
(2)
,…,xi+1
,i=0,1,2,…,n-1。照这种构造方式,E
中的一个 n 元组(x1,x2,…,xn)对应于 T 中的一个叶子结点,T 的根到这个叶子结点的路 径上依次的 n 条边的权分别为 x1,x2,…,xn,反之亦然。另外,对于任意的 0≤i≤n-1,E 中 n 元组(x1,x2,…,xn)的一个前缀 I 元组(x1,x2,…,xi)对应于 T 中的一个非叶子 结点,T 的根到这个非叶子结点的路径上依次的 I 条边的权分别为 x1,x2,…,xi,反之亦 然。特别,E 中的任意一个 n 元组的空前缀() ,对应于 T 的根。 因而, 在 E 中寻找问题 P 的一个解等价于在 T 中搜索一个叶子结点, 要求从 T 的根到该
Backtrack(i+1); } r+=w[i]; } Type* Initiate() { int index=1; printf("输入集装箱个数:"); scanf("%d",&n); printf("输入轮船载重量:"); scanf("%d",&c); while(index<=n)//数组从 1 号单元开始存储 { printf("输入集装箱%d 的重量:",index); scanf("%d",&w[index]); index++; } bestw = 0; cw = 0; r = 0; for(index =1;index <= n; index++) r += w[index]; //初始时 r 为全体物品的重量和 printf("n=%d c=%d cw=%d bestw=%d r=%d\n",n,c,cw,bestw,r); for(index=1;index<=n;index++) { printf("w[%d]=%d ",index,w[index]); } printf("\n"); return w; } int main() { int i; Initiate(); //计算最优载重量 Backtrack(1); for(i=1;i<=n;i++) { printf("%d ",w[i]);
五、总结
由此,我们可以总结出回溯法的一般步骤: ( 1 )针对所给问题,定义问题的解空间; ( 2 )确定易于搜索的解空间结构; ( 3 )以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。 通过 DFS 思想完成回溯,完整过程如下: (1)设置初始化的方案(给变量赋初值,读入已知数据等)。 (2)变换方式去试探,若全部试完则转(7)。 (3)判断此法是否成功(通过约束函数),不成功则转(2)。 (4)试探成功则前进一步再试探。 (5)正确方案还未找到则转(2)。 (6)已找到一种方案则记录并打印。 (7)退回一步(回溯),若未退到头则转(2)。 (8)已退到头则结束或打印无解。 可以看出,回溯法的优点在于其程序结构明确,可读性强,易于理解,而且通过对问题的分 析可以大大提高运行效率。但是,对于可以得出明显的递推公式迭代求解的问题,还是不要 用回溯法,因为它花费的时间比较长。
叶子结点的路径上依次的 n 条边相应带的 n 个权 x1,x2,…,xn 满足约束集 D 的全部约束。 在 T 中搜索所要求的叶子结点, 很自然的一种方式是从根出发, 按深度优先的策略逐步深入, 即依次搜索满足约束条件的前缀 1 元组(x1i) 、前缀 2 元组(x1,x2) 、…,前缀 I 元组(x1, x2,…,xi) ,…,直到 i=n 为止。 在回溯法中, 上述引入的树被称为问题 P 的状态空间树; 树 T 上任意一个结点被称为问 题 P 的状态结点; 树 T 上的任意一个叶子结点被称为问题 P 的一个解状态结点; 树 T 上满足 约束集 D 的全部约束的任意一个叶子结点被称为问题 P 的一个回答状态结点, 它对应于问题 P 的一个解。
可以再加入一个上界函数来剪去已经不含最优解的子树。 设 Z 是解空间树第 i 层上的一个当 前扩展结点,curw 是当前载重量,maxw 是已经得到的最优载重量,如果能在当前结点确定 curw+剩下的所有载重量 ≤ maxw 则可以剪去些子树。 所以可以引入一个变量 r 表示剩余的 所有载重量。虽然改进后的算法时间复杂度不变,但是平均情况下改进后算法检查 结点数 较少。 进一步改进: (1) 首先运行只计算最优值算法,计算最优装载量,再运行 backtrack 算法,并在算法 中将 bestw 置为 W,在首次到叶节点处终止。 (2) 在算法中动态更新 bestw。 每当回溯一层, 将 x[i]存入 bestx[i].从而算法更新 bestx n 所需时间为 O(2 )。
x[i]=0; Backtrack(i+1); } r+=w[i]; } int maxloading(int mu[],int c,int n,int *mx) { loading x; x.w=mu; x.x=mx; x.c=c; x.n=n; x.bestw=0; x.cw=0; x.Backtrack(1); return x.bestw; }
六、附录(源码)
#include<stdlib.h>
#include<stdio.h> #include<iostream.h> typedef int Status; typedef int Type; int n=0; //集装箱数 Type *x=(Type*)malloc((50)*sizeof(Type));//当前解 Type *bestx=(Type*)malloc((50)*sizeof(Type));//当前最优解 Type c=0, //第一艘轮船的载重量 cw=0, //当前载重量 bestw=0, //当前最优载重量 r=0, *w=(Type*)malloc((50)*sizeof(Type)); //集装箱重量数组 int Backtrack(int i)//搜索第 i 层节点 { int j_index; //如果到达叶结点,则判断当前的 cw,如果比前面得到的最优解 bestw 好,则替换原最优 解。 if(i>n) { if(cw>bestw) { for(j_index=1; j_index<=n; j_index++) bestx[j_index]=x[j_index]; bestw=cw; } return 1; } //搜索自树 r-=w[i]; if(cw+w[i]<=c)//搜索左子树,如果当前剩余空间可以放下当前物品也就是, cw + w[ i ] <= c { x[i]=1; cw+=w[i];//把当前载重 cw += w[ i ] Backtrack(i+1);//递归访问其左子树,Backtrack( i + 1 ) cw-=w[i];//访问结束,回到调用点, cw - = w[ i ] } if(cw+r>bestw)//搜索右子树 { x[i]=0;
二、描述问题
有一批共 n 个集装箱要装上 2 艘载重量分别为 c1 和 c2 的轮船,其中集装箱 i 的重量为 n wi ,且
w
i 1
i
c1 c 2 ,要求确定是否有一个合理的装载方案可将这 n 个集装箱装上这 2
艘轮船。如果有,请给出该方案。
三、由原理得到的算法、算法的复杂度、改进
1、 可得算法 回溯法解装载问题时,用子集树表示解空间最合适。 void Backtrack(int t) { if(t>n) Output(x); else { for(int i=0; i<z; i++) { x[t] = i; if(Constraint(t) && Bound(t)) Backtrack(t+1); } } } Maxloading 调用递归函数 backtrack 实现回溯。Backtrack(i)搜索子集树第 i 层子树。 i>n 时,搜索至叶节点,若装载量>bestw,更新 bestw。 当 i<=n 时,扩展节点 Z 是子集树内部节点。左儿子节点当 cw+w[i]<=c 时进入左子树,对左 子树递归搜索。右儿子节点表示 x[i]=0 的情形。 2、时间复杂度 Backtrack 动态的生成解空间树。每个节点花费 O(1)时间。Backtrack 执行时间复杂度为 n O(2 )。另外 Backtrack 还需要额外 O(n)递归栈空间。 3、可能的改进
回溯法求解装载问题
一、方法一般原理
回溯法也称为试探法,该方法首先暂时放弃关于问题规模大小的限制,并将问题的候选 解按某种顺序逐一枚举和检验。当发现当前候选解不可能是解时,就选择下一个候选解;倘 若当前候选解除了还不满足问题规模要求外, 满足所有其他要求时, 继续扩大当前候选解的 规模,并继续试探。如果当前候选解满足包括问题规模在内的所有要求时,该候选解就是问 题的一个解。在回溯法中,放弃当前候选解,寻找下一个候选解的过程称为回溯。扩大当前 候选解的规模,以继续试探的过程称为向前试探。 可用回溯法求解的问题 P,通常要能表达为:对于已知的由 n 元组(x1,x2,…,xn)组 成的一个状态空间 E={(x1,x2,…,xn)∣xi∈Si ,i=1,2,…,n},给定关于 n 元组中 的一个分量的一个约束集 D,要求 E 中满足 D 的全部约束条件的所有 n 元组。其中 Si 是分量 xi 的定义域,且 |Si| 有限,i=1,2,…,n。我们称 E 中满足 D 的全部约束条件的任一 n 元组为问题 P 的一个解。 解问题 P 的最朴素的方法就是枚举法, 即对 E 中的所有 n 元组逐一地检测其是否满足 D 的全部约束,若满足,则为问题 P 的一个解。但显然,其计算量是相当大的。 我们发现,对于许多问题,所给定的约束集 D 具有完备性,即 i 元组(x1,x2,…,xi) 满足 D 中仅涉及到 x1,x2,…,xi 的所有约束意味着 j(j<i)元组(x1,x2,…,xj)一定 也满足 D 中仅涉及到 x1,x2,…,xj 的所有约束,i=1,2,…,n。换句话说,只要存在 0 ≤j≤n-1,使得(x1,x2,…,xj)违反 D 中仅涉及到 x1,x2,…,xj 的约束之一,则以(x1, x2,…,xj)为前缀的任何 n 元组(x1,x2,…,xj,xj+1,…,xn)一定也违反 D 中仅涉及到 x1,x2,…,xi 的一个约束,n≥i>j。因此,对于约束集 D 具有完备性的问题 P,一旦检测 断定某个 j 元组(x1,x2,…,xj)违反 D 中仅涉及 x1,x2,…,xj 的一个约束,就可以肯定, 以(x1,x2,…,xj)为前缀的任何 n 元组(x1,x2,…,xj,xj+1,…,xn)都不会是问题 P 的解,因而就不必去搜索它们、检测它们。回溯法正是针对这类问题,利用这类问题的上述 性质而提出来的比枚举法效率更高的算法。 回溯法首先将问题 P 的 n 元组的状态空间 E 表示成一棵高为 n 的带权有序树 T,把在 E 中求问题 P 的所有解转化为在 T 中搜索问题 P 的所有解。 树 T 类似于检索树, 它可以这样构 造: 设 Si 中的元素可排成 xi 次序,分别带权 xi+1
相关文档
最新文档