聚类分析算法解析

合集下载

完整版数据挖掘中的聚类分析方法

完整版数据挖掘中的聚类分析方法

完整版数据挖掘中的聚类分析方法聚类分析方法是数据挖掘领域中常用的一种数据分析方法,它通过将数据样本分组成具有相似特征的子集,并将相似的样本归为一类,从而揭示数据中隐藏的模式和结构信息。

下面将从聚类分析的基本原理、常用算法以及应用领域等方面进行详细介绍。

聚类分析的基本原理聚类分析的基本原理是将数据样本分为多个类别或群组,使得同一类别内的样本具有相似的特征,而不同类别之间的样本具有较大的差异性。

基本原理可以总结为以下三个步骤:1.相似性度量:通过定义距离度量或相似性度量来计算数据样本之间的距离或相似度。

2.类别划分:根据相似性度量,将样本分组成不同的类别,使得同一类别内的样本之间的距离较小,不同类别之间的距离较大。

3.聚类评估:评估聚类结果的好坏,常用的评估指标包括紧密度、分离度和一致性等。

常用的聚类算法聚类算法有很多种,下面将介绍常用的几种聚类算法:1. K-means算法:是一种基于划分的聚类算法,首先通过用户指定的k值确定聚类的类别数,然后随机选择k个样本作为初始聚类中心,通过迭代计算样本到各个聚类中心的距离,然后将样本划分到距离最近的聚类中心对应的类别中,最后更新聚类中心,直至达到收敛条件。

2.层次聚类算法:是一种基于树状结构的聚类算法,将样本逐步合并到一个大的类别中,直至所有样本都属于同一个类别。

层次聚类算法可分为凝聚式(自底向上)和分裂式(自顶向下)两种。

凝聚式算法首先将每个样本作为一个初始的类别,然后通过计算样本之间的距离来逐步合并最近的两个类别,直至达到停止准则。

分裂式算法则是从一个包含所有样本的初始类别开始,然后逐步将类别分裂成更小的子类别,直至达到停止准则。

3. 密度聚类算法:是一种基于样本密度的聚类算法,通过在数据空间中寻找具有足够高密度的区域,并将其作为一个聚类。

DBSCAN (Density-Based Spatial Clustering of Applications with Noise)算法是密度聚类算法的代表,它通过定义距离和邻域半径来确定样本的核心点、边界点和噪声点,并通过将核心点连接起来形成聚类。

聚类分析原理

聚类分析原理

聚类分析原理
聚类分析是一种无监督学习算法,它将数据集中的对象分
成相似的组或簇。

其原理基于以下几个关键步骤:
1. 选择合适的相似性度量:聚类算法需要定义一个衡量对
象之间相似性的度量方式。

常用的度量方法包括欧氏距离、曼哈顿距离、余弦相似度等。

2. 初始化聚类中心:聚类算法通常需要提前指定簇的数量K。

然后可以随机选取K个样本作为初始的聚类中心,或者通过某种启发式方法选择初始聚类中心。

3. 分配样本到簇:将每个样本分配到最接近的聚类中心所
属的簇。

这个过程可以通过计算每个样本与每个聚类中心
之间的距离,并选择距离最小的聚类中心来完成。

4. 更新聚类中心:根据当前簇中的样本重新计算聚类中心
的位置,通常是取簇内所有样本的均值作为新的聚类中心。

5. 重复步骤3和步骤4,直到簇的分配结果不再变化或达
到预定的停止条件。

6. 输出最终的聚类结果。

聚类分析的目标是在不知道样本的真实标签的情况下,将
样本聚类成相似的组。

它可以帮助发现数据的内在结构,
识别相似的样本和异常值,以及进行数据压缩和预处理等
任务。

聚类算法的优缺点分析

聚类算法的优缺点分析

聚类算法的优缺点分析
一、聚类算法的定义
聚类算法是一种数据挖掘技术,它可以根据数据的相似性将数据分成不同的组。

聚类算法常用于市场分析、生物信息学、搜索引擎优化等领域,研究聚类算法的优缺点有助于更好地理解和应用这一技术。

二、优点分析
1. 数据解释性强:聚类算法可以将数据按照相似性进行分组,这有助于对数据进行解释和理解。

2. 发现隐藏模式:聚类算法可以帮助用户发现数据中的隐藏模式和规律,为决策提供支持。

3. 无监督学习:聚类算法是一种无监督学习方法,不需要预先标记的训练数据,适用于大多数数据挖掘场景。

4. 数据预处理:聚类算法可以用于数据预处理,帮助用户减少数据维度,提高数据处理效率。

三、缺点分析
1. 需要选择合适的距离度量:聚类算法的效果与距离度量的选择有关,不同的距离度量会导致不同的聚类结果。

2. 对初始值敏感:聚类算法对初始值敏感,初始值的选择会影响最终的聚类结果,需要谨慎选择。

3. 处理噪声和异常值困难:聚类算法对噪声和异常值比较敏感,这会影响聚类结果的准确性。

4. 难以处理大规模数据:一些聚类算法在处理大规模数据时效率较低,需要耗费大量的计算资源和时间。

四、结论
聚类算法是一种强大的数据挖掘技术,它可以帮助用户发现数据中的隐藏规律和模式,对于无监督学习和数据预处理都有很好的应用前景。

然而,聚类算法也存在一些缺点,比如对初始值敏感、处理噪声和异常值困难等问题,需要在实际应用中充分考虑。

在未来的研究中,可以进一步探讨聚类算法的改进和优化,以提高其在实际应用中的效率和准确性。

聚类分析的基本概念与方法

聚类分析的基本概念与方法

聚类分析的基本概念与方法聚类分析(Cluster Analysis)是一种将数据分组或分类的统计学方法,通过将相似的对象归为同一组,使得组内的对象之间更加相似,而不同组之间的对象则差异较大。

它是数据挖掘和机器学习领域中常用的技术之一,被广泛应用于市场分析、生物信息学、图像处理等领域。

一、聚类分析的基本概念聚类分析基于相似性的概念,即认为具有相似特征的对象更有可能属于同一类别。

在聚类分析中,每个对象都被视为一个数据点,而聚类则是将这些数据点分组。

基本概念包括以下几点:1. 数据点:数据集中的每个样本或对象都被看作是一个数据点,它具有多个特征或属性。

2. 相似性度量:聚类分析的关键是如何计算数据点之间的相似性或距离。

常用的相似性度量包括欧氏距离、曼哈顿距离、闵可夫斯基距离等。

3. 簇/类别:将相似的数据点归为一组,这个组被称为簇或类别。

簇内的数据点相似度较高,而不同簇之间的数据点相似度较低。

4. 聚类算法:聚类分析依赖于具体的算法来实现数据点的分组。

常见的聚类算法有K均值聚类、层次聚类、密度聚类等。

二、聚类分析的方法1. K均值聚类(K-means Clustering):K均值聚类是一种迭代的聚类方法,它将数据点分成K个簇,每个簇代表一个样本集。

算法的基本思想是通过最小化簇内数据点与簇中心之间的平方误差来确定最优的簇中心位置。

2. 层次聚类(Hierarchical Clustering):层次聚类是一种基于树状结构的聚类算法,它根据数据点之间的相似性逐步合并或分割簇。

层次聚类分为凝聚型和分裂型两种方法,其中凝聚型方法从单个数据点开始,逐步合并最相似的簇;分裂型方法从所有数据点开始,逐步分割最不相似的簇。

3. 密度聚类(Density-Based Clustering):密度聚类基于密度可达的概念,将具有足够高密度的数据点归为一簇。

核心思想是在数据空间中通过密度连通性来确定簇的边界,相对于K均值聚类和层次聚类,密度聚类能够有效处理不规则形状和噪声数据。

空间聚类分析概念与算法

空间聚类分析概念与算法

空间聚类分析概念与算法空间聚类算法的目标是使得同一群组内的数据点之间距离尽可能小,而不同群组之间的距离尽可能大。

通过这种方式,可以更好地理解和分析数据,并从数据中获取有关其内在结构的信息。

下面介绍几种常见的空间聚类算法:1. K-means算法:K-means是一种基于距离的空间聚类算法。

它将数据点划分到K个聚类中心,然后根据数据点和聚类中心之间的距离重新计算聚类中心,直到达到收敛。

K-means算法简单且易于实现,但对于非球形分布的数据效果可能不佳。

2.DBSCAN算法:DBSCAN是一种基于密度的空间聚类算法。

它将数据点划分为核心点、边界点和噪声点。

核心点是在一个给定半径内具有足够数量的邻居点的点,边界点是在一个给定半径内具有较少数量的邻居点的点,噪声点是不满足任何条件的点。

DBSCAN算法不需要预先指定聚类的数量,且对于非球形分布的数据效果较好。

3.层次聚类算法:层次聚类是一种通过构建聚类层次结构的方法。

它可以通过自上而下或自下而上两种方式进行聚类。

自上而下的方法将所有数据点划分为一个大的聚类,然后逐步细分为较小的聚类,直到满足一定的聚类准则。

自下而上的方法则从单个数据点开始,逐步合并相似的数据点,直到形成一个大的聚类。

层次聚类算法适用于数据点数量较小且聚类结构具有层次性的情况。

4. 高斯混合模型(Gaussian Mixture Model,GMM)算法:GMM是一种统计模型,用于描述数据点的分布。

它假设数据点是由多个高斯分布组成的混合模型。

GMM算法通过估计高斯分布的参数来确定数据点所属的聚类。

GMM算法适用于特征呈现高斯分布的数据。

总结起来,空间聚类分析是一种重要的数据挖掘技术,通过计算数据点之间的相似度将它们分组。

K-means、DBSCAN、层次聚类和GMM都是常见的空间聚类算法。

根据不同的数据分布和应用场景,我们可以选择合适的算法来进行分析和挖掘。

聚类分析算法

聚类分析算法

第二章聚类分析2·4 聚类的算法2.4.1 聚类的技术方案⑴简单聚类根据相似性阈值和最小距离原则聚类∀x i∈Ω={ x1,x2,…,x n} = ω1⋃ω2⋃…⋃ωc;if D(xi ,mj)≤T, mj=(1/nj)∑xi(j),xi(j)∈ωj,nj是ωj中的样本个数,T是给定的阀值。

Then xi ∈ωi类心一旦确定将不会改变。

⑵谱系或层次聚类按最小距离原则不断进行两类合并类心不断地修正,但模式类别一旦指定后就不再改变。

⑶依据准则函数动态聚类影响聚类结果的主要因数:类心、类别个数、模式输入顺序。

所谓动态聚类,是指上述因数在聚类过程中是可变的。

规定一些分类的目标参数,定义一个能刻划聚类过程或结果优劣的准则函数,聚类过程就是使准则函数取极值的优化过程。

这类方法有—均值法、ISODATA法、近邻函数法以及运用图论理论的最小张树法。

2.4.2 简单聚类方法㈠根据相似性阈值和最小距离原则的简单聚类方法⒈条件及约定设待分类的模式为,选定类内距离门限。

⒉算法思想计算模式特征矢量到聚类中心的距离并和门限比较而决定归属该类或作为新的一类中心。

通常选择欧氏距离。

⒊算法原理步骤⑴取任意的一个模式特征矢量作为第一个聚类中心。

例如,令第一类的中心。

⑵计算下一个模式特征矢量到的距离。

若,则建立新的一类,其中心;若,则。

⑶假设已有聚类中心,计算尚未确定类别的模式特征矢量到各聚类中心的距离,如果,则作为新的一类的中心,;否则,如果( 2-4-1)则指判。

检查是否所有的模式都分划完类别,如都分划完了则结束;否则返到⑶。

⒋性能●计算简单。

●聚类结果很大程度上依赖于距离门限的选取、待分类特征矢量参与分类的次序和聚类中心的选取。

当有特征矢量分布的先验知识来指导门限及初始中心的选取时,可以获得较合理结果。

⒌改进通常采用试探法,选用不同的门限及模式输入次序来试分类,并对聚类结果。

例如,计算每一聚类中心与该类中最远样本点进行检验,即用聚类准则函数J1的距离,或计算类内及类间方差,用这些结果指导及的重选。

知识点归纳 数据挖掘中的聚类分析与分类算法

知识点归纳 数据挖掘中的聚类分析与分类算法

知识点归纳数据挖掘中的聚类分析与分类算法数据挖掘中的聚类分析与分类算法数据挖掘是指从大量数据中自动发现有用的模式、关系或规律的过程。

在数据挖掘过程中,聚类分析和分类算法是两个常用且重要的技术。

本文将对这两个知识点进行归纳总结。

一、聚类分析聚类分析是将一组无标签的数据对象进行分组或聚类的数据挖掘技术。

其目标是通过对象之间的相似性将它们划分为若干个簇,使得同一簇内的对象相似度高,不同簇之间的相似度低。

聚类分析广泛应用于市场分割、社交网络分析、图像处理等领域。

常用的聚类算法有以下几种:1. K-means算法:K-means是一种基于距离度量的聚类算法。

它通过逐步迭代,将数据集分为K个簇,使得每个数据对象与本簇内的其他对象的相似度最高。

2. 层次聚类算法:层次聚类算法是一种通过计算不同类别之间的相似性,并逐步合并相似度高的类别的方式进行数据聚类的方法。

Hierarchical Agglomerative Clustering(HAC)是层次聚类的一种常见算法。

3. 密度聚类算法:密度聚类算法是一种通过计算对象的密度来确定簇的方法,常见的算法有DBSCAN和OPTICS算法。

这类算法可以有效地发现具有不同密度分布的聚类。

二、分类算法分类算法是将带有标签的数据集按照类别或标签进行划分的数据挖掘技术。

通过学习已有数据集的特征和类别标签,分类算法能够对新的未标记数据进行分类预测。

分类算法广泛应用于垃圾邮件过滤、文本分类、风险评估等领域。

常用的分类算法有以下几种:1. 决策树算法:决策树算法是一种基于树形结构的分类算法。

它通过对数据集进行递归分割,使得每个子节点具有最佳的纯度或信息增益,从而实现对数据的分类。

2. 朴素贝叶斯算法:朴素贝叶斯算法是一种基于条件概率的分类算法。

它假设特征之间相互独立,并通过计算条件概率来进行分类预测。

3. 支持向量机算法:支持向量机算法是一种通过寻找最优分割超平面将数据划分为不同类别的算法。

数据聚类分析方法

数据聚类分析方法

数据聚类分析方法
数据聚类分析方法是一种将数据分组或分类的技术。

聚类分析的目标是将相似的数据聚集在一起,同时将不相似的数据分开。

以下是常见的数据聚类分析方法:
1. K-means聚类算法:K-means算法是一种迭代的聚类算法。

它将数据集分为预先指定的K个簇,其中每个数据点属于距离该数据点最近的簇。

该算法通过不断迭代更新簇的中心来优化聚类结果。

2. 层次聚类算法:层次聚类算法通过以下两种方法进行聚类分析:聚合和分裂。

聚合方法将每个数据点作为一个单独的簇,并逐渐将相似的簇合并在一起。

分裂方法则是从一个包含所有数据点的簇开始,并逐渐将不相似的数据点分离开来。

3. 密度聚类算法:密度聚类算法将数据点密度作为聚类的基础。

该算法通过确定数据点周围的密度来划分不同的簇。

常见的密度聚类算法有DBSCAN和OPTICS。

4. 基于网格的聚类算法:基于网格的聚类算法将数据空间划分为网格,并将数据点分配到各个网格中。

该算法通常适用于高维数据集,可以减少计算复杂度。

5. 谱聚类算法:谱聚类算法将数据点表示为一个图的拉普拉斯矩阵,并通过谱分解将数据点分配到不同的簇中。

该算法通常用于非线性可分的数据集。

需要根据具体的数据集和分析目标来选择适合的数据聚类分析方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚类分析算法解析一、不相似矩阵计算1.加载数据data(iris)str(iris)分类分析是无指导的分类,所以删除数据中的原分类变量。

iris$Species<-NULL2. 不相似矩阵计算不相似矩阵计算,也就是距离矩阵计算,在R中采用dist()函数,或者cluster包中的daisy()函数。

dist()函数的基本形式是dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2)其中x是数据框(数据集),而方法可以指定为欧式距离"euclidean", 最大距离"maximum", 绝对值距离"manhattan", "canberra", 二进制距离非对称"binary" 和明氏距离"minkowski"。

默认是计算欧式距离,所有的属性必须是相同的类型。

比如都是连续类型,或者都是二值类型。

dd<-dist(iris)str(dd)距离矩阵可以使用as.matrix()函数转化了矩阵的形式,方便显示。

Iris数据共150例样本间距离矩阵为150行列的方阵。

下面显示了1~5号样本间的欧式距离。

dd<-as.matrix(dd)二、用hclust()进行谱系聚类法(层次聚类)1.聚类函数R中自带的聚类函数是hclust(),为谱系聚类法。

基本的函数指令是结果对象<- hclust(距离对象, method=方法)hclust()可以使用的类间距离计算方法包含离差法"ward",最短距离法"single",最大距离法"complete",平均距离法"average","mcquitty",中位数法"median" 和重心法"centroid"。

下面采用平均距离法聚类。

hc <- hclust(dist(iris), method="ave")2.聚类函数的结果聚类结果对象包含很多聚类分析的结果,可以使用数据分量的方法列出相应的计算结果。

str(hc)下面列出了聚类结果对象hc包含的merge和height结果值的前6个。

其行编号表示聚类过程的步骤,X1,X2表示在该步合并的两类,该编号为负代表原始的样本序号,编号为正代表新合成的类;变量height表示合并时两类类间距离。

比如第1步,合并的是样本102和143,其样本间距离是0.0,合并后的类则使用该步的步数编号代表,即样本-102和-143合并为1类。

再如第6行表示样本11和49合并,该两个样本的类间距离是0.1,合并后的类称为6类。

head (hc$merge,hc$height)下面显示的聚类结果对象hc包含的merge和height结果值的50~55步的结果。

第50步结果表明样本43与13类(即第13步的聚类合类结果)合并。

所有的类编号负数j表示原数据的样本编号,正数i表示聚类过程的第i步形成的新类。

再如54步,表示聚类过程第7步和第37步形成的类合并为新类,新类成为第54类,其类间距离是0.2641715。

data.frame(hc$merge,hc$height)[50:55]3.绘制聚类图聚类完成后可以使用plot()绘制出聚类的树图。

plot(hc, hang = -1, labels=iris$Species)4.指定分类和类中心聚类通过观察树形图,可见由于数据例很多,使图形很乱,不容易确定合理的分类,为简化图形,使用cutree()来确定最初的分类结果,先初步确定各个样本的最初分类的类数后,然后用hclust()再次聚类,重新聚类后,得出最后的分类结果。

memb <- cutree(hc, k = 10) #确定10个分类table(memb) #各类中的样本数为了进行重新聚类,需要计算各类的类中心的类中心,这里用各类的均向量来代表各类的类中心,计算程序如下。

cent <- NULLfor(k in 1:10){cent <- rbind(cent, colMeans(irisSample[memb == k, , drop = FALSE]))}有了各类的类中心后,再次使用hclust()函数,从10类起重新开始聚类。

hclust()函数这时需要指定各类的类中心,并采用中心法来聚类。

hc1 <- hclust(dist(cent), method = "centroid", members = table(memb))plot(hc1)hc1再次聚类的树形图就很精简了。

从树形图上看,确定为三类是比较合适的。

4.输出最终分类结果使用cutree()来确定输出各个样本的最后分类。

memb <- cutree(hc, k =3 #确定3个分类table(memb) #各类中的样本数下面将聚类结果和原始的分类比较可见聚类结果是不错的。

错误率约为14/150=9.33%。

5.直接数据距离阵聚类可以直接输入距离矩阵,然后用as.dist()函数转为hclust()可以使用的距离阵对象,然后再用hclust()再进行聚类分析。

x<-read.table(text="id BA FI MI VO RM TOBA 0 662 877 255 412 996FI 662 0 295 468 268 400MI 877 295 0 754 564 138VO 255 468 754 0 219 869RM 412 268 564 219 0 669TO 996 400 138 869 669 0 ", header=T) s(x)<-x$idx$id<-NULLx转换为距离阵。

x<-as.dist(x)hc <-hclust(x)显示聚类过程。

data.frame(hc$merge,hc$height)绘制聚类图。

plot(hc2)从聚类图可见聚为两类比较合适。

cutree(hc2,2)所以BA、VO、RM聚为1类而TO、FI、MI聚为另一类。

四、使用cluster包进行聚类分析1.计算距离矩阵除了可以使用dist()函数外,加载了cluster包后还可以使用daisy()函数,该函数可以使用的数据类型更多一些。

当原始数据表中包含的数据是混合型即属性变量既有有连续又有分类的时候,dist()计算就不够完美,而采用daisy()函数就可以毫无问题。

使用daisy()必须加载cluster包。

第一次使用还必须安装。

install.packages(‘cluster’,repos=’htt//192.168.3.225/rpkg)library(cluster)daisy()函数的形式和dist()相似,可以采用的距离包含欧式距离"euclidean", 绝对值距离和"manhattan", "gower"。

dd2<-daisy(iris)dd2<-as.matrix(dd1)2.使用agens()聚类cluster包提供了两种层次聚类的方法,一种是a bottom-up 自底而上,采用先将数据样本先各自看成一类,然后通过合并法的聚类过程,最终形成一个大类,包含全部样本,agnes()函数完成这个功能,这个称为合并层次聚类。

而diana()则采用相反的方法,即 a top-down 自顶而下,先将所有样本看成一类,然后通过分裂类的过程将样品最终分为各自样本类,这个称为分裂法。

agens()函数的形式是agnes(x, diss = TRUE|FALSE, metric = "euclidean", stand = FALSE|TRUE,method = "average", par.method, keep.diss = n < 100, keep.data = !diss) 其中的diss指定x对象是否是不相似矩阵对象,与hclust()函数不同,agnes()既可以使用原始数据也可以采用距离阵。

stand是要求对数据进行标准化,而可以采用的类间距离计算方法有“average”平均法,“UPGMA”,“single”最短距离法,“complete”最大距离法,“ward”离差法,“weighted”权重平均距离法和“flexible”弹性法。

keep.diss和keep.data指定在结果中是否保留不相似矩阵和数据,保留这些结果需要更多的内存。

ag <- agnes(iris, diss=F, metric="euclidean", stand=F, method ="single")data.frame(ag$merge,ag$height)[50:55,]plot(ag, ask = FALSE, which.plots = NULL)cutree(ag,k=3)装载数据load'adultuci.rdata')str(AdultUCI)删除原来的目标变量AdultUCI$income<-NULL删除原始据中数据缺失的数据例AdultUCI<-na.omit(AdultUCI)。

相关文档
最新文档