烧结矿中有害元素对高炉的危害和抑制

合集下载

浅议锌对一高炉的危害及控制

浅议锌对一高炉的危害及控制

发生反应ꎮ
Zn+CO2 = ZnO+CO

反应⑴产生 ZnOꎬ会产生 50%的体积膨胀ꎬ破坏
碳砖ꎮ 而反应⑴所需的 CO2 主要来自高炉内 CO 的 分解反应ꎮ
2CO = CO2 +C

虽然在正常 情 况 下 CO 的 分 解 反 应 ⑵ 发 生 在
400 ~ 600 ℃ 的区间ꎬ但是锌的存在会对反应⑵产生
大烧结矿 小烧结矿 球团
品种
/%
/%
ห้องสมุดไป่ตู้
/%
锌比例 59.9
21.9 0.4
澳矿 /% 4.5
焦炭 /% 11.3
煤粉 /% 2
锌负荷 / ( kg / t) 0.825
由表 1 可以看出ꎬ一高炉入炉原燃料中烧结矿 为高炉锌负荷贡献的比例最大ꎬ占到了 81.8%ꎬ其次 是焦炭ꎬ占 11.3%ꎬ这两者总共占到了 93.1%ꎮ 烧结 矿在炉料结构中的配比最大占 75%ꎬ而且烧结矿中 所含的锌含量也是最高的ꎬ达到了 0.02% ~ 0.03%ꎬ 故而烧结矿对高炉锌负荷的贡献最为突出ꎮ 炼铁厂 自 2012 年开始ꎬ烧结混匀料逐渐增加冶金废料的配 比ꎬ 2016 年ꎬ比例基本维持在了 7%左右ꎬ邯钢主要 冶金废料中锌含量如表 2 所示ꎮ 高炉瓦斯灰不经处 理完全配入烧结混匀料中ꎬ循环往复ꎬ形成了锌元素 的大循环ꎬ不断在烧结矿中富集ꎬ烧结矿中锌含量不 断升高ꎬ高炉入炉锌负荷也就不断升高ꎬ近期达到了 0.825 kg / tꎬ超出邯钢内控标准 0.25 kg / t 3 倍多ꎮ
第 41 卷第 5 期 2019 年 10 月
甘 肃 冶 金 GANSU METALLURGY
文章编号:1672 ̄4461( 2019) 05 ̄0016 ̄02

烧结矿中有害元素对高炉的危害和抑制

烧结矿中有害元素对高炉的危害和抑制

烧结矿中有害元素对高炉的危害和抑制
为适应当前严峻的钢铁形势,进一步降低铁水成本,各钢铁企业都采用低价的外矿粉进行烧结,并充分利用烧结、炼铁、炼钢工序所产生的各种除尘灰,利用其低价和含有大量的C、Fe、CaO、MgO等有利成分的优势,来降低烧结料消耗,从而达到降低成本的目的。

但由于各种外矿粉及除尘灰都含一定量的K、Na、Zn等有害元素,大量配加会造成高炉碱负荷、锌负荷超标,高炉炉墙结厚结瘤,加剧炉缸侵蚀,影响炉况稳定顺行。

烧结矿对高炉的影响

烧结矿对高炉的影响

烧结矿对高炉的影响
烧结是将各种粉状含铁原料,配入适量的燃料和熔剂,加入适量的水,经混合和造球后在烧结设备上使物料发生一系列物理化学变化,将矿粉颗粒黏结成块。

烧结矿对高炉具有重要的影响,具体如下:
1、烧结矿含铁品位:波动由±1.0%降低到±0.5%,高炉系数会升高2%,燃料比降低
1.0%。

2、碱度:波动由±1.0(倍)降低到±0.05,高炉系数波动2.5%,燃料比波动1.3%(使用100%烧结矿)。

3、FeO含量:波动±1.0%,高炉燃料比波动1%,产量波动1.5%。

因FeO与SiO2的混合物是低熔点物质,会使高炉软熔带变宽,炉料透气性降低。

4、烧结粒度:粒度中<5mm比例每升高1%,高炉燃料比会升高0.5%,产量下降0.5-1.0%。

5、烧结矿低温还原粉化率RDI升高5%,高炉煤气利用率下降0.5%,影响燃料比和铁产量各1.5%。

6、烧结矿中焊TiO2>0.5%,Al2O3>2.2%时,一般烧结矿低温还原粉化率RDI会大幅度升高。

7、烧结配料配碳:每增加1%,会使FeO含量升高1%-2%。

FeO含量升高1%,能耗上升0.68kggce/t,高炉燃料比也会升高1%-1.5%。

8、降低点火热耗,控制点火负压:降燃耗6%-12%,降能耗5%-6%。

可采用节能型点火炉(带状火焰、热风烧结)。

生产中,应稳定混合料水分、稳定固定碳量、厚料层、低碳、烧透等措施,以提高烧结矿质量,另外控制好冷、热返矿的粒度,也能提高烧结矿质量,同时降低能耗。

高炉炼铁对烧结矿的要求

高炉炼铁对烧结矿的要求

高炉炼铁对烧结矿的要求高炉炼铁对烧结矿的要求(1)高炉对烧结矿总的要求是:含铁品位高、碱度合适和有害成分少、化学成分稳定、还原性好;强度好,粉末少,粒度均匀。

一、烧结矿化学成分对对高炉生产的影响1、入炉烧结矿品位高、脉石少、冶炼时渣量就少,炉料在高炉中下降就顺利,炉渣带出的热量就少,这就有利于提高产量、降低焦比。

烧结矿品位提高1%,可降低焦比2%,高炉增产3%。

2、烧结中有害杂质(硫、磷、锌、铅、钛等)在高炉冶炼时有的进入生铁中,会影响生铁的品质,影响钢的性能,有的进入炉渣、有的变成气态,都会使高炉设备受到侵蚀或结瘤。

3、烧结矿化学成分波动大时,都会引起高炉炉矿波动,增加燃料消耗,影响产量。

实践证明:品位波动由1%降到0.5%,焦比可降低1%、产量可提高2%。

4、碱度波动会引起造渣的波动,降低脱硫能力,容易出号外铁。

在一般情况下,碱度波动从0.05%降到0.025%时,高炉产量可提高0.5%,焦比降低0.3%。

5、亚铁(FeO)一般用作衡量烧结矿还原性的指标,在保证强度的条件下,我们不希望它过高,同时希望它稳定,否则会引起高炉炉缸内热的波动。

实践证明:亚铁降低1%,焦比下降1.5%,产量2%。

二、烧结矿物理性能对高炉有哪些影响:强度好、粉末少、粒度均匀是对烧结矿物理性能最主要的要求。

因为,强度不够必然会产生较多的粉末,给高炉冶炼带来以下影响:1、恶化料柱透气性,炉矿失常、冶炼强度降低,恶化冶炼指标。

2、烧结矿粒度均匀,可以增加料柱的空隙度,提高透气性和改善气流分布,有利于高炉冶炼增产结焦。

实践证明:入炉矿中小于5毫米的粉末每降低10%,可使高炉增产6%~8%;烧结矿6毫米至50毫米的粒度每增加1%,焦比可降低2%。

烧结矿强度差,粉末就多,使高炉炉尘吹出量增加,增加了炼铁的原料消耗,浪费了资源。

一个1000万吨生铁的炼铁厂,若吨铁炉尘量增加50公斤,则一年多吹走的路尘量就达50万吨。

感谢您的阅读,祝您生活愉快。

高炉锌危害及其处理

高炉锌危害及其处理

高炉锌危害及其处理1 前言天铁集团炼铁厂现有高炉六座,。

从2007年年初开始发现出铁时渣铁沟冒白烟,渣表面冒蓝火,结壳严重,炉前活难干,在炉温Si低于0.3%时渣铁物理热相当差,渣铁沟两侧有白色物质,经化验主要成分是锌。

2 锌的危害锌是有色重金属元素,在铁矿中主要为红锌矿(ZnO)和闪锌矿(ZnS) ,在烧结矿中主要为铁酸锌〔ZnO.Fe2O3, 或(ZnFe)0 .Fe203]。

入炉后很快分解成ZnO,随炉料下降,在CO/CO2=1~5的条件下,于1000℃以上的高温区还原成Zn。

其沸点仅为907℃,因而还原的Zn很易挥发,蒸发进入煤气,升至高炉中上部又重新氧化成ZnO,它大部分被煤气带走,剩余部分随炉料下降,在炉内产生循环。

Zn蒸汽可渗人炉衬缝隙中,在炉衬中冷凝下来,并氧化成ZnO,体积膨胀,破坏高炉内衬。

凝附在内壁的ZnO,积久还能生成炉瘤,给高炉冶炼带来不利影响。

2.1 锌在炉衬内部沉积,造成炉衬膨胀、破坏耐火炉衬本身有一定的气孔度.炉内气体在压力作用下容易渗入砖衬,尤其是锌蒸汽,与钾、钠相比有较大的粒子质量和较小的离子半径,在高温下有较大的动量和穿透力.更容易进入耐火炉衬的内部。

渗入炉衬的锌蒸汽,在炉衬中冷凝下来,并氧化成Zn0,体积膨胀,破坏炉墙,严重影响高炉寿命。

2.2 锌在炉衬表面沉积容易产生炉瘤在炉身上部炉衬表面吸附冷凝有液态锌时,它一方面能粘结焦粉、矿粉,另一方面被氧化成氧化锌.再与Si02、Al2O3成硅锌矿(ZnSi04)和锌尖晶石(Zn0·Al2O3) 他们都是难熔物质,因此,在炉衬表面上容易生成附着物,如果原料条件差,炉温又频繁波动,则附着物层层相粘,越长越大,最后导致结瘤。

2.3 炉内循环,造成一定的热量转移锌在高温区被还原吸热:Zn0+C—Zn+C0-237730 J/mol (1)在低温区被氧化又放热:Zn+C02一Zn0+C0+65190 J/mol (2)这样,Zn的循环造成炉内热量从高温区转移到低温区,结果使渣铁受到冷却,在一定条件下,引起熔渣粘度升高。

朝阳钢铁高炉有害元素的分析及控制

朝阳钢铁高炉有害元素的分析及控制

朝阳钢铁高炉有害元素的分析及控制王光伟胡德顺王渐灵朝阳钢铁2600 m3高炉第二代炉役始于2012年11月,投产以来高炉运行较为顺利。

朝阳钢铁高炉入炉原燃料中的有害元素主要包括K2O、Na2O、Zn。

随着高炉生产时间的延伸,高炉有害元素富积,尤其是高炉干法除尘灰回配烧结,加速了高炉有害元素的富集速度。

2013年7月锌负荷为0.46 kg/t,碱金属负荷为2.48Kg/t2013年11月锌负荷快速高升至0.86 kg/t,碱金属负荷为3.95Kg/t高炉干法除尘灰中Zn含量快速升高至15%左右,碱金属(K2O Na2O)含量快速升高至20%以上。

与国内控制标准相比,碱金属负荷超标1.45Kg/t,锌负荷超标0.71 kg/t,为防止有害元素对高炉炉衬产生侵蚀,鞍钢集团朝阳钢铁炼铁厂从2013年开始对高炉有害元素的危害及分布进行调查分析,通过采取有效措施,取得明显效果。

1 有害元素的危害现象1.1 现象2014年4月高炉计划检修,在卸风口的过程中,从高炉风口流出银白色物质,凝固后,实物外观如图1所示,表面呈银白色,具有金属光泽,质地较软,边缘较薄部分可用手折弯甚至掰断,经断面取样化验得Zn含量为100%,表明高炉有害元素已富集到相当严重的程度。

图1 风口流出白色物质1.2 危害1.2.1 炉体上涨有害元素富集造成高炉炉体上涨,主要表现在以下几个方面:高炉炉底板开焊,上涨约100 mm,如图2(a)所示;高炉炉体9 层平台标尺上涨约50 mm,如图2(b)所示;高炉冷却水管与平台联接处开焊,水管上移出现弯曲,如图2(c)所示;高炉上升管膨胀节发生位移,如图2(d)所示。

1.2.2 炉墙结厚2015 年9 月~2016 年2 月,由于高炉干法除尘灰无地存放及降成本需要,烧结开始回配干法除尘灰,烧结矿中Zn 含量和碱金属含量快速增加,高炉锌负荷升高至0.9 kg/t。

同时由于原料库存较低,导致入炉原燃料质量波动较大,入炉粉末增多,炉况波动大,造成2016 年3~5 月高炉炉墙结厚。

[教育]有害元素对高炉的危害含量和有效预防措施

[教育]有害元素对高炉的危害含量和有效预防措施
2007-2010年山东莱芜高炉解剖对现代高炉碱负荷进行了系 统的取样分析。
莱芜高炉解剖研究:碱金属平衡计算
•入炉原料中碱金属分 布
•产物中碱金属分布
•莱钢3#120高炉碱负荷(碱负荷为M2O的入炉量)为:
• 与全国碱负荷平均在3~4kg/tFe相比,高出45%~60%,处于较高水平。
碱金属平衡小结
3)在石墨晶格上形成使碳的边界连接变弱的一种放电体,这是焦炭反应 性增加的另一个原因。综上所述,无论用哪一种方法增碱,焦炭增碱 后的结果都大致一样,即随着含碱量的增加,焦炭的反应性相应升高 ,焦炭的体积膨胀,强度明显降低,易粉化。
高炉碱金属对铁矿石冶金性能的影响
1. 1)碱金属能明显促进烧结矿的还原,对降低焦比有利。 2. 2)少量碱金属能够提高烧结矿的软熔温度,使得高炉软
氰化钾在622℃熔化,1625℃气化;氰化钠在562℃熔化, 1530℃气化。因此在风口区它们能以气态的形式存在,它 随煤气流向上运动,当温度降低后它们便转变为液态。所 以在炉身下部、炉腰、炉腹和炉缸碱金属氰化物完全可能 以液体的形式出现。
•碱化物在高炉里的行为,我们还应了解它们的相对稳定性。
•高炉中碱金属的循环富集
[教育]有害元素对高炉的危 害含量和有效预防措施
提纲
1. 有害元素在高炉中的影响 2. 碱金属在高炉中的分布-高炉解剖 3. 有害元素的来源-碱金属平衡计算 4. 排减措施
•1碱金属对高炉的危害主要表现
1)提前并加剧CO2对焦炭的气化反应,缩小了间接还原区,扩大了 直接还原区,进而引起焦比升高;降低焦炭的粒度和强度,从而降 低料柱特别是软熔带气窗的透气性,引起风口破损。
携带着碱蒸气,碱金属氰化物和碱金属碳酸盐的高炉煤气在 自下而上的运动过程中,所携带的上述碱化物会沉积在内衬 和炉料上,而来不及反应和沉积的碱金属则随煤气和炉尘从 炉顶排出,大部分未还原的碱金属硅酸盐随炉渣排出。

烧结矿FeO和焦炭M10对高炉的影响

烧结矿FeO和焦炭M10对高炉的影响

烧结矿FeO和焦炭M10对高炉的影响二炼铁厂的生产经验和炼铁行业的研究结果表明,烧结矿FeO和焦炭M10对高炉炉况顺行和指标优化产生重大影响,现对此二因素对高炉的影响简单介绍如下: 烧结矿FeO含量是影响高炉炉况顺行的一个重要参数,与烧结矿的转鼓强度、低温还原粉化率、还原性的相关性很大。

烧结矿FeO过高时,烧结矿生产过程过熔,易生成难还原而易熔化的硅酸铁,烧结矿的气孔率降低,由于FeO主要在高温区进行直接还原,在高温区限制还原速度的主要环节为内扩散,任何恶化矿石内扩散条件的因素都会降低烧结矿的还原性,所以,随着烧结矿FeO含量的上升,烧结矿还原性下降,但过低的FeO又会影响烧结矿的强度,恶化低温还原粉化性。

在温度低于700~800?的上部低温区,FeO不能被煤气间接还原,只有在1100?以上时进行直接还原反应,烧结矿FeO过高导致软熔带变厚,恶化高炉透气性,炉况顺行变差,同时大量的FeO在高温区直接还原急剧吸热,破坏高炉下部的热平衡,恶化炉缸工作状况,高炉燃料消耗上升。

根据二炼铁的生产特点和同行业的经验,烧结矿FeO按7~10%控制较为合理。

焦炭耐磨强度(M10)对焦炭处于高炉块状带,焦炭与焦炭、矿石和炉壁之间的磨损有良好的模拟性;在超过850?的碳溶反应区域,CO不进入焦炭内部,碳溶反应只沿着焦炭表面反应,不破坏内部结2构;循环碱作用尚不十分剧烈,温度不足使焦炭表面产生显微裂纹,且焦炭中灰分颗粒少而细,不因温度而形成裂纹中心;这样焦炭中心部位在中温区仍较好地保持冷态特性,M10仍有一定的模拟性。

高炉生产的反应与M10的相关性高于M40,M10比M40对高炉生产有更好的指导作用。

M10含量上升时,焦炭在下降过程中产生大量焦粉,炉尘损失增多,煤气上升阻力增大,造成上部煤气流分布紊乱;焦粉进入滴落带后,煤气流阻力增大,滴落带滞留的熔融物增多,滴落带变厚,煤气流不易通过阻力大的中心区域,边缘煤气流发展,炉墙冲刷加重;焦炭强度变差,风口回旋区深度变小,中心加重,渗透性变坏,炉缸温度降低,铁渣成分变坏,流动性变差,易形成炉缸堆积,高炉风压升高,高炉顺行破坏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

烧结矿中有害元素对高炉的危害和抑制黄克存、班友合、孟德礼 (国丰钢铁有限公司技术部)摘 要 随着我公司的高炉逐步进入炉役后期,延长高炉寿命不仅可以直接减少昂贵的大中修费用,还可以避免由于停产造成的经济损失。

造成高炉损坏的原因和机理错综复杂,但烧结矿带入的碱金属和锌的破坏作用应引起我们的高度重视。

关键词 高炉 碱负荷 锌负荷 危害为适应当前严峻的钢铁形势,进一步降低铁水成本,各钢铁企业都采用低价的外矿粉进行烧结,并充分利用烧结、炼铁、炼钢工序所产生的各种除尘灰,利用其低价和含有大量的C、Fe 、CaO 、MgO 等有利成分的优势,来降低烧结料消耗,从而达到降低成本的目的。

但由于各种外矿粉及除尘灰都含一定量的K 、Na 、Zn 等有害元素,大量配加会造成高炉碱负荷、锌负荷超标,高炉炉墙结厚结瘤,加剧炉缸侵蚀,影响炉况稳定顺行。

1. 烧结矿中有害元素的来源烧结所有外矿粉有害元素含量如下表所示:表1 烧结外矿粉有害元素含量(%)试样名称 Zn Na Na 2O K K 2O 信昂澳粉0.0150.0470.0640.0220.027雄鹰澳粉0.025 0.119 0.14 0.076 0.092 巴姆澳粉0.0055 0.156 0.21 0.035 0.042 繁荣巴粗0.0091 0.031 0.042 0.216 0.26 博斯巴粗0.14 0.013 0.018 0.07 0.085 在高炉生产中,钾、钠、锌存在两个循环,第一个循环是高炉内部的小循环,第二个循环是烧结—高炉的大循环。

通过上表可看出,原料中的钾、钠、锌的量是相对稳定但不可控,要控制其富集减少对高炉的危害就是要打破第二个循环,减少高炉布袋灰、烧结机头灰等高碱、高锌灰的循环使用。

以下是我公司布袋灰、烧结机头灰的有害元素成分分析:表2 北区试样灰中有害元素含量(%)试样名称Zn Na Na2O K K2O红泥除尘灰0.290 0.0816 0.110 0.1743 0.210 36m2机头灰 2.000 5.1342 6.920 48.7915 58.800 36m2机尾灰0.120 0.0965 0.130 0.2987 0.360 北区450m2高炉重力灰 1.120 0.1855 0.250 0.2157 0.260 北区450m2高炉布袋灰0.240 0.3710 0.500 1.2032 1.450表3 南区450m3高炉系统试样灰中有害元素含量(%)试样名称Zn Na Na2O K K2O 南区450m3布袋除尘5.000 0.4823 0.650 1.3774 1.660灰南区三号450m3重力0.300 0.0890 0.120 0.1494 0.180灰南区三号450m3布袋3.620 0.2968 0.400 0.8713 1.050灰1#72m2机头灰0.056 0.3190 0.430 2.0413 2.460 2#72m2机头灰0.057 0.3413 0.460 2.0911 2.520 72m2机尾灰0.024 0.0683 0.092 0.2323 0.280 2#132m2机头灰0.170 1.0684 1.440 7.4681 9.000 132m2机尾灰0.340 0.0460 0.062 0.1494 0.180表4 南区1780m3高炉系统试样灰中有害元素含量(%)试样名称Zn Na Na2O K K2O 230m2烧结机尾灰0.084 0.0683 0.092 0.2987 0.360 120t转炉除尘灰0.090 0.2077 0.280 0.9626 1.160 1780 m3高炉重力灰0.560 0.1335 0.180 0.5726 0.6901780 m 3高炉布袋灰 3.620 0.2226 0.300 1.1285 1.3602.高炉所用原燃料中有害元素含量及负荷计算1780m 3高炉入炉原燃料有害元素含量及负荷计算如下表所示:表5 1780m 3高炉碱负荷及锌负荷计算表名称 消耗量(kg/t铁)K 2O(%) K 2O(kg) Na 2O (%) Na 2O (kg) K 2O+Na 2O(kg) Zn(%) Zn(kg )烧结矿 1386.4 0.38 5.268 0.13 1.802 7.0710.07 0.970 球团矿 34.66 0.16 0.055 0.16 0.055 0.111 0.029 0.010 块矿 311.94 0.25 0.780 0.04 0.125 0.905 0.0004 0.001 焦炭 360 0.115 0.414 0.0635 0.2286 0.6426 0.0247 0.089 煤粉 160 0.1 0.16 0.085 0.1360 0.2960 0.16 0.256 总计6.6772.3466 9.02361.326表6 其它高炉碱负荷及锌负荷计算结果K 2O+Na 2O(kg) Zn (kg ) 北区4#450m 3高炉 4.078 1.648 南区4#450m 3高炉7.3590.898南区5#450m3高炉 5.730 2.7322 从以上计算的结果看,3月份高炉碱负荷最高达到9.0公斤/吨,锌负荷达到2.73公斤/吨,都处于严重超标状态,直接影响到高炉的顺行和长寿,进而影响公司的经济效益。

以1780m3高炉为例,入炉原燃料带入的碱金属及锌含量分别占碱负荷、锌负荷的比例如下图所示:从炉料结构看,78.4%的碱金属来自烧结矿,来自其它的仅占21.6%,73.2%的锌来自于烧结矿,其它占26.8%。

从上图表可以看出,烧结矿是碱金属和锌的主要来源。

根据我公司物料状况,结合两个铁厂意见,拟定了碱负荷及锌负荷标准:高炉碱负荷≤5㎏/t, 锌负荷≤1㎏/t 。

3. 有害元素对高炉的危害3.1 危害1) 钾、钠等碱金属能降低矿石的软化温度,引起球团矿异常膨胀而严重粉化,使烧结矿的还原粉化加剧。

2) 钾、钠等碱金属是焦炭溶损反应的催化剂,增加焦炭的反应性。

3) 钾、钠等碱金属会造成炉缸堆积,高炉结瘤,透气性恶化,炉墙损坏及炉况失常。

4) 锌常以闪锌矿的形式存在,在炉内,先转化为氧化物,然后在1000℃的高温区被CO还原为气态锌,沉积在炉墙上,形成炉瘤,使透气性变坏和炉墙结厚,高炉难行、悬料次数急剧增加。

3.2 K、Na的富集规律K、Na主要是以硅酸盐( K2SiO3、Na2SiO3)的形态存在于炉料中,当炉料下到高温区或炉缸时,硅酸钾将进行以下反应:2K2SiO3+2C=4K+2SiO2+2CO (1)2K↑+2(SiO2)+2(FeO)=2(K2SiO3)+2Fe (2)由式(1)可知,产生的K蒸汽随煤气上升,到中温区,与渣中FeO和SiO2反应又生成K2SiO3,反应式(2)的产物是K2SiO3和铁(Fe)被下降的炉料所吸收,因而使下降炉料中K2O含量增高,并且又随同炉料下降到高温区,钾含量高的炉料中的K2SiO3,下到高温区后,又被还原成钾蒸气,又再次随煤气流上升到中温区,又与下降过程含有大量FeO与SiO2的炉料相遇,钾蒸气与SiO2将生成更多的硅酸钾的硅酸钾又再次随炉料下降到高温区,这样不断下降上升与气化吸收,不断循环之后,炉料中K2O含量在炉内不断增加,这就是所谓的碱金属“循环富集”过程,最终导致炉料与煤气中K2O含量增加,恶化料柱透气性,容易导致高炉崩塌料,或悬料,严重时导致高炉结厚和结瘤,对炉况产生严重影响。

3.3 Zn的循环富集规律Zn常以闪锌矿(Zns)的形式存在,高炉冶炼时,先转化为氧化物,在高于1000℃高温区被还原为气态锌,大量锌蒸汽随着煤气上升到温度较低的块状带时冷凝,然后再被CO2氧化为ZnO。

这些ZnO 仅少量随着炉尘逸出炉外,大量积存在块状带,块状带的高锌炉料在下降过程中,部分ZnO被氧化还原部分进入软熔带。

软熔带内ZnO绝大部分气化随煤气上升,从而造成锌在1200℃以下区域内的循环,因锌不被渣铁吸收,锌蒸汽在炉内循环,沉积在炉墙上,可与炉衬和炉料反应,形成低熔点化合物粘附在炉墙上,形成炉瘤,阻塞煤气通道,影响高炉顺行。

4. 降低碱负荷、锌负荷的措施4.1 降低碱负荷的措施1) 对所使用的外粉进行批量检测,合理配加,以控制烧结矿碱金属含量。

2) 对焦炭和煤粉灰分中的钾、钠含量,分品种每旬进行检验分析。

3) 对烧结自循环的机头灰,因钾、钠含量极高,建议送综合料场处理后使用或停用。

4) 在保证生铁含硫不出格的原则下,适当降低炉渣碱度。

自由碱度±0.1%,影响渣中碱金属氧化物0.3% 。

5) 炉渣碱度不变,生铁含硅±0.1% ,影响渣中碱金属氧化物0.045% 。

6) 烧结机头电厂除尘灰由吸排车吸走外销,减轻碱金属循环富集,可使烧结矿碱金属含量降低20%。

4.2 排碱制度1) 大高炉每月排碱一次,炉渣二元碱度控制在 1.0~1.05,炉温控制0.5~0.6,时间3~4个班。

2) 提高炉渣中的MgO含量,提高炉渣的流动性。

我厂在日常冶炼时,高炉炉渣二元碱度控制在1.1~1.16,MgO:450m3高炉11~12,1780m3高炉10~11。

3) 减少入炉粉末,每周做3次筛分检测,<5mm不大于3%。

同时控制顶温到140℃以上,增加一部分炉尘的吹出。

5. 措施的实施为检验降低碱、锌负荷措施的效果,11月份对一铁1780 m3高炉碱负荷、锌负荷又进行了计算,结果如下表所示:表7 11月份碱负荷及锌负荷计算表名称消耗量(kg/t铁)K2O%K2O(kg)Na2O%Na2O(kg)K2O+Na2O(kg)Zn%Zn(kg)烧结1263.6 0.08 1.00.10 1.26 2.35 0.14 1.77矿 6 9 球团矿64.80.0940.060.13 0.08 0.150.0140.01南非块矿291.6 0.100.290.0580.17 0.460.00280.01焦炭3600.065 0.230.1670.60 0.840.2410.87煤粉140 0.420.59 0.46 0.64 1.230.0120.02合计2.262.76 5.02 2.67 与3月份数据比较:表8 11月份与3月份的碱负荷及锌负荷对比名称K2O(kg) Na2O(kg) K2O+Na2O (kg) Zn(kg) 11月份合计 2.26 2.76 5.02 2.673月份合计 6.68 2.35 9.02 1.33 合计比较-4.42 +0.42 -4.00 +1.34通过上表可看出,230烧结通过停用布袋灰,减少了其在烧结、高炉间的循环,11月份高炉碱负荷为5.02 kg/t,比 3月份的9.02 kg/t降低了4 kg/t,基本达到制定的5 kg/t标准。

相关文档
最新文档