大型海水淡化技术综述

大型海水淡化技术综述
大型海水淡化技术综述

文章编号:CN23-1249(2010)06-0029-05

大型海水淡化技术综述

刘庆江

(哈尔滨锅炉厂有限责任公司,黑龙江哈尔滨150046)

摘 要:介绍了大型海水淡化技术的主要方法、分类和工作原理,并对各主要方法进行了比较,对大型低温多效海水淡化技术进行了重点阐述。

关键词:大型海水淡化技术;配压缩器低温多效蒸发中图分类号:P 747 文献标识码:A

Su mm arization on Seawater Desali nation Technology

L i u Q ingjiang

(H arbin Bo iler Co .Ltd .,H ar b i n 150046,China)Abst ract :This paper introduces the m a i n m ethods 、classifacation and pri n ciple of sea w ater desa li n a ti o n techno l o gy ,and presents a co m parisi o n to m a i n m ethods ,g i v es e m phatica l description to lo w te mperature m ult-effect distillation .

K ey w ords :lo w te mperature m u lt-effect distillation;TVC-M ED

收稿日期:2010-08-15

作者简介:刘庆江,男,本科,高级工程师,哈尔滨锅炉厂有限责任公司副总工程师,毕业后一直从事电站辅机、石化容器、核电产品的设计工作。

0 引 言

淡水资源的匮乏已成为威胁人类生存的严重问题。我国早已认识到缺水将成为制约社会进步和经济发展的瓶颈。我国水资源总量2.81万亿m 3

,居世界第六位,但人均仅占世界人均的1/4,为第121位。全国有300多个城市缺水;沿海城市特别是别是北方地区以及岛屿的供水严重不足。我国沿海地区有丰富的海水资源,用海水淡化技术提纯淡水以满足沿海城镇和岛屿对淡水的需求。随着水资源短缺问题的日趋严重,海水淡化将成为我国解决沿海地区淡水资源短缺问题的重要措施。

1 海水淡化装置分类及工作原理

海水淡化是从海水中获取淡水的技术和过

程,是分离海水中盐和水的过程。海水淡化常用的方法有蒸馏法和膜分离法,还有冷冻法、水合物法、溶剂萃取法、离子交换法等。蒸馏法又分多级闪蒸(M SF)、多效蒸发(MED )、压汽蒸馏(VC )和太阳能蒸馏(SD);膜分离法分反渗透法(RO )和电渗析法(ED)。而常用的适用于大型的海水淡化主要方法有反渗透(RO )法、多级闪蒸(M SF)法和多效蒸发(MED)法。

M SF 和MED 都属于热法。为了避免海水蒸发过程在蒸发设备上生成的污垢,MED 方法目前多采用低温多效蒸发技术(LT -M ED )。为了提高MED 装置的经济性,可在M ED 海水淡化装置上加设蒸汽压缩机。若带有蒸汽热力压缩器(TVC),称为TVC -MED 装置;若带有机械压缩机(MVC ),称为MVC -MED 装置。由表1归纳了几种海水淡化方法的特性。

第6期锅 炉 制 造

No .6 2010年11月

B O I LER MANUFACTURI NG

Nov .2010

2 大型海水淡化主要方法

2.1 反渗透法

反渗透法最初用于污水的处理,自70年代后期发展出第一座反渗透法海水淡化(S WRO)厂以来,一直是具有竞争力的海水淡化技术之一。原海水通过RO 膜之前必须先经前处理,其目的是除去可能阻塞薄膜的物质或破坏其构造的成份如氧化剂等,处理的方法包括凝集沉降、过滤及添加抑制结构的药剂等。经过前处理后,海水由高压泵送至薄膜分离室,借助于半透膜可除去90%~99%的盐类、95%~99%的有机物及将近100%

的胶体如细菌、硅胶等。薄膜的组成通常包括两

个部分:一部分为海绵状的多孔物质,可让盐类及水通过并支持半透膜;另一部分为厚度仅为数千分之一英寸的半透膜,只能允许水通过。RO 海水淡化装置耗用电能,造水能耗较低,目前大型RO 海水淡化装置的单位造水电耗约为4-8k W h /m 3

,生产淡水含盐量100~500pp m 。装置容量由最初的小型装置逐渐发展到中大型装置,且与热法形成联合海水淡化系统。其关键技术是高性能的反渗透膜和高效能量回收装置,这两项技术目前只被少数国际大公司所掌握。图1

给出了反渗透海水淡化装置工作流程。

图1 S W RO 工作流程

2.2 多级闪蒸法

多级闪蒸法是利用闪发蒸馏的原理,将溶液中的水分转变成蒸汽而与溶解于溶液中的盐份分离,闪蒸是以减压的方式降低沸点,产生水蒸汽经冷凝后即可制得淡水。多级闪蒸法的过程原理如下:将原料海水加热到一定温度后引入闪蒸室,由于该闪蒸室中的压力控制在低于热盐水温度所对应的饱和蒸汽压的条件下,故热盐水进入闪蒸室后即成为过热水而急速的部分气化,从而使热盐水自身的温度降低,所产生的蒸汽冷凝后即为所需的淡水。多级闪蒸以此原理为基础,使热盐水

依次流经若干个压力逐渐降低的闪蒸室,逐级蒸发降温,同时盐水也逐级增浓,直到其温度接近(但高于)天然海水温度。从各级闪蒸室中闪蒸出的蒸汽,分别通过各级的汽水分离器,进入冷凝室的管间凝结成淡水。

图2给出了直通式M SF 海水淡化装置流程示意图。

多级闪蒸海水淡化装置在海水淡化最为集中的中东地区占据主要地位,其单机容量最大,造水品质高(含盐量可低至2~5ppm ),技术成熟,设备运行稳定。其缺点是装置占地面积大,装置投

30 锅 炉 制 造 总第224期

资费用高,设备运行能耗高,近年来发展呈下降趋

势。

图2 M SF海水淡化装置工作流程示意图

2.3 多效蒸发法

多效蒸发法是海水淡化技术中较早发展的方法之一,多效蒸发系由单效蒸发器串联组成,即将前一个蒸发器产生的二次蒸汽引入下一个蒸发器作为加热蒸汽并在其中凝结为水,如此依次进行,每一个蒸发器及其过程称为一效,这样就可形成双效、三效和多效等。多效蒸发使热能重复利用,造水比几乎按效数成倍增加。蒸发器换热管表面严重的结垢曾限制了MED海水淡化技术的发展。随着防垢技术的发展、新型高效蒸发设备的出现及低温蒸发技术的进展,在20世纪60年代末发展了低温多效蒸发海水淡化技术,成为第三代海水淡化技术,在90年代后得到快速发展。

所谓低温多效蒸发(LT-M ED)海水淡化技术是指盐水的最高蒸发温度TBT不超过70的海水淡化,低温下经过简单预处理的海水在蒸发器中几乎不再发生结垢现象。进料海水首先进入冷凝器中预热,而后被分成两股物流。一股作为蒸发过程的进料,另一股作为冷却水排回大海,水温较低时不需要冷却水,从而减少排水能量消耗。进料海水被引入到蒸发器的后几效中,料液经喷嘴被均匀分布到蒸发器的顶排管上,海水被预热到饱和温度后部分水吸收管内冷凝蒸汽的潜热而蒸发。二次蒸汽在下一效中冷凝成产品水,剩余料液由泵输送到蒸发器的下一个效组中,在新的效组中重复喷淋、蒸发、冷凝过程。料液最后在末效蒸发器组中以浓缩液的形式离开装置。生蒸汽被输入到第一效的蒸发管内并在管内凝结,管外海水产生与冷凝量基本等量的二次蒸汽。由于第二效的操作压力要低于第一效,二次蒸汽在经过汽液分离器后,进入下一效传热管。蒸发、冷凝过程在各效重复,最后一效的蒸汽在冷凝器中被海水冷凝。由于各效压力不同,使部分产品水闪蒸,并将热量带回蒸发器。被冷却的产品水由产品水泵输送到产品水储罐。低温多效蒸发器可做到15效甚至更多。

低温多效蒸发海水淡化根据所配热泵类型不同可分为三类:

(1)不配任何热泵的低温多效蒸发。

当所提供的加热蒸汽正好是或略高于低温多效海水淡化设备所需压力的蒸汽,可采用该种方式。该方式可利用低压蒸汽,具有很好的热能利用率。

(2)低温多效蒸发配机械压缩机(MVC-MED)。

这种方式一般被作为压汽蒸发装置。这种技术的原理是,经预热的海水到蒸发器中受热气化,蒸发出的二次蒸汽通过压缩机的绝热压缩,提高其压力、温度及热焓后再送回蒸发室,作为加热蒸汽使用,使蒸发器内的海水继续蒸发,而其本身则冷凝成水,冷凝水从蒸发器内抽出,并与进料海水换热冷却。采用机械压缩原理,使用机械压缩机提高二次蒸汽压力、温度,使二次蒸汽的潜热在蒸发器内连续循环并产生热交换。在正常运转时,机械压缩蒸发装置蒸发所需的能量基本上从压缩功获得,适用于中小容量的海水淡化装置,造水能耗约为10~15k W h/m3。

(3)配热力压缩器的低温多效蒸发(TVC-MED)。这种方式是采用热压缩原理,用高压蒸汽在喷射器中吸入二次蒸汽,实现低压蒸汽重复利用的目的。当加热蒸汽的压力高于0.3M Pa 时常采用此种方式,利用高压蒸汽将多效蒸发装置中某一效的低压二次蒸汽压缩为满足装置首效蒸发器需要压力的蒸汽。TVC结构简单,操作方便,充分利用了高压蒸汽中的能量,可得到1~20倍高压蒸汽量的加热蒸汽,可增加海

31

第6期 刘庆江:大型海水淡化技术综述

水淡化装置的造水比。TVC -MED 工作流程如图3

所示。

图3 TV C-M ED 工作流程示意图

横管降膜TVC -MED 海水淡化装置工作原理从海水、蒸汽和气体侧的流程进行如下说明:

海水侧的流程:海水在冷凝器中完成预热,而后分成两股流动,一股作为蒸发过程的进料,另一股作为冷却海水排回大海。进料海水并行进入到蒸发器的各效中,或由前效至后效串联进料;海水进入蒸发器后,经布液器被均匀分布到蒸发器的顶排管上,在管子表面形成液膜,在重力作用下沿管子以薄膜形式向下流动,海水被管内蒸汽加热而产生部分蒸发,生成的二次蒸汽经除沫器(汽液分离器)后进入下一效蒸发器的管内作为加热蒸汽,剩余的海水逐效进入下一效蒸发器中闪蒸,浓盐水在温度最低的末效蒸发器中离开装置。

蒸汽侧流程:高压蒸汽经TVC 将末效蒸发器产生的部分蒸汽混合增压,达到进入一效蒸发器的压力,加热蒸汽进入到第一效蒸发器的传热管内并在管内凝结为水,排到蒸发器外,管外海水蒸发,生成二次蒸汽。由于第二效的操作压力要低于第一效,第一效蒸发器的二次蒸汽在经过汽液分离器后,进入下一效传热管内。蒸发、冷凝过程在各效蒸发器内重复,某一效蒸发器内生成的二次蒸汽一部分作为TVC 的引射蒸汽,与工作蒸汽一起作为加热蒸汽进入到第一效蒸发器,其余部分蒸汽向下一效蒸发器传递,末效蒸发器产生的二次蒸汽在冷凝器中被海水凝结。

对于单纯的MED 海水淡化装置,第一效蒸发器内加热蒸汽的冷凝水返回锅炉给水系统,其余各效的冷凝水即为产品水;对于TVC -M ED 海水淡化装置,第一效的加热蒸汽中已混入末效的二次蒸汽,得到的总淡水量是海水淡化产生的淡水与加热蒸汽凝结水之和。

蒸汽侧流程:为了保证各效蒸发器和冷凝器能够稳定运行,需要将每一效蒸发器的蒸发室和冷凝器的汽侧,通过气侧管道与喷射真空泵相连接,从而将蒸发过程产生的少量不凝气抽出。对于水电联产系统,来自于机组的抽汽压力一般较高,可采用TVC -MED 海水淡化装置。由于TVC 没有转动部件,结构简单,运行稳定,适用于水电联产系统,因而TVC-M ED 在水电联产系统中发展迅速。

3 大型海水淡化方法比较

三种海水淡化技术性能比较,主要海水淡化技术性能对比汇总见表1。

表1 大型海水淡化方法比较

各种海水淡化方法比较M SF

M ED S W RO 预处理要求低低非常高化学品消耗高低高产生污泥量

无无少量污垢低低高操作性简单简单复杂投资高较高较高耗电量 3.5k W h /m 31.2kW h /m 34k W h /m 3

蒸汽耗量10:1GOR (8~15):1GOR

无浓缩系数 1.5 1.5 1.5海水顶温112 70 常温进水压力0.28M Pa 0.28M Pa 6.9M Pa 水质2~5ppm 2~5pp m 100~500pp m 单装置容量超大型大中型中小型可靠性

很高

依赖预处理

[下转第37页]

32 锅 炉 制 造 总第224期

学稳定性和化学稳定性,优良的防渗性等;同时还必须考虑成本低,施工难度小,易修补,安全运行时间厂等因素。最后,在技术、资金能达到的条件下,可以安装在线监控设备,掌握设备运行情况的第一手资料,避免不应该的事故发生。

参考文献

[1] 宋晓红,李 刚.湿式脱硫后烟气造成烟囱腐蚀的

机理分析与预防措施.河北电力技术,2000,19(6):28-30

[2] 李 彦,武 彬,徐旭常.SO 2、S O 3和H 2O 对烟气

露点温度影响的研究.环境科学学报,1997,17(1):126-130

[3] 李守信,赵 毅,王德宏.烟气脱硫系统的防腐问

题[J].华北电力大学学报,2000,27(4):71-74.

[4] 王海宁,蒋达华.湿法烟气脱硫的腐蚀机理及防腐

技术[J].能源环境保护,2004,18(5)22-25.

[5] 游春桃,林海波,黄海涛,周 波.对石灰石-石

膏法脱硫装置吸收塔衬里橡胶的应用研究[J].化工设备与管道,2007,44(2)22-25.

[6] 王天堂,黄志强,籍文豪,陆士平.VEG F 鳞片复合

材料在脱硫烟囱中应用的可行性[J].电力环境保护,2005,21(4)24-27.

[7] 顾咸志.湿法烟气脱硫装置烟气换热器的腐蚀及

预防[J].中国电力,2006,39(2):86-91.

[8] 陈 彪,李彩华.燃煤机组湿法烟气脱硫后烟囱

的腐蚀与防腐问题探讨[J].电站系统分析,2007,23(6)31-34.

[9] F.G alen H odge andW..l sil ence .P redicti ng the Co r

rosi v ity o f O pera ti ng FGD Sy estem [J].P o w er Engg .1994,98(12):30-33.

[10] 赵 鹏,马果俊,王宝德,胡健民.石灰石-石膏

法湿法烟气脱硫工艺不宜安装烟气换热器[J].中国电力,2005,38(11)62-65.

[上接第32页]

从表1分析可以看出:

(1)预处理要求S W RO 法最高,M ED 、MSF 最低;

(2)操作性:S WRO 复杂,MED 、M SF 简单;(3)S WRO 消耗电能;MED 主要消耗热能,从综合利用能源角度看,MED 可利用电厂余热热能。

(4)S WRO 装置对原料水预处理要求比M ED 、M SF 高,为此对S WRO 装置需设置完善的预处理系统,导致设备多,系统和运行均较为复杂。(5)MED 、M SF 产品水纯度远高于S W RO,根据不同的用水水质要求,可选择适宜的海水淡化

方案。

4 结束语

低温多效蒸馏海水淡化技术,可利用电厂、化工厂或低温核反应堆提供的低品位蒸汽,将海水多次蒸发和冷凝达到较高的造水比,特别适合于利用低位余热的大中型海水淡化使用。低温多效蒸馏海水淡化技术生产的蒸馏水纯度极高,可作为锅炉补充用水、生产过程的工艺用水或大规模的市政供水。低温多效蒸馏海水淡化技术以明显的技术优势及装置组合的灵活性显示出巨大的优越性。

欢迎订阅 欢迎投稿

欢迎刊登广告信息

37 第6期 杨晋萍:湿式烟气脱硫系统的腐蚀机理及各设备腐蚀情况

海水淡化技术介绍

海水淡化技术及建设投资运行成本介绍 1.海水淡化技术发展现状 海水淡化又被称为海水脱盐,也就是从海水中获取淡水的技术和过程。从海水中取出淡水或者除去海水中的盐分,都可以达到淡化的目的。从这两条路线出发,海水淡化分为两类。采用从海水中分离出淡水的方法又可以细分为蒸馏法、冷冻法、反渗透法、水合物法和溶剂萃取法;而第二类则包括电渗析法和离子交换法。其中目前得到大规模商业应用是反渗透法和蒸馏法。 (1)反渗透海水淡化技术 对透过的物质具有选择性的薄膜称为半透膜,一般将只能透过溶剂而不能透过溶液的薄膜称之为理想的半透膜。当半透膜把不同浓度的溶液隔开后,在自然情况下,水流是从低浓度盐水侧往高浓度盐水侧流动;当在高浓度盐水侧加上一个适当的压力后,也会将水从高浓度侧压到低浓度侧,见图1。反渗透海水淡化就是利用该原理,用高压泵将海水增压后,借助半透膜的选择截留作用来除去水中的无机离子得到淡水。由于反渗透膜的截留粒度小于10×10-10 m,所以反渗透海水淡化同时能滤除各种细菌、病毒,获得高质量的纯水。 图1. 反渗透海水淡化技术原理 一般说来,反渗透海水淡化工艺包括四部分:预处理、反渗透、后处理及清洗系统,图2是一种反渗透海水淡化系统的典型工艺流程。

图2. 反渗透系统典型工艺流程图 预处理系统的目的是为了充分发挥反渗透淡化系统的技术优越性,保障良好的设计性能和长时间的安全运行,特别是为了保证膜的使用寿命(一般情况下,自来水和苦咸水反渗透膜的使用寿命为5年,而海水膜的使用寿命为3年)而设置。由于供给的源水不同,其水质组成与杂质成分千差万别,预处理系统也有很大的区别,在决定预处理系统时需要丰富的基础理论知识和工程实际经验。 反渗透装置的主体由反渗透膜堆和高压泵两部分组成,反渗透组件是整个系统的心脏部分,而高压泵是系统的关键部件。高压泵把进水升压至不同的压力进入膜堆,透过膜的水作为产品水,而未透过膜的作为浓盐水排放。其设计的核心在于根据不同的原水水质安排不同的回收率,以及通过流程及设备的选用使系统尽可能的节能。一般情况下自来水及苦咸水回收率可以做到45%~75%,有些系

海水淡化方案

·······65吨/天 反渗透海水淡化工程 设计方案Designing Scheme ·

目录 1、设计基础 2、工艺流程及说明 3、控制系统说明 4、设备技术规范 5、技术服务内容 6、技术保证 7、供配电和原材料供应 8、环境处理 9、投资方式与运行管理 10、建设内容与施工期 11、投资估算 12、经济效益及社会效益评价

前言 据甲方公司提供的信息,我公司对筹建“65吨/日的反渗透海水淡化工程”进行工程投资并参与建设,现就“65吨/日的反渗透海水淡化工程”进行方案设计,提供以下设计方案,以供负责项目部门参考。 1.0 设计基础 1.1 本方案涉及的流程及设备是能满足制备生活饮用水,有如下要求; 1.1.1 产水用途:生活饮用水。 1.1.2 系统出力:65m3/d(25℃)。 1.1.3 系统回收率:35%~40%。 1.2 本方案主要依据如下: 1.2.1 海水水源:用户提供。 1.2.2 设计界限:从取水点至终端水箱。 1.2.3 其它涉及的设计基础条件将在技术联络中讨论确定。 1.3 设备制造及设计参考标准: 1.3.1 JB2932-86《水处理设备制造条件》。 1.3.2 HGJ34-90《化工设备管道外防腐设计规定》。

1.4 出水水质:达到生活饮用水水质卫生规范(2001) 1.5 系统对外要求: 1.5.1供电缆:根据方案设计的容量,将动力电缆送至变压器的供配电 1.5.2 出水管:至终端水箱出水口处。 1.5.3 药品:调试过程所用药品由用户提供。 1.5.4 环境处理:按标准统一考虑。 2.0 工艺流程及说明: 反渗透部分 反渗透装置主要由阻垢剂注入系统、保安滤器、高压泵、能量回收装置、反渗透膜元件、压力管、反渗透水箱及仪器、仪表等组成。 系统采用超滤+二级反渗透装置,反渗透出水65m3/d。 (2)高压泵 反渗透装置工作动力是压力差,由高压泵将经预处理的原水升压达到反渗透的工作压力,通常为5.0~6.9Mpa使反渗透过程得以进行,即克服海水渗透压使水分子透过反渗透膜到淡水层。高压泵选用Q=3m3/h P=5.6Mpa。 (3)反渗透主机

及世界海水淡化发展和现状概述

中国及世界海水淡化的发展和现状概述 种种现实已经深刻地表明:水是可以耗尽的,水资源是取之不尽、用之不竭的观点应当改变。保护水资源,并加强水资源的开发,是增创新优势、并实施可持续发展决策的一项具有重大战略意义的举措,而海水淡化是缓解当今水危机,并沿海地区和岛屿水资源开发的必然趋势和最终归宿。 一、淡水资源严重短缺 随着现代化建设的高速发展,人口的急剧膨胀,以及人们物质文化生活水平的极大提高,水的用量与日俱增,但是供水量却有减无增,而且水体污染日趋严重。因此,全球范围及至全国性的供水矛盾日益突出。人类正面临着来自水资源和水质性两大危机越来越严峻的挑战。所以,合理地开发利用和有效地保护水资源已成为全世界共同关注的热点,防止水危机的呼声浪高一浪,正席卷全球。 1.缺水与日俱增 <1)世界范围 从1990年到1995年,水的消耗量增长了6倍,比人口增长速度还快2倍,约有80个国家和地区严重缺水,占地球陆地面积的60%,有15亿人口缺少饮用水,20亿人得不到安全的用水。其中29个国家的4.5亿多人口完全生活在缺水状态中。 因为饮用不符合卫生要求的水源而导致的疾病有50多种,平均每天发生与水相关的疾病65万例,夺去2.5万人的生命。 到2000年,全世界人均占水量减少24%。估计到2025年,全世界将有近1/3的人口<23亿)缺水。按每年取水量4—5%递增为计,到2100年地球上所有河水将被耗尽,到2230年,人类将耗尽地质圈内所有储备的淡水资源。 <2)全国范围 河川地面迳流量平均每年为2.81万亿立方M,居世界第六位。但按人口平均,每人每年仅2400立方M,仅为世界人口平均占有量的四分之一。中国人口占世界22%,而淡水占有量仅为8%,世界排序名列第109位,是世界12个严重贫水国之一。 径流的地区和时空分布很不均衡,包括北京、上海、广州、沈阳、长春、大连等我国40多个城市也被列入世界性严重缺水的黑名单上。据资料表明,因为水资源短缺、生态退化、水污染加剧等原因。 全国近600多座城市中,有400多座城市缺水,严重缺水的城市就有110多个。 我国城市2000年缺水达600多亿立方M,每年因缺水而损失,仅工业产值就达2400亿元。据预测,我国30年后将出现用水高峰,2030年人口总量将达16亿,城市化水平将达到40%,届时用水总量将达7000—8000亿立方M。 广东目前年缺水约42.45亿立方M,近年取水量将达50亿万吨。 2.污染日趋严重 <1)世界范围 全世界每年排放的污水现达4000多亿吨,从而造成5万多亿吨水体被污染,致使地球每年有700多万人因不洁净饮水引起疾病而死亡。估计到2005年前,因水的原因而成为“环境难民”者将多达1亿人。 到2005年全世界污水总排放量将达6900亿立方M,仅仅为了稀释这些污染物,就要耗尽全球河流水量。 <2)中国范围 我国沿海地区企业每年排入近岸海域工业废水39.8亿吨,年工业废水和生活污水排放量已达到620亿吨之多,相当于每人平均排放量近49吨。 致使全国138个城市河段中的133个河段已受到不同程度的污染,78%的河段不适宜作饮

海水淡化系统主要工艺流程及功能

海水淡化系统主要工艺流程及功能 海水淡化系统技术由于海水盐含量很高,不能直接使用,主要在两个方面:海水脱盐,蒸馏和反渗透。蒸馏法主要用于大型海水淡化和能源丰富的地方。反渗透膜是非常广泛的,和脱盐率很高,所以被广泛应用于。反渗透膜是第一个水提取,预处理,降低海水的浊度,防止细菌,藻类和其他微生物的生长,然后用专用的高压增压泵,水进入反渗透膜,因为含盐量高,所以海水反渗透膜必须具有高脱盐率,耐腐蚀,耐高压,抗污染,通过反渗透膜处理后的海水,其盐的含量大大降低,TDS含量从36000毫克/ 1到200毫克/升。淡化水比自来水更好的水后,可用于工业,商业,住宅和船舶,船舶使用。 海水淡化处理 海水淡化即利用海水脱盐工艺生产淡水。通过海水淡化处理可以保障沿海居民饮用水和工业锅炉补水等稳定供水。反渗透法是目前海水淡化主要处理技术之一,反渗透法是利用只允许溶剂透过、不允许溶质透过的半透膜将海水与淡水分隔开,在通常情况下,淡水通过半透膜扩散到海水一侧,因受半透膜的阻力,海水一侧的液面逐渐升高,直至升到一定的高度才停止,这个过程为渗透。此时,海水一侧高出的水柱静压称为渗透压。如果对海水一侧施加一个大于海水渗透压的外压,那么海水中的纯水将渗透到淡水中。反渗透法的最大优点是节约场地和能耗。 现将该厂海水淡化系统的主要工艺流程介绍如下:

从系统的功能上讲,预处理系统的主要功能是将海水中的悬浮物、胶体通过直流凝聚和深层过滤进行去除。 一级和二级反渗透的主要功能是将海水中的盐分,通过反渗透设备中的反渗透膜的物理筛分和超过滤的作用,将大部分的阴阳离子、大分子的有机物、部分微生物进行去除的过程。 在一级反渗透除盐系统中,由于海水的含盐量很高,对应的渗透压也很高,所以选择了海水高压泵设备作为一级反渗透膜的进水动力。由于一级反渗透的浓水排放压力较高。所以设置了能量回收装置将浓水排放压能进行回收。

各海域海水淡化方案及水质参数

为应对全球淡水资源短缺的问题,许多沿海国家及地区积极开展海水淡化和综合利用的技术研发工作。以色列70%的饮用水来自海水淡化水;澳大利亚的海水利用主要用于市政,占总装机规模的96%;美国的海水利用主要用于市政,占89.5%;沙特阿拉伯是目前全球最大的海水淡化生产国,2010年其产量达到11亿m3。 中国淡水资源缺乏,人均淡水资源量仅为世界人均占有量的1/4,沿海地区人口稠密,淡水供需矛盾尤为突出。海水淡化技术可以增加水资源总量,有效缓解我国沿海地区淡水短缺的矛盾。在海水资源方面,我国拥有渤海、黄海、东海、南海四大海域,海岸线超过1.8万km,水资源相当丰富。但海水淡化发展速度相对其他国家缓慢,直至“十一五”期间海水淡化产业才开始较为迅速地增长。据统计,至2011年底我国海水淡化能力为66万m3/d。目前,影响海水淡化的因素有政策、技术和价格等。其中海水水质是影响淡化技术正常应用及成本的重要因素。有研究发现,海水中的有机物污染、SDI(淤泥密度指数)、温度、浊度和盐度是影响反渗透膜运行的重要指标,进而影响淡化水品质。因此对中国海域的海水理化性质、海水利用现状、研究进展进行探讨,对于优化沿海水资源结构、保障国家用水安全和促进沿海经济社会可持续发展具有战略意义。基于此,笔者首次将海水水质和海水利用状况相结合,介绍中国渤海、黄海、东海、南海4个海域海

水淡化的相关水质情况,归纳各地区海水利用的工艺技术条件和发展现状,分析形成原因和经验教训,旨对海水利用发展落后的沿岸地带提供帮助,对海水淡化利用较好地区的发展和转型方向提供参考,并为中国海水利用的发展提供新的思考途径。 1 渤海海域 1.1 渤海的水质特征 渤海是一个近封闭的内海,水温受北方大陆性气候影响显著,2月份平均水温在0 ℃左右,8月份达21 ℃。受大陆淡水注入的影响,盐度仅为30‰,是中国近海中最低的。1978—2010年历年8月的观测资料结果表明渤海夏季海水pH年际变化范围为7.86~8.30,渤海水温年际变化、降水量(酸雨)和月均黄河口径流量年际变化是影响海水pH变化的主要因素。 吴琳琳等研究发现2012年4—7月渤海湾海水温度为12.7~30.8 ℃、pH为7.30~8.55、海水CODMn为0.98~3.36 mg/L、溶解性总固体(TDS)为30.7~32.1 g/L、浊度为 2.96~136 NTU、Cl-为16.9~17.8 g/L、电导率为44 800~49 800 μS/cm。整体而言渤海水质的浊度变化范围较宽,主要受渤海湾海水泥沙含量的影响,特别在有潮汐和风浪时会大幅升高。此外还发现海水温度升

海水淡化技术发展前景展望

海水淡化技术发展前景展望 孔令斌 ( 泸州天叙天成新能源有限公司646600 ) 摘要本文按技术特征将海水淡化技术分为热法、膜法、电场法、溶剂法四种类型。电场法、溶剂法海水淡化技术还处于实验阶段。热法、膜法海水淡化技术已经实现商业化,处于推广难阶段。难点在于制水成本高。膜法海水淡化技术大幅度降低制水成本很难。现有热法海水淡化技术热量利用效率不高,有大量热量随着浓海水排放而散失。新型热法海水淡化技术和新型太阳能海水淡化技术,将海水分离成淡水和固态盐,没有浓海水排放,热量利用效率达到理论极限,制水成本成倍下降。将成为海水淡化的主流技术,完全能够消除全球水危机。 关键词:海水淡化膜法热法太阳能 1.引言 水危机越来越严重地制约人类社会发展,海水淡化技术是化解水危机的必然选择。太阳能海水淡化是海水淡化技术的起源,在人类还没有出现以前就在地球上进行着。地球就是一个天然的太阳能海水淡化装置。海水吸收太阳能从海面蒸发形成水蒸汽进入大气层,水蒸汽上升到高空冷凝成雨雪落回海面或落到地面。正是落到地面的雨雪实现了自然界的太阳能海水淡化。这些雨雪滋润大地,孕育生命,使地球生机勃勃。人类的生存繁衍也离不开自然界的太阳能海水淡化。随着人口增多和人类活动范围扩大,淡水资源越趋紧缺。模仿自然界的太阳能海水淡化获取淡水成为人类梦想。但是,好梦难圆。人类没有发现经济适用的太阳能海水淡化技术,试图通过其他技术途径制取廉价的淡水。多种海水淡化技术因此相继出现。人类发明了热法、膜法、离子交换法、电渗析法、水合物法、溶剂萃取法等海水淡化技术[1]。目前,实现商业化的却只有热法海水淡化技术和膜法海水淡化技术。太阳能海水淡化技术仍处于研究发展和小型试验阶段[1]。 海水淡化技术不能满足社会发展需求的现实引发社会各界对海水淡化技术的高度关注。早在十六世纪,英国女王就颁布过一道命令:对发明廉价海水淡化法的人,给予一万英镑的奖金。至今没有人获得这笔奖金。英国政府宣布女王当年的悬赏仍然有效。2014年,英国“经度奖”也将开发低成本可持续性海水淡化技术列为六个候选的科学难题之一[2]。 现有热法海水淡化技术和膜法海水淡化技术虽然实现了商业化,但是复杂的装置和大量浓海水排放,使其不能满足低成本可持续性的要求。尤其是热法海水淡化排出热浓海水,带走大量热量,造成环境热污染。2014年,中国人发明的新型热法海水淡化技术将海水分离成淡水和固态盐,热量利用效率大幅提高,环境热污染完全消除[3]。在此基础上,建立了适用于所有热法海水淡化装置的性能评价体系,水热比作为评价指标[4]。新型热法海水淡化技术能广泛利用现有热法海水淡化技术不能利用的工业废水废气余热实现海水固液分离[5]。能实现海水资源综合利用,淡水成本相应降低。 能源紧缺、环保压力等因素迫使人类再次重视太阳能海水淡化技术。现有热法海水淡化技术顺理成章地用于太阳能海水淡化技术开发。正因为如此,束缚了开发太阳能海水淡化技术的思维,找不到新技术路线。如中国海南省建成的太阳能海水淡化示范项目,采用太阳能加热制取蒸汽,通过多效蒸馏法制取淡水的技

热法海水淡化技术介绍

热法海水淡化介绍 1鼎联的海水淡化技术 目前商业应用主流的海水淡化技术分为膜法和热法两大类。膜法主要指的是反渗透海水淡化技术;热法海水淡化技术包括:多级闪蒸(MSF)、普通多效蒸发(MED)、热力压缩耦合多效蒸发技术(MED—TC)和机械蒸汽压缩蒸发技术(MVC)等几种。 (1)多级闪蒸(MSF) 多级闪蒸是使海水依次通过多个温度、压力逐级减低的闪蒸室进行蒸发冷凝的海水淡化方法。MSF需要串联较多的级数才能实现较高的造水比,且大多数级需要在真空条件下运行。目前MSF主要适用于大规模的海水淡化项目,可以充分体现规模效益,减少投资和运行费用。 墨西哥炼油厂MFS海水淡化项目 (2)普通多效蒸发(MED) 普通多效蒸发是将前一效产生的二次蒸汽作为后一效的加热蒸汽使用,最后一效的二次蒸汽经过末端冷凝器冷凝后排出。这样做的目的是利用二次蒸汽的气化潜热作为蒸发海水需要的热源,大大降低蒸发过程中的热能消耗。同多级闪蒸相比,普通多效蒸发更为节能。

泰国炼油厂MED海水淡化项目 (3)热力压缩耦合的多效蒸发技术(TC-MED) 为了充分利用末效二次蒸汽的气化潜热,降低蒸发的能耗,在普通多效蒸发的基础上增加蒸汽喷射压缩器,就组成了热力压缩耦合的多效蒸发技术,其工作原理是:采用少量高温高压的热力蒸汽(≥0.5MPa)喷入蒸汽喷射压缩器,将末效蒸发器的部分二次蒸汽吸入,两种蒸汽混合后产生能够用于蒸发器加热的蒸汽,再次送回至第一效蒸发器使用。末效蒸发器剩余部分的二次蒸汽经过末端冷凝器冷凝后排出。由于回收利用了部分末效蒸发器的二次蒸汽,因此TVC-MED系统的造水比明显高于普通MED系统。另外由于末效蒸发器需要被冷凝器冷凝的二次蒸汽明显减少,因此TVC-MED对冷却水的消耗量也明显小于普通MED。 台湾妈祖电厂MED-TC海水淡化项目 (4)机械蒸汽压缩蒸发技术(MVC) 机械蒸汽压缩蒸发技术是采用机械蒸汽压缩机对二次蒸汽进行压缩,使蒸汽的压力和温度得到提升,作为加热蒸汽再次送入蒸发器;加热蒸汽在蒸发器内通过换热将热量传给海水,而自身被冷却形成冷凝水。与TC-MED只利用部分二次蒸汽的潜热不同,MVC能够充分利用全部二次蒸汽的潜热,可以最大限度的减少蒸发过程的能耗,同时也不需要消耗冷却水。MVC正常运行过程中只需要消耗电,而不需要消耗蒸汽;只有在启动的时候消耗少量的蒸汽。MVC处理每吨水的电耗大约只消耗15~20KWh,等效的造水比大约在10~20,

海水淡化的方法及优缺点分析

海水淡化的方法及优缺点分析 摘要:海水淡化技术的大规模应用始于干旱的中东地区,但并不局限于该地区。由于世界上70%以上的人口都居住在离海洋120公里以内的区域,因而海水淡化技术近20多年迅速在中东以外的许多国家和地区得到应用。最新资料表明,到2003年止,世界上已建成和已签约建设的海水和苦咸水淡化厂,其生产能力达到日产淡水3600万吨。目前海水淡化已遍及全世界125个国家和地区,淡化水大约养活世界5%的人口。海水淡化,事实上已经成为世界许多国家解决缺水问题,普遍采用的一种战略选择,其有效性和可靠性已经得到越来越广泛的认同。当然,海水淡化是解决我国沿海地区淡水紧缺的有效途径。海水淡化是解决全球水资源短缺的重要战略手段之一,有着广阔的开发前景。 关键词:海水淡化蒸馏法反渗透法优缺点发展趋势和方向 引言:介绍了我国水资源现状、海水淡化发展概况和各种淡化方法及工作原理、工艺流程,并对各种淡化方法的优缺点和适用范围进行了评述,对海水淡化的方法进行了分析比较,指出了海水淡化今后发展的趋势和方向。 1我国水资源现状 我国是一个水资源严重短缺的国家,人均水资源占有量为2840m3,只有世界平均水平的1/4。因此我国是一个严重缺水的国家。同时,我国的淡水资源时空分布极不均匀,并且水体污染加剧了我国可利用淡水资源的匮乏程度。在资源性缺水的同时,我国经济增长快,人口数量大,城市化水平不断提高,使得水资源缺口越来越大,这已经成为阻碍我国社会可持续发展的瓶颈。目前水荒覆盖面几乎遍及全国。尤其是北方地区缺水问题相当严重,水荒已成为困扰工业企业生产和发展的一个重要问题。而沿海地区有1.8万多km长的海岸线,充分发挥这些地区濒临海洋的优势,走海水淡化之路是解决缺水问题的一条重要途径。解决城市水资源可持续利用的战略原则是坚持“开源与节流并重,节流优先、治污为本、科学开源、综合利用”,海水淡化是解决沿海地区淡水紧缺的有效途径。 2我国海水淡化发展概况 我国的海水淡化技术研究始于1958年,起步技术为电渗析,1965年开始反渗透技术的研究;1975年开始研究大中型蒸馏技术;1981年在西沙的永兴岛建成200t/d的电渗析海水淡化装置;1986年建成6000

海水淡化系统水泵的技术参数选择

海水淡化系统水泵的技术参数选择 1、船舶海水淡化设备工艺流程 反渗透(SWRO)海水淡化工艺流程示意图,在反渗透海水淡化工艺中,待处理的原海水经过高压泵加压后,进入反渗透膜组件:经过反渗透膜的水为所需要的淡水,即产水;剩余未透过膜的部分水为浓度较高的海水,即浓海水。这部分具有高压力能的浓海水通过PX能量回收装置将部分待处理的原海水直接升压,再用增压泵来补偿经过膜堆和管道损失的压力,这部分升压后的原海水与高压泵升压后的原海水混合后,送往反渗透膜组。 2、海水淡化设备技术参数 不同规模的反渗透海水淡化系统所用高压泵的流量是由其日处理量和小部 分余量决定的,压力是根据选用的膜的型号和通量、运行情况、原水水质和水温等情况而变化的,通常反渗透的操作压力范围为5.0-7.2MPa。表2列出不同规 模海水淡化系统所用高压泵的参数。 下面我们用50,000吨/天的海水淡化系统为例,系统回收率为42%,分5列反渗透单元,每列产能为10,000吨/天的系统。对高压泵予以确定技术参数及合理选型。 假设海水为标准海水,水温为20℃. 海水淡化装置的产水量指标接近高压泵的流量,即高压泵流量为Q=425m3/h。 高压泵所需的扬程是根据选用的膜的型号和通量、运行情况、原水水质和水温等情况而变化的,通常反渗透的操作压力范围为5.0-7.2MPa。海水反渗透操 作压力越高,操作成本就越高,设备投资也越高。该系统要求高压泵扬程为 67.2bar,即高压泵流量Q=425m3/h;扬程H=685m,效率指标不低于80%。 二、水泵选型 1、选择水泵类型 目前反渗透海水淡化处理系统中使用的高压泵主要有两种:柱塞泵和多级离心高压泵。这些产品在国外技术都已比较成熟,产品已系列化。 我们针对五万吨海淡系统的每列的高压泵参数要求(Q=425m3/h,H=685m),选择多级离心高压泵中的节段式多级离心泵类型。 2、选择水泵系列 在节段式多级离心泵中,主要是出于对效率的要求,我们选择了PWTD(N)系列,该系列采用高效的水力模型,节能环保;模块化设计,全部采用膜片式加长

海水淡化技术与发展状况简析

一、海水淡化简介 1、海水淡化的定义 海水淡化即利用海水脱盐生产淡水。是实现水资源利用的开源增量技术,可以增加淡水总量,且不受时空和气候影响,水质好、价格渐趋合理,可以保障沿海居民饮用水和工业锅炉补水等稳定供水。从海水中取得淡水的过程谓海水淡化。 2、海水淡化的主要用途 海水淡化主要是为了提供饮用水和农业用水,有时食用盐也会作为副产品被生产出来。海水淡化在中东地区很流行,在某些岛屿和船只上也被使用。 3、海水淡化综合简介 海水淡化是人类追求了几百年的梦想。早在400多年前,英国王室就曾悬赏征求经济合算的海水淡化方法。 从20世纪50年代以后,海水淡化技术随着水资源危机的加剧得到了加速发展,在已经开发的二十多种淡化技术中,蒸馏法、电渗析法、反渗透法都达到了工业规模化生产的水平,并在世界各地广泛应用。 现在世界上有十多个国家的一百多个科研机构在进行着海水淡化的研究,有数百种不同结构和不同容量的海水淡化设施在工作。一座现代化的大型海水淡化厂,每天可以生产几千、几万甚至近百万吨淡水。 淡化水的成本在不断地降低,有些国家已经降低到和自来水的价格差不多。某些地区的淡化水量达到了国家和城市的供水规模,目前淡化水已经完全可用于农田灌溉。 4、海水淡化历史 地球表面2/3的面积被水覆盖,但水储量的97%为海水和苦咸水,这些水是很丰富的。但是,要利用海水必须经过淡化。目前,全世界有一百二十多个国家和地区采用海水或苦咸水淡化技术取得淡水。 第一个海水淡化工厂于1954 年建于美国,现在仍在德克萨斯州的弗里波特(Freeport)运转着。佛罗里达州的基韦斯特(Key West)市的海水淡化工厂是世界上最大的一个,它供应着城市用水。 表面看海水淡化很简单,只要将咸水中的盐与淡水分开即可。最简单的方法,一个是蒸馏法,将水蒸发而盐留下,再将水蒸气冷凝为液态淡水。这个过程与海水逐渐变咸的过程是类似的,只不过人类要攫取的是淡水。另一个海水淡化的方法是冷冻法,冷冻海水,使之结冰,在液态淡水变成固态的冰的同时,盐被分离了出去。两种方法都有难以克服的弊病。 1953年,一种新的海水淡化方式问世了,这就是反渗透法。这种方法利用半透膜来达到将淡水与盐分离的目的。在通常情况下,半透膜允许溶液中的溶剂通过,而不允许溶质透过。 由于海水含盐高,如果用半透膜将海水与淡水隔开,淡水会通过半透膜扩散到海水的一侧,从而使海水一侧的液面升高,直到一定的高度产生压力,使淡水不再扩散过来。这个过程是渗透。 在新兴的反渗透法研究方兴未艾的时候,古老的蒸馏法也改弦易辙,重新焕发了青春。常识告诉我们,水在常温常压下要加热到100℃才沸腾,产生大量的水蒸气。传统的蒸馏法只考虑了通过升高温度获得水蒸气的方式,耗能甚巨。而新的方法是将气压降下来,把经过适当加温的海水,送入人造的真空蒸馏室中,海水中的淡水会在瞬间急速蒸发,全部变成水蒸气。许多这样的真空蒸馏室连接起来,就组成了大型的海水淡化工厂。如果海水淡化工厂与热电厂建在一起,利用热电厂的余热给海水加温,成本就更低了。 现在世界上的大型海水淡化工厂,大多采用新的蒸馏法。在西亚盛产石油的国度,往往土地“富得流油”,却打不出一口淡水井。水比油贵的现实,使海水淡化工厂如雨后春笋般出现在西亚的海岸线上。1983年,西亚第一大国沙特阿拉伯在吉达港修建了日产淡水30万吨

海水淡化工艺设计方案

1刖占1.1概况 我国淡水资源极为匮乏,全国660多个城市中,有400多个城市缺水,其中100多个城市严重缺水。淡水资源短缺乃至水危机是我国经济社会可持续发展过程中的最大制约之一。电厂在生产电能的同时,可利用其廉价的热和电,进行海水淡化,不仅可满足其工业用水的需要,而且还可为周边地区提供淡水水源。在推动和利用海水淡化技术方面,电厂有着其得天独厚的有利条件。因此滨海电厂配套建设海水淡化装置已成发展趋势。 1.2水源及水质特点 某电厂取水具有海域辽阔、水量充沛、海水较清、悬浮物及有害微生物少等特点,可大大节省海水取水成本及原料海水预处理成本。 海水水质分析报告如下: 分析报告

1.3海水淡化规模

根据建厂地区的缺水状况,电厂可针对性地提出水电联产的方案,目前可解决电厂的淡水用水,以后可根据需要适时配套建设大规模的海水淡化厂,为地方经济发展提供淡水资源保障。本项目结合 2x1000MW发电机组的建设规模,暂按配套建设2x104m3/d规模的海水淡化装置设计;并对总规模为40x1。伽%海水淡化厂作出展望。 本专题报告按本期工程厂内自用的 2 x104m3/d规模和规划容量的40x 104m3/d的海水淡化站分别进行比较论述。 2海水淡化技术概述 海水淡化技术的种类很多,但适于产业化的主要有蒸镭法(俗称热法)和反渗透法(俗 称膜法)。蒸镭法主要有多级闪蒸(MSF)、低温多效蒸镭(LT-MED)技术。 2.1蒸镭法淡化技术 2.1.1多级闪蒸(MSF) MSF是蒸馆法海水淡化最常用的一种方法,在20世纪80年代以前,较大型的海水淡化装置多数采用MSF技术。大港电厂二期工程引进了美国的多级闪蒸(MSF)海水淡化装置,是我国第一套大型的海水淡化装置。 MSF的典型流程示意图见图2-1 。 图2-1盐水再循环式多级闪蒸(MSF)原理流程 多级闪蒸过程原理如下;将原料海水加热到一定温度后引入闪蒸室,由于该闪蒸室中的压力控制在低于热盐水温度所对应的饱和蒸汽压的条件下,故热盐水进入闪蒸室后即成为过热水而急速地部分气化,从而使热盐水自身的温度降低,所产生的蒸汽冷凝后即为所需的淡水。 MSF装置具有设备单机容量大、使用寿命长、出水品质好、造水比高、热

国内外海水淡化技术的发展现状

国内外海水淡化技术的发展现状 发布时间:2011-11-11信息来源:中国膜技术网 目前,世界上脱盐水产量近4x107m3/d,其中多级闪蒸(MSF)和反渗透(RO)各占市场的45%左右,解决了l亿多人口的供水问题。世界最大的反渗透海水淡化厂建于以色列南部地中海岸工业区的阿什凯隆海水淡化厂,日产淡水33万m3 。另外,世界上最大的热膜联产海水淡化厂是阿联酋富查伊拉海水淡化厂,发电量为656MW ,日产水量为45.4万m3,其中,MSF产水28.4万m3/d,反渗透(RO)产水17万m3/d 。 典型的大规模反渗透海水淡化吨水成本己从1985年的1.O2美元降至2005年的48美分。且在成本的组成上,运行及维护,能源消费和投资成本均逐年下降,目前各占总成本的1/3。海水淡化已是解决全球水资源危机问题的重要途径,尤其在中东地区和一些岛屿地区,淡化水在当地经济和社会发展中发挥了重要作用,已成为其基本水源。 国外海水淡化现状 规模 随着社会的需求和技术的发展,国外海水淡化工程不断向大型化、规模化方向发展,无论是多级闪蒸,还是多效蒸馏和反渗透,其规模均已从最初的几百 m3/d 发展到现在的几十万m3/d 。 目前,世界上最大的多级闪蒸海水淡化厂建于沙特阿拉伯的shuaiba海水淡化厂,日产淡水46万m3;世界上最大的低温多效海水淡化厂建于塔维拉酋长国,日产淡水24万m3.世界最大的反渗透海水淡化厂建于以色列南部地中海岸工业区的阿什凯隆海水淡化厂,日产淡水33万m3。另外,世界上最大的热膜联产海水淡化厂是阿联酋富查伊拉海水淡化厂,发电量为656MW ,日产水量为45.4万m3,其中,MSF产水28.4万m3/d,反渗透(RO)产水17万m3/d。 成本 在海水淡化规模不断增加的同时,海水淡化成本也逐渐降低其中,典型的大规模反渗透海水淡化吨水成本己从1985年的1.O2美元降至2005年的48美分。且在成本的组成上,运行及维护,能源消费和投资成本均逐年下降,目前各占总成本的1/3。 我国海水淡化的现状 我国海水淡化技术的研究起步较早,1967年~1969年全国组织海水淡化会战,同时开展了电渗析、反渗透和蒸馏等多种海水淡化技方法的研究。

海水淡化技术分析

海水淡化技术分析 1.基本概念 1.1 淡水:含盐量应在1000mg/L(NaCL)以下。 通常船用海水淡化装置对所产淡水含盐量的要求皆以锅炉补给水标准为依据。我国船用锅炉给水标准规定补给水的含盐量应小于10mg/L(NaCL)。 1.2 海水含盐量:大洋中海水平均含盐量约为35g/L。 1.3 海水盐的成分:当海水含盐量为35g/L时,各种盐类的含量如下表所示,其中含 。 量最多的是NaCL和MgCL 2 表1 海水中各种盐类的含量 淡水总产量与加热器所消耗的蒸汽量之比。 2海水淡化技术介绍 图1 海水淡化方法的分类

海水淡化技术经过半个多世纪的发展,从技术上讲已经比较成熟,目前在商业上成功应用的主要有多效蒸馏(MED)、多级闪蒸(MSF)、压汽蒸馏(VC))和反渗透法(SWRO)。 2.1多效蒸馏(MED) 多效蒸馏是由单效蒸馏组成的系统,加热蒸汽被引入第一效冷凝后,使海水产生比蒸汽温度低的几乎等量蒸发。产生的蒸汽被引入第二效作为加热蒸汽,并使海水以比第一效更低的温度蒸发。这个过程一直重复到最后一效,在最后一效蒸汽被海水冷凝器冷凝。第一效的冷凝液返回锅炉,而来自其它效的冷凝液被收集后作为产品水输出。 多效蒸馏海水淡化技术是最早的海水淡化方法之一,早在1898年就建成了日产1200-1500吨淡水的竖管多效蒸馏大型海水淡化工厂,但早期多效蒸馏系统的蒸发器为浸没管式,传热系数低,结垢严重,严重影响了产水量及装置寿命。20世纪60年代开始了降膜蒸发器(横管降膜及竖管降膜)的研究,使传热效率有了很大提高。70年代为了降低结垢和腐蚀,低温蒸馏技术进入人们的视野,到80年代初期,低温横管喷淋技术正式用于工业性的海水淡化装置。80年代中期大型低温高效海水淡化装置研究成功,其原理是以75℃左右的低温蒸汽作为加热热源,远低于多级闪蒸110℃左右的蒸汽温度,所以管壁的结垢倾向减小,并且使低温废热的利用成为可能,至此多效蒸馏海水淡化技术进入比较成熟阶段。 目前世界上应用的多效蒸馏海水淡化装置大都为低温多效蒸馏,此类装置的典型代表为以色列IDE公司开发的一种横管蒸发装置,在低温下操作,最高操作温度62.90℃,共7效,造水比可达 5.8-6.2,折合电耗9.4-8.2KWh/m3,当使用废热时总能耗仅为2.5KWh/m3。目前已有数百台1000t/d以上的此类装置在世界各地运行,最大的装置产水量为25000t/d。 低温多效蒸馏技术除在防腐防垢方面有突出优点外,低廉的造水成本也是其得以迅速发展的原因。A.N.Rogers,C.D.siebenthal,R.F.Battey and L.Awerbuch通过对大型海水淡化装置的计算得出多效蒸馏海水淡化方法单位淡化水成本最低的结论。美国人G.F.Leiiner也曾撰文《当今海水脱盐的费用》,对大型海水淡化装置进行比较,结果表明单位淡化水价低温多效较反渗透和多级闪蒸都低。低温多效蒸馏技术的低成本主要归结于它灵活的运行方式,可以利用各种形式的低位热源,如柴油发电机冷却水、工业废气、

海水淡化总方案

DSPEC海水淡化水场方案 湛江东顺石油化工有限公司大型炼油化工一体化项目是湛江经济技术开发区东海岛新区的重点建设项目,根据湛江经济技术开发区管委会的要求,需要公司按照整个园区的工业用水量,设计一套200000m3/d的海水淡化装置,以满足本项目及全区各项目的生产要求。 一.综述 联合国关于非常规水源的研究报告指出,从1950~1985年的35年间,海水淡化的发展经历了三个阶段,即发现阶段,开发阶段和商业化阶段。在这期间研究开发的精力主要集中在蒸馏、冷冻、电渗析和反渗透。此后二十多年中蒸馏法和反渗透法都发挥了重要作用,形成了当代海水淡化与苦咸水淡化技术与市场的主体。 我国现代化含义上的海水淡化技术始于1958年。从电渗析着手;约十年以后开始研究反渗透技术;1975年开始研究大中型陆用蒸馏装置;1986年引进建设日产3000 m3的电厂用多级闪蒸海水淡化装置;1997年建成舟山日产500 m3海水反渗透淡化装置。2006年,浙江华能玉环电厂日产34600m3的海水反渗透淡化装置投入使用;天津大港正在建设日产淡水15万吨的新泉海水淡化厂项目,其中日处理能力10万吨、投资9000万美元的一期工程和日处理能力5万吨的二期工程分别将于2007年和2008年完工。这表明我国的反渗透技术进入了逐步成熟的时代。 现在世界上广泛采用的海水淡化法(Sea Water Desalination)已达几十种,其原理可分为涉及水的相变化与不涉及水的相变化两大类。在实践中被认为行之有效的方法中:涉及水的相变化的方法可分为蒸馏法与冷冻法。前者利用水的蒸发/冷凝的过程,而与其它成分分离;后者利用水的结晶/融化的过程,而与其它成分分离。它们包括多级闪蒸法(MSF)、多效蒸馏法(MED)、蒸汽压缩法(VC)、太阳能蒸发法、冷冻法等。不涉及水的相变化的方法有海水反渗透淡化法(RO)、海水电渗析淡化法、离子交换淡化法等。

我国海水淡化技术发展历程

我国海水淡化技术的发展历程我国的天然淡水资源量为2.7万亿立方米,居世界第六位。然而,我国淡水资源人均水量只相当于世界人均占有量的1/4,居世界第110位。目前,我国有200多个城市严重缺水。因此,为了满足生活和生产淡水资源的供给,海水淡化早已成为科技研究的热点课题。 地球表面79%是海水。海水资源丰富,但是其中含盐量高,不能被直接饮用。海水淡化技术就是要利用人工方法去除海水盐分,将海水转化为可以饮用的淡水资源。 海水淡化的源头可以追溯到古代。那时候就有人尝试从海水去除盐分。但是,直到16世纪,人们才真正开始对海水淡化技术的研究与应用。特别是在二战后,资本主义工业发展迅猛,淡水需求量大增,也促使海水淡化技术成为现代科技研究的重要方向。 到目前为止,海水淡化技术主要有两种方法,即蒸馏法和反渗透法。21世纪以前,反渗透膜技术都是被国外所垄断,而中国是直到90年代末期才开始掌握了反渗透膜的生产技术。 早在1958年,石松研究员等首先在我国开展离子交换膜电渗析海水淡化研究。随后1967年,国家科委组织全国在水处理和分析化学、材料化学、流体力学等各个学科的精英会战。1970

年,我国第一个海水淡化研究室在杭州成立。这个研究室曾研制成功海洋监测专用微孔滤膜,建成了世界最大的电渗析海水淡化站——西沙永兴岛海水淡化站,为我国海水淡化技术的发展做出了巨大贡献。 1982年,中国海水淡化与水再利用学会,经中国科协批准在杭州成立。1984年,国家海洋局以海水淡化研究室为主体,组建国家海洋局杭州水处理技术研究开发中心,开始对反渗透膜技术的研究。 2001年,国际海洋局杭州水处理技术研究开发中心实行集团化分体管理。同年,由此分化出来的杭州北斗星膜制品有限公司正式成立。该公司研制出的反渗透产品,标志着中国有了享有完全自主知识产权的反渗透技术。由中国制造的高性能复合膜元件开始投放市场,中国成为世界上第四个掌握自主海水淡化反渗透膜技术的国家。 反渗透海水淡化技术,工程造价和运行成本低,效率高,是最受欢迎的海水淡化方法之一。目前,反渗透海水淡化技术的主要发展趋势为降低反渗透膜的操作压力,提高反渗透系统回收率,廉价高效预处理技术,增强系统抗污染能力等。现在,我国海水淡化反渗透技术,处于国际领先位置,并早已经普及到生产和生活中。

海水淡化处理技术工艺流程

海水淡化处理技术工艺流程 水资源是人类社会生存发展最基本的物质之一。淡水资源的愈加缺少引起了人们更多的重视。中国是世界上淡水资源比较贫乏的国家之一。这一基本情况已经严重阻碍了人民的经济发展,破坏了生态环境。而海水淡化处理作为一种新型的技术,已逐渐成为解决水资源问题的重要途径。然而我国的海水淡化技术概况仍然不容乐观。 海水淡化处理设备 太阳能蒸馏器的研究主要集中于材料的选取、各种热性能的改善以及将它与各类太阳能集热器配合使用上。与传统动力源和热源相比,太阳能具有安全、环保等优点,将太阳能采集与脱盐工艺两个系统结合是一种可持续发展的海水淡化技术。太阳能海水淡化技术由于不消耗常规能源、无污染、所得淡水纯度高等优点而逐渐受到人们重视。

海水淡化处理设备 太阳能海水淡化装置与现有海水淡化利用项目相比有许多新特点:首先是可独立运行,不受蒸汽、电力等条件限制,无污染、低能耗,运行安全稳定可靠,不消耗石油,天然气等能源,对能源紧缺、环保要求高的地区有很大应用价值,其次是生产规模可有机组合,适应性好,投资相对较少,产水成本低,具备淡水供应市场的竞争力。人类早期利用太阳能进行海水淡化,主要是利用太阳能进行蒸馏,所以早期的一般都称为太阳能蒸馏器。蒸馏系统被动式太阳能蒸馏系统的例子就是盘式太阳能蒸馏器,人们对它的应用有了近150年海水淡化技术的历史。由于它结构简单、取材方便,至今仍被广泛采用。目前对盘式太阳能蒸馏器的研究主要集中于材料的选取、各种热性能的改善以及将它与各类太阳能集热器配合使用上。与传统动力源和热源相比,太阳能具有安全、环保等优点,将太阳能采集与脱盐工艺两个系统结合是一种可持续发展的海水淡化技术。太阳能海水淡化设备由于不消耗常规能源、无污染、所得淡水纯度高等优点而逐渐受到人们重视。

大型海水淡化技术综述

文章编号:CN23-1249(2010)06-0029-05 大型海水淡化技术综述 刘庆江 (哈尔滨锅炉厂有限责任公司,黑龙江哈尔滨150046) 摘 要:介绍了大型海水淡化技术的主要方法、分类和工作原理,并对各主要方法进行了比较,对大型低温多效海水淡化技术进行了重点阐述。 关键词:大型海水淡化技术;配压缩器低温多效蒸发中图分类号:P 747 文献标识码:A Su mm arization on Seawater Desali nation Technology L i u Q ingjiang (H arbin Bo iler Co .Ltd .,H ar b i n 150046,China)Abst ract :This paper introduces the m a i n m ethods 、classifacation and pri n ciple of sea w ater desa li n a ti o n techno l o gy ,and presents a co m parisi o n to m a i n m ethods ,g i v es e m phatica l description to lo w te mperature m ult-effect distillation . K ey w ords :lo w te mperature m u lt-effect distillation;TVC-M ED 收稿日期:2010-08-15 作者简介:刘庆江,男,本科,高级工程师,哈尔滨锅炉厂有限责任公司副总工程师,毕业后一直从事电站辅机、石化容器、核电产品的设计工作。 0 引 言 淡水资源的匮乏已成为威胁人类生存的严重问题。我国早已认识到缺水将成为制约社会进步和经济发展的瓶颈。我国水资源总量2.81万亿m 3 ,居世界第六位,但人均仅占世界人均的1/4,为第121位。全国有300多个城市缺水;沿海城市特别是别是北方地区以及岛屿的供水严重不足。我国沿海地区有丰富的海水资源,用海水淡化技术提纯淡水以满足沿海城镇和岛屿对淡水的需求。随着水资源短缺问题的日趋严重,海水淡化将成为我国解决沿海地区淡水资源短缺问题的重要措施。 1 海水淡化装置分类及工作原理 海水淡化是从海水中获取淡水的技术和过 程,是分离海水中盐和水的过程。海水淡化常用的方法有蒸馏法和膜分离法,还有冷冻法、水合物法、溶剂萃取法、离子交换法等。蒸馏法又分多级闪蒸(M SF)、多效蒸发(MED )、压汽蒸馏(VC )和太阳能蒸馏(SD);膜分离法分反渗透法(RO )和电渗析法(ED)。而常用的适用于大型的海水淡化主要方法有反渗透(RO )法、多级闪蒸(M SF)法和多效蒸发(MED)法。 M SF 和MED 都属于热法。为了避免海水蒸发过程在蒸发设备上生成的污垢,MED 方法目前多采用低温多效蒸发技术(LT -M ED )。为了提高MED 装置的经济性,可在M ED 海水淡化装置上加设蒸汽压缩机。若带有蒸汽热力压缩器(TVC),称为TVC -MED 装置;若带有机械压缩机(MVC ),称为MVC -MED 装置。由表1归纳了几种海水淡化方法的特性。 第6期锅 炉 制 造 No .6 2010年11月 B O I LER MANUFACTURI NG Nov .2010

离子交换技术与海水淡化

目录 摘要 (2) Abstract (2) 关键词 (2) 一、海水淡化的背景 (2) 九海水淡化的原因 (2) 2.............................................................................................................................. 海水的成分 (3) 二、海水淡化的技术: (3) 1?海水的预处理 (3) 2.反渗透 (4) 3.电渗析 (4) 4.蒸馆法 (4) 5.海水淡化的建设周期 (4) 三、离子交换海水的淡化技术: (5) [.淡化原理 (5) 2.离子交换剂直接淡化海水 (5) 3.离子交换剂用于淡化海水的预处理 (5) 3.离子交换剂用于淡化海水的后处理 (6) 4.离子交换技术淡化海水的特点 (6) 5.离子交换技术淡化海水的发展前景 (6) 四、结语 (7) 五、参考文献: (7)

摘要 随着我国经济的快速发展,用水量急剧增加,沿海地区由于经济发达人口众多,对水资源的需求量更大,水资源严重匮乏,海水淡化将成为沿海城市解决水危机的重要途径。离子交换法淡化海水具有处理彻底、成本低、可再生等优势, 已在海水淡化预处理、后处理、浓海水提取化学元素等方面得到广泛的应用,具有广阔的前景。 Abstract With the rapid development of economy in our country, water consumption has increased chamatically, due to the economic developed coastal areas with a large population, the greater demand for water resources, water resources are scarce, desalination will become the important way to solve the problem of water crisis in coastal cities.Method of ion exchange desalinatioii has complete processing, low cost and renewable advantages, has been in seawater desalination pretreatment, aft erti eatm ent, strong water extraction widely used in the chemical elements and so OIL has a broad prospect? 关键词 海水淡化;离子交换技术应用;离子交换技术海水淡化前景 一、海水淡化的背景 1?海水淡化的原因 水资源是基础性然资源和战略性经济资源,是经济社会发展的命脉,淡水资源短缺己成为制约我国经济和社会可持续发展的重要因素Z—。海水利用己成为世界许多临海国家新水源开发的战略决策,也是缓解我国水资源短缺、促进经济可持续发展的重要途径。 为解决淡水资源的供需矛盾,人们的目光早已转向相当于全球淡水37.6倍储量的海水。于是,海水和微咸水淡化被视为开发新水源、解决淡水资源危机的基本途径。rti 于物理方法耗能多、造价高,只适合于经济发达国家,适用性有限。为此,有人研究开发了用离子交换法进行海水淡化的新技术,并取得了成功。表1为淡化综合水价与沿海自來水价的比较: 表1: 从上表可以看出,到了2010年,海水淡化的水价,比居民自来水价比居民自来水价

相关文档
最新文档