钢结构稳定问题的探索与分析
钢结构稳定性设计出现的问题与解决方法分析

钢结构稳定性设计出现的问题与解决方法分析引言伴随着我国经济的快速发展,我国的建筑工程要求越来越高,钢结构在工程当中的应用也越来越广泛,在钢结构设计当中稳定性设计是非常重要的组成部分,做好这一部分工作可以很好的减少不必要的经济损失。
目前来说,钢结构稳定性设计已经成为整个钢结构设计,甚至是结构设计领域当中比较热门的问题,也是整个行业的发展趋势和目标。
因此最大限度做好钢结构稳定性设计不仅仅节约资源,还能保证工程质量,减少工程事故的发生。
1、钢结构稳定性设计的重要性在目前存在的钢结构建筑当中有相当一部分存在稳定性差的问题,主要的问题关键就是设计者在进行设计时没有很好的将钢结构当中的材料和结构的相关性能弄清楚,同时缺乏稳定性设计概念。
包括施工企业在施工过程当中没有严格按照设计和规范要求进行,从而导致失稳现象的产生,往往造成巨大的经济损失。
因此在建筑工程设计与施工当中做好钢结构稳定性设计是至关重要的,不仅仅关系到整个建筑工程的质量,同时还关系到相关人员的生命财产安全。
因为钢结构失稳导致的是整个建筑物的倒塌,而不是某一个部位出现问题,造成的经济损失和人员伤亡是不可估量的。
在现阶段我国的工程实际当中做好钢结构稳定性设计已经是迫在眉睫了,在关注钢架构设计稳定性问题的同时,采取有针对性的措施,保证钢结构建筑物的安全稳定是具有重要意义。
2、稳定性的设计原则2.1细部构造和构件稳定性计算方法在进行钢结构设计时需要将设计的构造和对应的结构计算对应起來,在满足结构的稳定性的同时还需要满足结构的细部设计要求,是两者达到高度的一致性。
连接节点当中需要传递传递弯矩就需要设计足够的刚度和柔度;在桁架结构设计中,针对节点位置应该要尽量的减少杆件的偏心,对于钢结构设计来说,这也仅仅是构件的细部构造,但是在稳定性设计当中,对于细部的构造就会有很多其他的要求,例如对简支梁来说,其抗弯强度主要就是针对动铰支座是允许其在平面内转动的,但是在梁的整体稳定性当中,支座不仅仅需要满足上述要求满足梁绕纵轴扭转的要求,允许梁在平面内转动以及在梁端截面自由的翘曲。
钢结构建筑的稳定性分析

钢结构建筑的稳定性分析随着现代建筑技术的发展,钢结构建筑在世界范围内逐渐得到广泛应用。
与传统的混凝土结构相比,钢结构建筑具有重量轻、强度高、施工速度快等优势。
然而,在设计和施工过程中,钢结构建筑的稳定性问题是一个需要特别关注的重点。
首先,要针对钢结构建筑的稳定性进行分析,我们需要了解结构的受力特点。
钢结构建筑通常由构件和节点组成。
构件包括梁、柱、悬臂梁等,而节点则是构件的连接部分。
在设计过程中,需要通过计算和模拟等方法确定合适的构件尺寸和节点连接方式。
为了保证钢结构建筑的稳定性,首先需要考虑其整体受力行为。
钢结构建筑的整体稳定性主要来自于构件的抗弯刚度和抗侧移能力。
其中,抗弯刚度是指构件在承受外力时抵抗弯曲的能力,而抗侧移能力则是指构件在受到侧向力作用时不发生严重位移的能力。
在实际设计中,常常采用有限元分析等方法来进行钢结构建筑的稳定性评估。
有限元分析能够对结构进行三维模拟,考虑各种载荷情况下的受力行为。
通过这种分析方法,可以得到有效的结构响应,进而确定合适的结构参数。
此外,钢结构建筑的稳定性还需要考虑临界稳定性问题。
临界稳定性是指结构在受到极限载荷时,发生局部屈曲或整体失稳的能力。
为了保证结构的临界稳定性,设计者需要在抗侧移和抗弯刚度之间找到合适的平衡点。
通常,为了提高结构的临界稳定性,会在关键部位加强节点连接和构件强度。
总而言之,钢结构建筑的稳定性分析是一个复杂而重要的问题。
设计者需要通过合理的计算和模拟方法,确定结构的抗弯刚度和抗侧移能力,并保证其临界稳定性。
只有在稳定性得到充分保证的情况下,钢结构建筑才能够安全可靠地使用。
虽然钢结构建筑在设计和施工中需要更加复杂严谨的考量,但其所具备的优势使得其在现代建筑领域有着广泛的应用前景。
通过不断完善设计和施工技术,我们相信钢结构建筑的稳定性问题将得到更好的解决,为人们创造更安全、舒适的居住和工作环境。
钢结构设计中的强度与稳定性分析

钢结构设计中的强度与稳定性分析钢结构作为一种重要的建筑构造形式,在现代建筑中得到了广泛的应用。
其独特的特点使其成为了建筑设计师们的首选,然而,正确理解和分析钢结构的强度与稳定性是确保其安全性和可靠性的关键。
本文将深入探讨钢结构设计中的强度与稳定性分析,以期对读者有所启发。
一、强度分析钢结构的强度分析是确保建筑结构能够承受正常和异常荷载的重要步骤。
在设计过程中,工程师需要考虑到以下几个关键因素。
1.1 材料强度钢材作为钢结构的主要构造材料,其强度参数决定了整个结构的抗力能力。
工程师需要详细了解所选用的钢材的性能指标,包括屈服强度、抗拉强度、弹性模量等,以确保设计结构的强度能够满足要求。
1.2 荷载计算在设计过程中,荷载计算是非常重要的一环。
工程师需要根据建筑的用途和具体情况,准确计算出可变荷载、恒载和地震荷载等,以保证设计的结构能够承受这些荷载。
当荷载不均匀分配时,还需要进行统一系数的计算。
1.3 结构稳定钢结构的稳定性是强度分析中不可忽视的一部分。
当结构受到垂直或水平方向的外力作用时,其稳定性要求结构能够保持稳定。
工程师需要根据实际情况,采用适当的稳定性分析方法,确保设计的结构能够满足要求。
二、稳定性分析稳定性分析是钢结构设计中非常重要的一环,它主要考虑结构在受荷时的稳定性能。
以下是一些常见的稳定性分析方法。
2.1 弯曲稳定性分析在弯曲稳定性分析中,工程师需要计算并分析结构受弯矩作用下的稳定性。
通过计算结构的屈曲系数和容许屈曲荷载,可以确定结构的弯曲稳定性是否得到满足。
2.2 屈曲稳定性分析屈曲稳定性分析主要考虑结构在压力作用下的稳定性。
工程师需要计算结构的临界荷载和理论强度,以保证结构在受压力作用时不发生屈曲。
2.3 应力稳定性分析应力稳定性分析是为了保证结构在受荷时不发生破坏。
工程师需要计算结构的应力集中系数和容许应力,以确保结构在实际使用条件下能够稳定且不发生破坏。
三、结构设计的实践在实际结构设计中,强度与稳定性分析是紧密相连的。
钢结构稳定问题分析

钢结构稳定问题分析摘要:近几年来,随着国家建设和社会经济的发展,钢结构体系在建筑结构及海洋工程中的应用越来越广泛,与此同时对钢结构的研究随着科学技术的不断进步也越来越深入。
在钢结构体系中失稳破坏最具代表性,带来的损失也最大,作者在参与和主持了多次对钢结构体系的设计工作后对目前钢结构体系稳定性研究、计算的现状和未来趋势做出了一些归纳及总结。
关键词:钢结构;钢结构体系稳定性;钢结构体系可靠性一、钢结构体系稳定性研究现状(一)钢结构体系稳定性研究现状近二三十年来,高强度钢材的使用,施工技术的发展以及电子计算机的应用使钢结构体系的发展和广泛应用成为可能。
钢结构体系的稳定性一直是国内外学者们关注的研究领域。
经过几十年的研究,已取得不少研究成果。
迄今为止,对钢结构基本构件的理论问题的研究已较多,基于各种数值分析的稳定分析已较成熟。
但对构件整体稳定和局部稳定的相互作用的理论和设计应用上还有待进行深入的研究。
网壳结构越来越广泛地应用到建筑及海洋工程结构上,但由于其自身的结构特点的原因整体网壳较易破坏变形造成经济损失。
由于结构失稳是网壳结构破坏的重要原因,所以网壳结构的稳定性是一个非常重要的问题,正确地进行网壳结构尤其是单层网壳结构的稳定性分析与设计是保证网壳的安全性的关键。
网壳结构的非线性稳定性分析一直是国内外学者们研究与注意的焦点,一般利用随机缺陷模态法和一致缺陷模态法两种方法对网壳结构各种初始缺陷的影响进行研究,基本能描述结构的失稳过程。
但对于像网壳结构这类缺陷性敏感结构在强风和地震作用下的动力稳定性研究,由于涉及稳定理论和振动理论,所以难度较大,目前研究成果还很有限。
大跨度网架拱结构是一种新的大跨度结构,由于大跨度钢结构体系的可靠性研究涉及较多的力学和数学的知识,有一定难度,目前其稳定性方面的研究成果很少。
非线性有限元理论对大跨度网架拱结构的稳定性进行了全过程跟踪,得出一些具有实际应用价值的结论。
斜拉空间网格结构是一种新型的杂交空间结构,目前对其研究的深度和广度还很有限。
探讨钢结构的稳定性

探讨钢结构的稳定性在现代建筑领域中,钢结构以其独特的优势占据着重要的地位。
它具有强度高、重量轻、施工速度快等优点,被广泛应用于各种大型建筑和基础设施中。
然而,钢结构的稳定性问题却是一个至关重要的考量因素,直接关系到建筑的安全和可靠性。
要理解钢结构的稳定性,首先需要明确什么是“稳定性”。
简单来说,稳定性指的是结构在受到外力作用时,保持原有平衡状态的能力。
对于钢结构而言,这意味着在承受各种荷载,如风荷载、地震荷载、自重等时,不会发生突然的变形、失稳甚至倒塌。
钢结构稳定性的影响因素众多。
材料的性能是其中的关键之一。
钢材的强度、弹性模量、屈服点等特性直接决定了其能够承受的应力大小。
如果钢材质量不过关,或者在使用过程中出现了性能退化,那么钢结构的稳定性就会受到威胁。
结构的几何形状和尺寸也是重要的影响因素。
例如,柱子的细长比过大,就容易发生弯曲失稳;梁的跨度与截面高度的比例不合理,可能导致挠度过大,影响结构的稳定性。
此外,节点的连接方式和质量也不容忽视。
节点连接不牢固或者设计不合理,会使得力的传递出现问题,从而引发局部失稳,进而影响整个结构的稳定性。
荷载的类型和大小同样对钢结构的稳定性产生重要影响。
不同类型的荷载,如风荷载、地震荷载等,作用方式和作用效果各不相同。
过大的荷载会使钢结构承受超出其承载能力的应力,导致结构失稳。
在实际工程中,必须准确地计算和分析各种荷载,以确保钢结构在设计使用年限内的稳定性。
钢结构的稳定性问题还与施工质量密切相关。
在施工过程中,如果焊接质量不过关、安装偏差过大或者防腐处理不当,都会削弱钢结构的性能,增加其失稳的风险。
例如,焊接过程中产生的残余应力可能导致局部材料性能的改变,影响结构的整体稳定性;安装偏差可能导致结构受力不均匀,从而引发失稳。
为了确保钢结构的稳定性,工程师们在设计阶段就需要进行精心的计算和分析。
他们会运用各种理论和方法,如欧拉公式、有限元分析等,来评估结构在不同工况下的稳定性。
钢结构设计中稳定问题的研究

钢结构设计中稳定问题的研究随着我国国民经济的快速发展以及建筑水平的不断提高,出现了大量的高层建筑物或构筑物,这些建筑结构中广泛的运用了钢结构设计。
研究分析钢结构的稳定性问题,具有非常重要的意义。
标签:钢结构;设计;稳定钢结构与钢筋混凝土结构相比,具有截面轮廓尺寸小、强度高、自重轻等特点。
但对于因受压、受弯和受剪等存在受压区的构件或板件,如果技术上处理不当,可能使钢结构出现失稳,一旦出现失稳事故将造成巨大的损失。
1、钢结构稳定性的涵义所谓钢结构稳定性一般来说,指的是在建筑中钢结构经过外界扰动后恢复到最初平衡状态的性能。
同样的道理,与之相对的属性即失稳,也就是建筑结构因外界扰动而自最初的平衡位置移动到其他位置。
许多严重事故就是由于钢结构在外界条件发生变化时不稳定,出现结构失稳的现象,导致建筑物坍塌等事故,最终造成重大经济损失。
所以稳定性问题是钢结构设计中的一个关键性问题,与工程质量和安全密切相关。
2、钢结构稳定性设计中存在的问题2.1强度与稳定矛盾强度的问题通常就是指建筑钢结构中单个构件在平衡和稳定的状态下所引起的最大的应力荷载是否在建筑材料自身可以承受的荷载之内,所以是建筑结构承受应力能力的问题,极限强度的大小主要是看材料本身所具备的特点,针对混凝土一类的脆性比较强的材料就可以选取材料的最大强度,但是稳定性和强度是存在着比较大的差异的,它主要是看外部的荷载和内部的抵抗力是否已经达到了—个比较平衡的状态,也就是说要在设计的过程中避免变形过陕的现象,从这一角度来看,稳定性是变形的问题,所以二者是不能统—起来的。
2.2不确定因素的影响在钢结构稳定性设计的研究过程中会受到很多不确定性因素的影响,同时在确定稳定性有关的物理量和力学变量的时候主要都是依照以往的经验的,所以对实际状况的分析还存在着很大的不足,所以这也会增加设计过程中的不确定性,设计人员在进行设计的过程中应该建立一个符合结构要求的模型,但是这些模型本身也具备了一些不确定性,如果将这些模型直接应用在实际的设计工作中一定会对设计的质量和效果产生一定的不利影响。
建筑工程项目中钢结构设计中稳定性分析

建筑工程项目中钢结构设计中稳定性分析
稳定性是钢结构设计中最重要的因素之一,同时也是最具挑战性的因素。
钢结构在施工后,受到各种不同类型的荷载,例如自重、风荷载、地震荷载等,这些荷载可能会导致结构的变形和破坏。
因此,在设计过程中,必须保证结构的稳定性,以确保其在荷载下能够保持完整和安全。
钢结构稳定性分析主要包括以下几个方面:
1. 锚固系统的设计
锚固系统是钢结构的重要组成部分,用于固定结构的基础和支撑物。
在设计过程中,必须确定坚固的锚固点,并确保其能够支撑结构的荷载。
此外,还需要考虑锚固系统的设计和施工,以确保其能够有效地固定结构。
2. 结构的整体稳定性
结构的整体稳定性是指结构在荷载作用下的整体稳定性。
在设计过程中,必须考虑结构的整体稳定性,以确保其在荷载下能够保持稳定。
这可以通过采用不同的设计方法来实现,例如采用拆卸式和二次构造式设计方法。
3. 局部稳定性分析
5. 荷载分析
荷载分析是指分析结构所受的不同类型的荷载。
在设计过程中,必须对结构所受的荷载进行详细分析,并采取必要的措施来确保结构的稳定性。
此外,还需要考虑结构在不同荷载下的应变和变形,以确保其满足设计要求。
建筑工程项目中钢结构设计中稳定性分析

建筑工程项目中钢结构设计中稳定性分析作为建筑工程项目中常用的结构材料,钢结构在其设计和施工中需要特别关注稳定性问题。
稳定性是指结构在受到外力作用时,不失去平衡、不发生塌陷和倒塌的能力。
稳定性分析是钢结构设计中非常重要的一环,本文将介绍钢结构设计中稳定性分析的相关内容。
一、稳定性分析目的钢结构的稳定性分析是为了保证在结构受到外部静、动载荷作用时,不发生破坏或不稳定变形,确保结构安全。
具体而言,钢结构设计中稳定性分析的目的包括以下几点:1. 确定结构的稳定性对于不同类型的建筑,需要特别重视结构的稳定性,在设计前要对其进行全面而深入的思考和分析。
通过稳定性分析,可以确定结构的合理稳定工况,保证结构在设计使用寿命期间始终保持安全状态。
2. 确定钢结构的杆系选择稳定性分析可以帮助设计者选择合适的钢结构杆系,包括选择合适的截面和杆件类型,确保结构在受到外部载荷时保持稳定状态。
3. 分析结构的工作性能通过稳定性分析,可以深入了解结构的工作性能,包括抗侧扭、抗倾覆能力等,从而为设计提供更全面的历史数据和评估报告。
在钢结构设计中,稳定性分析通常采用弹性稳定性分析、常规稳定性分析和非线性稳定性分析等方法。
具体分析方法如下:1. 弹性稳定性分析弹性稳定性分析是一种最基本且最常用的分析方法,它是建立在假设钢结构杆件在受力时呈现弹性状态的基础上,通过分析稳定系数和挠度等指标来判断结构的稳定性。
按照稳定性分析的原理,结构的稳定性可以通过计算临界载荷来得到。
这种分析方法不仅精度高,而且计算量小,计算速度快,非常适合在钢结构设计中应用。
常规稳定性分析是指采用“公式法”或者“制图法”进行稳定性计算的方法。
它通常适用于常规结构的设计和分析。
常规稳定性计算的核心是稳定系数的计算,通常是利用杆件的弯曲、屈曲以及截面的挤压扭曲等因素来计算稳定系数。
这种分析方法计算简单,但仅适用于较简单的结构稳定性分析。
非线性稳定性分析是应用不同寻常载荷情况,通过分析结构塑性变形来评估结构的稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
钢结构稳定问题的探索与分析
【摘要】从钢结构稳定问题的可靠性研究角度对钢结构体系设计、建造以及使用当中存在着许多不确定性因素进行探索与分析。
【关键词】稳定性;钢结构体系;可靠性
0前言
近二三十年来,高强度钢材的使用,施工技术的发展以及电子计算机的应用使钢结构体系的发展和广泛应用成为可能。
钢结构体系的稳定性一直是国内外学者们关注的研究领域。
经过几十年的研究,已取得不少研究成果。
1钢结构体系稳定性研究中存在的问题
1.1设计项目层层转包造成设计质量下降
设计项目层层转包主要表现在:当前各大设计院的设计任务相当繁重,所承揽的工艺及综合专业部分设计收付费较高,而钢结构部分确实难啃的硬骨头,费工费力收费低,不愿意承揽钢结构设计任务,或者缺乏钢结构的设计经验,故往往将钢结构部分分包给另一单位。
1.2设计深度不够
1)设计院将自己的设计任务转嫁给加工企业,造成质量下降,设计院只给出“构件布置图”,对关键的“节点设计”一律采用“全焊接节点”或“全铸钢节点”,至于这种节点是否安全、构造是否合理、均无计算。
将应该设计的“节点构造”、“支座详图”、“施工安装”等都交给加工企业,有的加工厂为了节约钢材,降低造价,盲目进行钢材优化,结果造成工程质量事故,如某工程,优化后造成杆件太小,致使施工过程中数百个杆件失稳,给国家重点工程造成重大损失。
2)目前在网壳结构稳定性的研究中,梁-柱单元理论已成为主要的研究工具。
但梁-柱单元是否能够真实反映网壳结构的受力状态还很难说,虽然有学者对,梁-柱单元进行过修正,主要问题在于如何反应轴力和弯矩的耦合效应。
3)在大跨度结构设计中整体稳定与局部稳定的相互关系也是一个值得探讨的问题,目前大跨度结构设计中取一个统一稳定安全系数,未反映整体稳定与局部稳定的关联性。
4)与张拉结构体系的稳定设计理论还不完善,目前还没有一个完整合理的理论体系来分析张拉结构体系的稳定性。
5)纲结构体系的稳定性研究中还存在许多随机因素的印象,目前结构随机影响分析所处理的问题大部分局限于确定的结构参数,随机荷载输入这样格局范围,而在实际工程中,由于结构参数的不确定,会引起结构响应的显著差异。
所以应着眼于考虑随机参数的结构极值失稳、干扰型屈曲,跳跃型失稳问题的研究考虑随机参数的穹顶网壳的稳定问题进行过有益的研究。
2钢结构体系稳定问题的可靠性研究
实际结构由于存在各种各样的随机缺陷的影响,与理想结构存在差异。
对于缺陷敏感性结构,缺陷可能会造成稳定性的急剧下降,所以有必要考虑随机参数的影响,引入可靠度分析方法,进行稳定问题的可靠性研究。
由于大跨度钢结构体系的可靠性研究涉及较多的力学和数学知识,有一定难度,目前这方面的研究成果有限。
网壳结构的稳定性的可靠性分析和设计进行了详尽的研究、丰富了结构可靠度的理论和计算方法,并将其应用与工程结构的分析和设计,显示了良好的前景。
2.1结构分析中的不确定因素来源
影响钢结构体系稳定的不确定性的基本变量许多是随机的,一般分为三类:1)物理、几何不确定性:如材料(弹性模量,屈服应力,泊松比等)杆件尺寸、截面积、残余应力、初始变形等。
2)统计的不确定性:在统计与稳定性有关的物理量和几何量时,总是根据有限样本来选择概率密度分布函数,因此带来一定的经验性。
这种不确定性称为统计的不确定性,是由于缺乏信息造成的。
3)模型的不确定性:为了对结构进行分析,所提的假设、数学模型、边界条件以及目前技术水平难以在计算中反映的种种因素,所导致的理论与实际承载力差异,都归结为模型的不确定性。
2.2结构的可靠性研究
国内外学者对结构可靠度理论已经进行了较为深入的研究,在可靠度计算方法即复杂结构可靠度分析方面取得了很多研究成果。
任何工程分析和设计的最终目的是使设计的结构在不同要求下满足不同的功能-安全性、使用性、耐久性,由于不确定性的存在,就需要把这些不确定性加入工程设计中,从而产生了很多可靠度方法。
为了估计结果可靠度,首先要把解决相关荷载和抵抗力参数以及他们之间的函数关系,这种关系(又称功能函数)记作式中X1,X2…,Xn是随机变量。
把极限状态(或失效面)定义为Z0,可靠度的参数可靠性指标,定义为坐标原点到失效面的最小距离,目前用于可靠性指标计算一般有两种方法:一次可靠度访法(FORM)和二次可靠度访法(SORM)。
2.3目前用于结构可靠分析的数值方法评述
对于复杂结构,功能函数g(x)通常不能明确表达为输入随机变量的函数,结构的响应通常通过数值方法(如有限元)来计算。
这些数值方法一般分为三类:(1)蒙特卡罗模拟法(Mpnte Carlo Simulation)(包括高效的取样法和方差缩减技术);(2)响应面法(Responce Surface Method);(3)基于敏感性的分析方法(Sencitivity-baced Approach)。
1)蒙特卡罗模拟法(Mpnte Carlo Simulation)
蒙特卡罗模拟法的基本思想是在进行每一次确定性分析之前随机产生一组输入变量重复地进行确定性分析之后,对结构的响应输出参数进行统计分析,计算出结构可靠性。
把蒙特卡罗模拟法与有限元结合起来,就得到蒙特卡罗有限元法。
通常把蒙特卡罗有限元法作为可靠度计算的相对精确解,但要达到较高的精度,必须取足够的样本数,因此计算工程量相当浩大。
2)响应面法
响应面法的基本思想是通过近似构造一个具有明确表达形式的多项式来表达隐式功能函数g(x)(一次或二次多项式),其中x是包含所有荷载和抗力的随机变量的一个向量。
本质上来说,响应面法是一套统计方法,用这种方法来寻找考虑了输入变量值的变异或不确定性之后的响应最佳值。
而失效概率通过一次或者二次可靠度方法计算。
在响应面法中,对于一个具有大量随机变量的问题来说,准确构造一个近似多项式的所需的确定性分析是相当巨大的,因此这种方法很耗时。
即使对于一个具有少量随机变量的问题来说,响应面法对可靠度估计的准确性与功能能函数的近似多项式的准确性有关。
如果隐含型的功能函数具有很强的非线性,这种函数逼近是非常近似的,可靠度估计也是非常近似的。
3)基于敏感性的分析方法
基于敏感性的分析方法和一次可靠度方法(form)/二次可靠度方法(sorm)结合起来分析具有隐式型的功能函数可靠性问题,能克服蒙特卡罗模拟法和响应面法的缺点。
这种方法在寻找控制电(也叫最小距离电)过程中,每一步迭代所使用的信息都是功能函数的真实值和真实梯度,并使用优化方法使控制点收敛最小距离点,同蒙特卡罗模拟法和响应面法相比,它耗时小,也比响应面法更准确。
另外,基于敏感性分析方法能够从设计的角度知道结构响应对基本随机变量的敏感性。
从而有可能基于随机变量的不确定性和他们对结构特性的影响得出不同设计安全系数。
基于敏感性的分析方法也可以在不影响计算准确性的条件下,忽略那些对结构可靠性影响不大的随机变量,从而节省计算时间。
基于敏感性的分析方法中可以使用迭代摄动分析技术,并和有限元结合起来产生所谓的随机有限元(Stochaetic Finite Element Method)。
这种使用迭代摄动技术的随机有限元元素可用来进行结构的非线性分析。
3结语
随机有限元法为钢结构体系稳定性的可靠性研究提供了强有力的分析手段,由于随机有限元考虑实际结构存在的各种各样的随机性因素的影响,所以可以预计随机有限元法在这一研究领域将会有良好的应用前景。
【参考文献】
[1]黄东升,建筑结构设计[M].南京:东南大学出版社,2006.
[2]林同炎,结构概念和体系[M].北京:中国建筑工业出版社,1999.
[3]GB50068-2001 建筑结构设计同意标准[S].
[4]GB50205-200 钢结构工程施工质量验收规范[M].
[5]JG J81-2002 建筑钢结构焊接技术规程[M].。