细胞信号转导
细胞的信号转导

• 由膜上的腺苷酸环化酶(AC)环化胞浆内 • ATP形成cAMP。 • cAMP是最早确定的第二信使。 正常情况下,cAMP的生成与分解保持平衡,使 胞浆内cAMP浓度保持在10-7M以下。当配体与受体 结合后,1个AC可生成许多cAMP,使cAMP的水平 在几秒钟内增高20倍以上。
• • • • • • •
3. PLA 2 –AA信号转导系统 花生四烯酸( AA)是通过磷脂酶水解膜磷脂释放的不饱
和脂肪酸。 1)PLA2的激活机制 :
许多细胞外信号(如肾上腺素能激动剂、缓激肽、凝血
酶等)都可激活PLA2,有些PLA2通过G蛋白激活;有些 PLA2被PLC激活,PLC通过增加胞内Ca2+、或激活PKC间 接激活PLA2。细胞外信号刺激PLA2途径直接在sn-2位置 脱酯释放AA,是生成AA的重要途径,也是细胞调控AA生
期使用激动剂和拮抗剂的药理或病理情况下,将之除去后受体 数量和反应性均可恢复。
(2)根据调节的种类,分为
1)受体的数目与结合容量:促使受体数目或结合
容量增加的调节称为上调。反之称为下调。
2)反应性:在内环境影响下,受体反应性会产生增
敏、失敏等现象。 增敏:细胞在某种因素的作用下,受体与配体结合的
敏感性增加。如甲状腺素可增加细胞对儿茶酚胺、TSH、
第二节 细胞的跨膜信号转导功能
• 跨膜信号转导 • (transmembrane signal transduction)
(一)细胞信号转导
1. 细胞信号转导的概念
不同形式的外界信号作用于细胞时,通常并不进入细胞或 直接影响细胞内过程,而是作用于细胞膜表面(少数类固 醇激素和甲状腺激素除外)通过引起膜结构中一种或数种 特殊蛋白质分子的变构作用,将外界环境变化的信息以新
第十九章细胞信号转导

第十九章细胞信号转导第十九章细胞信号转导一、内容提要细胞信号转导是指特定的化学信号在靶细胞内的传递过程,主要由信号分子的识别与接受,信号在细胞内的放大与传递,以及特定生物学效应的产生三个过程组成。
信号分子是指由特定的信号源(细胞)产生的,可以通过扩散或体液转运等方式进行传递,作用于靶细胞并产生特异应答的一类化学物质,包括激素、神经递质、细胞因子、生长因子及无机物等几大类。
由信号细胞释放的信号分子,需经扩散或转运,才能够到达靶细胞产生作用。
根据传递距离的远近,可将信号分子的传递分为内分泌、旁分泌和自分泌信号传递三种方式。
受体是指存在于靶细胞膜上或细胞内的一类特殊蛋白质分子,它们能够识别与结合化学信号分子,并触发靶细胞产生特异的生物学效应。
按照受体存在的亚细胞部位的不同,可将其分为细胞膜受体和细胞内受体二大类,前者又分为跨膜离子通道受体、G蛋白偶联受体和单跨膜受体。
受体的作用特点包括高度的亲和力、高度的特异性、可逆性、可饱和性及特定的作用模式等。
由细胞内若干信号转导分子所构成的级联反应系统就被称为细胞信号转导途径,目前已经鉴定的细胞信号转导途径达10多条。
大多数的激素、神经递质、生长因子和细胞因子通过膜受体介导的信号转导途径传递信号,这些信号转导途径的共同特征都是通过一系列的级联反应,以激活特定的蛋白激酶并对其底物蛋白或酶进行共价修饰,从而产生特定的生物学效应。
在这些信号转导途径中,以环核苷酸(cAMP和cGMP)作为第二信使的信号转导途径是目前较为清楚的信号转导途径。
除此之外,以脂类衍生物,如IP3、DAG、PI-3,4-P2、PI-3,4,5-P3等作为第二信使的信号转导途径,以及以钙离子作为第二信使的Ca2+信号转导途径也越来越受到重视。
而胰岛素、生长因子及细胞因子则主要通过酪氨酸蛋白激酶(TPK)信号转导途径传递信号。
亲脂性的激素主要通过胞内受体介导的信号转导途径传递信号,这一途径通过活化受体调控特异基因的转录表达来产生特定的生物学效应。
细胞信号转导

细胞信号转导细胞信号转导(cell signal transduction):指的是偶联各种胞外刺激信号与其相应的生理反应之间的一系列分子反应机制。
其分子途径分为三个阶段:1、胞外刺激信号传递(1)环境刺激:(光、温度、水分、重力、伤害、病原菌毒物、矿物质及气体)最重要的环境刺激是光,光是光合作用的能源,光强、光质可作为信号激发受体,引起光形态建成。
(2)胞间信号传递:当环境刺激的作用位点与效应位点处在不同部位时,就必然发生信号的产生和传递。
这些胞间信号(化学信号和物理信号)及某些环境刺激信号就是细胞信号转导过程中的初级信号,即第一信使(first messenger)。
A、化学信号(chemical signals):指细胞感受环境刺激后形成,并能传递信息引起细胞反应的化学物质,如:植物激素(ABA、GA、IAA等)、植物生长活性物质。
胞间化学信号长距离传递的主要途径是韧皮部,并且可以同时向顶和向基传递,传递速度为0.1-1 mm·s-1;其次是木质部集流传递。
B、物理信号(physical signals):指细胞感受环境刺激后产生的具有传递信息功能的物理因子,如:电波、水力学信号等。
胞间物理信号电波长距离传递途径是维管束,短距离传递则通过共质体及质外体。
敏感植物动作电波的传播速度可达200 mm·s-1 。
2、膜上信号转换(1)受体(receptor):受体:指位于细胞质膜上能与化学信号物质特异地结合,并能将胞外信号转换为胞内信号,发生相应细胞反应的物质。
质膜表面有三种类型受体:a、G蛋白偶联受体(G-protein-linked receptor)b、酶联受体(enzyme -linked receptor)c、离子通道偶联受体(ion-channel-linked receptor)受体与化学信号物质的识别反应是细胞信号转导过程中的第一步。
(2)G蛋白G蛋白:GTP结合调节蛋白(GTP binding regulatory protein ),膜上信号转换是通过G蛋白偶联的。
细胞信号转导

细胞信号转导细胞信号转导是指细胞内外信息的传递和转化过程,这一过程起着调节和控制细胞生理活动的重要作用。
通过信号传递,细胞可以对外界环境做出适应性的反应,维持内部稳态,实现生长、分化和细胞命运决定等功能。
本文将从信号的产生、传递和转导机制等方面进行讨论。
一、信号的产生1. 内源性信号细胞自身产生的化学物质可以作为信号分子,以调节细胞内外环境。
例如,细胞内的离子浓度、pH值和代谢产物等,都可以通过信号传递机制发挥作用。
2. 外源性信号外界环境中的物质和刺激也可以作为细胞信号的来源。
例如,细胞表面的受体可以与激素、细菌毒素和细胞外基质等结合,引发相应的信号传递。
二、信号的传递细胞信号传递通常有三种主要方式:通过直接细胞接触、通过细胞间联系以及通过远距离的物质传递。
1. 直接细胞接触细胞表面的受体与邻近细胞的配体结合,通过接触传递信号。
这种方式在免疫系统的活化、神经细胞的传递和胚胎发育等过程中起重要作用。
2. 细胞间联系细胞通过细胞间连接物质(如细胞间隙连接、紧密连接和连接蛋白)进行信号传递。
这种方式在组织内细胞间的协调和相互影响中起到重要作用。
3. 物质传递一些信号分子可以通过远距离的物质传递,例如激素、细菌毒素和神经递质等。
它们通过血液、淋巴液和突触间隙等途径到达目的地细胞,触发相应的信号级联反应。
三、信号的转导机制1. 受体的激活和信号传导当信号分子结合至受体上时,受体会发生构象变化,从而激活相应的信号通路。
这种激活过程包括泛素化修饰、磷酸化等,促使信号传导的启动。
2. 信号通路的级联反应一旦信号通路被启动,连锁反应会引发一系列级联反应。
这些反应会通过激活一些键酶、转录因子和细胞器等,最终产生细胞内外多种生理活动的结果。
3. 信号的转导和传递信号通路中的组分和中介物质可以通过蛋白质相互作用、分子承载体和次级信号等方式,进行信号的转导和传递。
这种方式可以将信号的强度和特异性传递至下游组分,以发挥预期的生物学功能。
细胞的信号转导

一、细胞信号转导概述(一)信号转导的概念在多细胞生物体中,细胞间的信号转导(signaltransduction)与交换对细胞的生存非常重要。
细胞的信号转导是通过多种分子相互作用的一系列有序反应,将来自细胞外的信息传递到细胞内各种效应分子,并产生生物效应的过程。
通常所指的信号转导是指跨膜信号转导(transmembrane signal transduction),即生物活性物质(如神经递质、激素、细胞因子等)通过受体或离子通道的作用,将其转变为细胞内各种分子数量、分布或活性的变化,从而对细胞的功能、代谢、生长速度、迁移等生物学行为产生影响。
(二)信号转导系统的基本组成细胞信号转导系统通常由信息分子(signaling molecule)、受体(receptor)、转导体(transducer)及效应体(effector)四个环节组成。
信息分子的受体位于靶细胞的质膜上、胞质或核内,与之相结合的相应信息分子统称为配体(ligand)。
配体与受体的结合可诱导受体的构象发生变化,激活转运体,进而启动细胞内的信息转导途径(如效应体的级联反应),最终导致细胞功能的改变。
(三)信号转导的主要途径根据介导的配体和受体的不同,信号转导可分为两大类,一类是水溶性配体或物理信号作用于膜受体,随后经历跨膜和细胞内信号转导体的依次作用,最终作用于效应体,产生效应。
依据膜受体特性的不同,这类信号转导又有多种通路,主要是由离子通道型受体、G蛋白耦联受体、酶联受体和招募型受体介导的信号转导。
另一类是脂溶性配体直接与胞质受体或核受体结合而发挥作用,这类方式通常都是通过影响基因表达而产生效应。
应当注意到膜受体介导的信号转导也大多可以影响转录因子的活性而改变基因的表达。
(四)信号转导途径间的交互联系细胞信号转导通路的细节非常复杂,涉及蛋白质等相互作用以及相关基因表达的过程,而且各种信号转导通路间存在更为复杂的联系,构成错综复杂的信号网络(signaling network)。
细胞信号转导

细胞信号转导细胞信号转导是细胞内外环境信息传递和响应的过程。
在细胞内外环境发生变化时,细胞通过感知这些信号并传导到细胞内部,最终引发一系列的生物学效应。
本文将介绍细胞信号转导的基本概念、机制与重要研究领域。
一、信号转导的基本概念细胞信号转导是细胞内外信号信息通过具体的分子机制传递到细胞内部,并且在细胞内引发相应的生物学反应。
信号可以是化学物质、光线、温度和压力等,这些信号通过细胞膜表面受体或胞浆内受体与信号分子特异性结合,从而激活一系列的信号转导分子。
细胞信号转导的过程通常包括受体激活、信号传导、增强或抑制等多个环节。
二、信号转导的机制在细胞信号转导的过程中,不同信号可以通过不同的机制进行转导,包括直接通过受体激活、信号级联放大、二级信号传导以及负反馈调控等机制。
1. 直接激活:有些信号可以直接通过受体激活下游分子,例如膜受体激活酪氨酸激酶,进而磷酸化下游调节因子。
2. 信号级联放大:部分信号转导可以通过级联放大的方式增强信号的强度和传递效果。
一个典型例子是G蛋白偶联受体信号转导通路,一个G蛋白偶联受体可以激活多个G蛋白,每个G蛋白可进一步激活下游信号转导分子。
3. 二级信号传导:某些信号分子可以通过激活下游信号分子形成二级信号传导,例如细胞内钙离子浓度的增加可以激活蛋白激酶C,进而磷酸化下游的蛋白质。
4. 负反馈调控:为了避免过度的信号激活,细胞常常会通过负反馈调控机制来抑制信号转导分子的活性,以保持信号的动态平衡。
三、细胞信号转导的重要研究领域细胞信号转导是生物学的重要研究领域,许多科学家致力于探索细胞内信号传导的机制和调控网络。
以下是其中的几个重要研究领域:1. 肿瘤信号转导:细胞信号转导的异常调控与肿瘤的发生和发展密切相关。
研究人员通过研究与肿瘤发生相关的信号转导通路,探索肿瘤的分子机制,并寻找新的治疗靶点。
2. 免疫信号转导:细胞信号转导在免疫系统中起着重要的作用。
研究人员致力于解析免疫应答的信号转导网络,以揭示免疫反应的机制,为免疫相关疾病的治疗提供新的思路。
第十九章-细胞信号转导

—— 连接物蛋白(adaptor protein) 含有2个或数个蛋白质相互作用结构域,无其他功能结 构,连接上下游不同信号转导分子,传递信号。
连接物蛋白Grb2和Nck都含有几个SH2、SH3结构域。
已发现近千种蛋白激酶和磷酸酶。
1.蛋白激酶(protein kinase)
*催化靶蛋白丝/苏氨酸或酪氨酸残基磷酸化 ,如增 加或抑制靶蛋白、酶的活性,进而开启信号途径。
—— 主要有蛋白丝/苏氨酸激酶(Ser/Thr- protein kinase, S/T-PK ),
第二信使激活的PKA、PKC、PKG,和丝裂原活 化蛋白激酶 (mitogen activated protein kinase, MAPK) 等。
内分泌 旁分泌 自分泌 细胞-细胞间作用
第二节 细胞内信号转导分子和转导系统
一、 第二信使(secondary messenger)
应答肽类激素刺激,细胞产生,传递信号的小分子。
作用的特点:
* 应答信号刺激主要表现浓度的改变。 * 在细胞内扩散,改变分布状态,诱导靶分子变构
效应,改变其酶或离子通道活性; * 作用后迅速水解终止信号。
主要参与细胞应答辐射、渗压、温度变化的应激反 应。
——TAK1- MKK3/6- P38MAPK 途径, 主要涉及炎性细胞因子、凋亡相关受体等信号转导。
MAPK再磷酸化下游激酶(如RSK、MNK、 MSK),多级激酶级联,逐级传递信号。
(三)蛋白质相互作用结构域(protein interaction domain),
—— SH3结构域:50~100残基,识别富含脯氨酸 特异模体。
《细胞信号转导》课件

肿瘤细胞通过信号转导通路调节血管生成,为肿 瘤提供营养和氧气,促进肿瘤生长和扩散。
信号转导异常与代谢性疾病
01
胰岛素信号转导与 糖尿病
胰岛素信号转导通路的异常可导 致胰岛素抵抗和糖尿病的发生, 影响糖代谢和脂肪代谢。
02
瘦素信号转导与肥 胖
瘦素信号转导通路的异常可导致 肥胖的发生,影响能量代谢和脂 肪分布。
03
炎症信号转导与非 酒精性脂肪肝
炎症信号转导通路的异常可导致 非酒精性脂肪肝的发生,影响脂 肪代谢和炎症反应。
信号转导异常与神经退行性疾病
Tau蛋白磷酸化与神经退行性疾病
Tau蛋白的异常磷酸化是神经退行性疾病如阿尔茨海默病和帕金森病的重要特征,影响神 经元突起生长和神经元网络连接。
α-synuclein异常磷酸化与帕金森病
信号转导蛋白
01
信号转导蛋白是一类在细胞内传递信息的蛋白质,包括G蛋白、 酶和离子通道等。
02
G蛋白是一类位于细胞膜上的三聚体GTP结合蛋白,能够偶联受
体和效应器,起到传递信号的作用。
酶是另一类重要的信号转导蛋白,能够催化细胞内的生化反应
03
,如磷酸化、去磷酸化等,从而调节细胞的生理功能。
效应蛋白
基因敲入技术
通过将特定基因的突变版本引入细胞 或生物体中,以研究基因突变对细胞 信号转导的影响。
蛋白质组学技术
01
蛋白质印迹
通过抗体检测细胞中特定蛋白质的表达和修饰情 况,了解蛋白质在信号转导中的作用。
02
蛋白质相互作用研究
利用蛋白质组学技术,如酵母双杂交、蛋白质芯 片等,研究蛋白质之间的相互作用和复合物的形
细胞信号转导是生物体感受、传递、放大和响应 外界刺激信息的重要过程,是生物体内一切生命 活动不可缺少的环节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章 细胞信号众所周知,多细胞生物体由不同种类特化的数以亿计的细胞组成。
在这个繁忙而有序的细胞社会里,各种细胞既要明确分工,又要保持相互协调。
应该指出,细胞间的这种协调作用从多细胞生物体存在的那一天起就已经存在了。
但直到20世纪70年代中期,即人类社会的通讯技术产生多年以后,人们才开始真正意识到生物体内要想保证细胞间的相互影响和协调一致,同样需要有信号的传输或信息的交流,由此产生了细胞通讯(细胞信号)这一概念。
进一步的研究发现,细胞通讯与人类社会的通讯有异曲同工之妙:由发射方(各种信号产生细胞)发出信号,接收方(靶细胞)通过特殊的机制识别并接收信号后,做出相关应答(产生各种生理效应)。
本章将对这个过程中的细节问题加以详述。
11.1 细胞间信号11.1.1 细胞间通讯类型生物体的生长、发育、分化、各种组织器官的形成、组织的维持以及它们各种生理活动的协调,都需要有高精确度、高效率的胞间通讯机制,否则生物体内众多的细胞将对自己的去向感到无所适从。
细胞通讯(cell communication )是指:生物有机体为达到功能上的协调统一而建立的细胞间的信息交流,从而使之成为生命的统一体,以便对多变的外界环境做出综合性的反应。
细胞主要通过两种方式完成这种信号传递:细胞间(或细胞与基质间)的直接接触通讯(图11-1-A 、B );不依赖于细胞接触的通讯(分泌化学信号)(图11-1-C )。
图11-1 细胞间的信号分子传递方式A.结合信号分子的信号传递;B.间隙连接中的信号传递;C.分泌信号分子的信号传递(引自B.Albert,等)11.1.1.1 胞间的直接接触通过胞间的直接接触完成信号传递又可分为两种类型:⑴膜表面分子接触信号传递 是指细胞通过其表面信号分子(受体)与另一细胞表面的信号分子(配体)选择性地相互作用,最终产生细胞应答的过程,即细胞识别(cell recognition )。
此类信号传递的特点是信号分子结合在细胞质膜上,通过细胞间的直接接触将信号传递给靶细胞。
细胞识别及粘合的工作与此有关。
细胞的识别与粘合无论对于单细胞生物的摄食、性行为等,还是对于多细胞生物的精卵结合,胚胎分化发育、形态发生以及免疫细胞的增殖与分化等都有重要的意义。
由于细胞质膜上结合的信号分子与其它一些胞外分子没有明显的界限,而且要把质膜结合分子从膜上溶解下来纯化,在技术上也有相当大的难度,对于这种类型的信号传递至今了解还不够深入。
⑵细胞间隙连接(gap junction)是细胞间接触通讯的另一种方式。
两个相邻的细胞以连接子(connexon)相联系。
连接子中央为直径1.5 nm 的亲水性孔道。
允许小分子物质如Ca2+、cAMP等通过,有助于相邻同型细胞对外界信号的协同反应,如可兴奋细胞的电偶联现象。
这种联接方式在动物细胞中是非常普遍存在的。
植物细胞则是在相邻细胞间形成胞间连丝,这一结构不仅为细胞间小分子信号通过提供了连接通路,在某些情况下,大分子也可以通过(详见第十章有关通讯连接部分及植物细胞粘着和胞间连丝部分)。
11.1.1.2 分泌化学信号细胞通过分泌化学信号进行细胞间的相互通讯,这种信号传递方式是胞间通讯的最主要途径。
外界刺激、其它细胞产生的刺激及高等动物中神经刺激都可以引起分泌细胞、神经细胞末梢等分泌化学信号到胞外,通过长短不同距离的传输到达靶细胞,完成胞间通讯。
根据化学信号分子的传递方式,可将这类胞间通讯分为以下4种(图11-2):图11-2 通过分泌信号分子进行胞间通讯的几种方式A.自分泌信号传递;B.旁分泌信号传递;C.内分泌信号传递;D.神经细胞的化学突触传递(引自B.Albert,等)⑴自分泌信号传递(autocrine signaling) (图11-2A)细胞分泌的信号分子结合到自身(同一或相邻的同一类细胞)的受体上引起反应。
例如,在发育过程中,一个细胞一旦进入特定的分化途径,它就可能会产生自分泌信号,确保细胞按照确定的方向分化。
它的这种自制作用也会影响到周围的同一类细胞,使之产生相同的自分泌信号,进而相互作用,彼此促进,朝着相同的方向分化。
这一反应在脊椎动物对外界抗原的反应中体现得尤为明显。
比如,当有抗原刺激时,某一类型的T 淋巴细胞会通过合成促进自身增殖的化学信号,进而增加致敏T 淋巴细胞的数量,提高其对抗原的免疫力。
⑵旁分泌信号传递(paracrine signaling )(图11-2B)信号细胞分泌局部化学递质到细胞外基质中,作为信号分子作用于环境中邻近的靶细胞。
这种局部化学递质,如结缔组织中肥大细胞分泌的组胺和嗜伊红趋化因子等。
组胺存贮于肥大细胞的分泌小泡内,在受损伤,局部感染和免疫反应时,组胺很快被释放,引起血管扩张。
需要指出的是,旁分泌信号只能传递到与信号细胞相邻近的靶细胞,信号分子不能扩散很远,因此它们的信息常常迅速被邻近细胞获取,随后信号分子被胞外基质中的有关酶所分解。
⑶内分泌信号传递(endocrine signaling) (图11-2C)由内分泌细胞分泌信号分子(激素)到血液中,信号分子随血液到达广泛分布在身体各个部位的靶细胞。
⑷通过化学突触传递神经信号(neuronal signaling )(图11-2D)这是神经元之间、神经元与靶细胞之间特有的一种信号传递方式。
信号分子,如神经递质(乙酰胆碱)、神经肽等由突触前膜释放,经突触间隙扩散到突触后膜,作用于特定的靶细胞。
神经细胞和内分泌细胞都参与调控动物体内各类细胞的活动,但它们有着不同的特点(图11-3):内分泌细胞分泌出多种激素,通过血液传递到靶细胞,靶细胞通过膜上或胞内的特异性受体与信号分子结合,由此保证了特异性。
在突触传递中,特异性决定于神经细胞与靶细胞的特异性接触,通常一种神经细胞释放的神经递质只对与它相接触的靶细胞作用(少数除外)。
不同的内分泌细胞常常产生不同的激素,但许多神经细胞却能使用相同的神经递质。
图11-3 内分泌信号传递与化学突触信号传递的区别(引自B.Albert,等) A.不同种类内分泌细胞产生不同种类激素,通过血液传递到靶细胞,靶细胞通过膜上或胞内的特异性受体与不同种类的信号分子结合,进而保证特异性。
B. 不同种类的神经细胞能够产生相同的神经递质,相同的神经递质通过不同种类的神经元与其特异的靶细胞接触,进而保证特异性。
另外,内分泌信号传递和化学突触信号传递同为高等动物两个主要的胞间通讯方式,前一种方式依赖于扩散和血液流动,其速度相对较慢,但后效深远,影响面广;后一种方式则依赖于特殊的神经元结构,传递信息较为迅速准确,电脉冲的传播速度可高达100m/s,而且神经递质一旦从神经末梢释放出来,扩散不到100nm就到达靶细胞,这一过程不超过1ms。
内分泌与突触信号传递的另一个差异是激素进入血液或体液后被高倍稀释,所以信号分子能以非常低的浓度发挥作用。
神经递质则稀释得很少,它们到达靶细胞时仍有较高浓度,有的可达到5.0 ×10-4 mol/L,与此相一致的是神经递质受体与配体的亲和力较低,神经递质能迅速从受体上分离下来,终断信号反应。
11.1.2 化学信号分子的类型和特性生物细胞所接受的信号有多种多样。
从这些信号的自然性质来说,可以分为①物理信号,包括光,热,紫外线,X-射线,电流等;②化学信号,是生物体内一类特殊的化学物质,在体内既不作为营养物质,又不作为能源和结构物质,其主要功能是在细胞间和细胞内传递信息。
化学信号是有机体内细胞间通讯中最广泛应用的一类。
生物有机体内已鉴定的可以作为配体的化学信号有几百种之多,这些信号分子结构复杂,包括蛋白质、多肽、氨基酸衍生物、核苷酸、类固醇、脂肪酸衍生物及可溶性的气体小分子(表11-1)。
表11-1 一些信号分子举例信号分子合成或分泌位点化学性质生理功能激素肾上腺素肾上腺酪氨酸衍生物提高血压、心律、增强代谢皮质醇肾上腺类固醇在大多数组织中影响蛋白、糖、脂代谢雌二醇卵巢类固醇诱导和维持雌性第二性征胰高血糖素胰α细胞肽肝、脂肪细胞中刺激葡萄糖合成、糖原断裂、脂断裂胰岛素胰β细胞蛋白质刺激肝细胞等葡萄糖吸收、蛋白质及脂的合成睾酮睾丸类固醇诱导和维持雄性第二性征甲状腺素甲状腺酪氨酸衍生物刺激多种类型细胞的代谢局部介质表皮生长因子多种细胞蛋白质刺激表皮和多种其他类型细胞的增殖(EGF)血小板生长因子多种细胞蛋白质刺激多种类型细胞增殖(PDGF)(包括血小板)神经生长因子各种神经组织蛋白质帮助某些神经元的生存,促进这些神经元轴突的(NGF)生长组胺肥大细胞组氨酸的衍生物引起血管扩张渗漏,引起炎症一氧化氮神经细胞、可溶性气体引起平滑肌松弛,调节神经细胞的活性(NO)血管内皮细胞神经递质乙酰胆碱神经末梢胆碱衍生物在许多神经肌突触和中央神经肌肉系统产生兴奋的神经递质γ-氨基丁酸神经末梢谷氨酸衍生物中枢神经系统中存在的抑制性神经递质(GABA)接触依赖性信号分子Delta(δ) 预定神经元、其跨膜蛋白抑制相邻细胞以与信号细胞相同的方式分化他各种胚胎细胞作用方式上,绝大多数信号分子都需要与靶细胞上的受体结合,才能完成信息传递。
由于受体存在于靶细胞上的位置不同,信号分子与受体结合又存在特异性,根据这一特性可将信号分子分为两类:与细胞表面的受体结合的信号分子和与细胞内受体结合的信号分子。
进一步的研究发现,这种分类方式与它们的作用机制相关。
11.1.2.1 化学信号分子的类型研究发现,与胞内受体结合的信号分子首先要穿越细胞膜进入胞内,所以它们通常是小的疏水性分子(或亲脂性信号分子),主要种类有甾类激素,甲状腺激素、维生素D3、维甲酸等。
这些信号分子在化学结构上和功能上虽有很大差别,却以相似的机制发挥作用,即直接穿过靶细胞膜并结合在胞内受体蛋白上,形成配体-受体复合物,将受体激活,然后直接调控特定基因转录。
具体的作用机制在本章第三节中还有详述。
另一类可以穿越靶细胞膜的信号分子为气体信号分子。
与亲脂性信号分子不同的是,气体信号分子进入靶细胞不是与相关受体结合而是直接改变靶酶活性。
20世纪80年代后期,R.Furchgott等三位美国科学家发现和证实一氧化氮(nitric oxide,NO)在生物体内是一种重要的信号分子,由于NO是迄今在体内发现的第一个气体性信号分子,它能进入细胞直接激活效应酶,参与体内众多的生理病理过程,因而成为人们所关注的"明星分子"(star molecule)。
R.Furchgott 等也因此获得1998年的诺贝尔医学和生理学奖。
气体性信号分子除了NO外还有CO、植物体内的乙烯,它们都可作为信号传递者,由一个细胞产生,穿透细胞质膜进入其他细胞,作为细胞内信使调节靶细胞功能。
另有一大类信号分子,本身具有亲水性,因而不能直接穿过细胞膜,仅能与靶细胞表面的受体结合。