细胞信号转导系统PPT课件
合集下载
生化课件19细胞信号转导

蛋白激酶A (PKA)
(cAMP-dependent protein kinase)
R: 调节亚基 C: 催化亚基
RC RC
PKA的激活
R
C
R C
目录
PKA(丝氨酸、苏氨酸蛋白激酶)
ATP
ADP
Thr Ser
-OH
蛋白激酶
Thr Ser -O-PO32-
酶蛋白
磷酸化的 酶蛋白
目录
PKA的作用
⑴ 对代谢的调节作用
目录
受体型PTK-Ras-MAPK途径 P395
组成:催化型受体,Grb2(衔接蛋白), SOS, Ras蛋白(低 分子量G蛋白), Raf蛋白,MAPK系统
衔接蛋白:Grb2 (growth factor receptor bound protein 2)
SH3
SH2
SH3
SH2 域 (src homology 2 domain)
细胞内某些连接物蛋白共有的氨基酸序列,该区域能识别 磷酸化的酪氨酸残基并与之结合
目录
SOS (son of sevenless)
富含脯氨酸,可与SH3结合,促使Ras的GDP换成GTP
Ras蛋白:低分子量G蛋白,类似于G蛋白的G 亚基
Raf蛋白:具有丝/苏氨酸蛋白激酶活性 MAPK系统
包括MAPK、MAPK激酶(MAPKK)、MAPKK激酶(MAPKKK) ,是一组酶兼底物的蛋白分子。
位于N端,具有转录激活功能 含有锌指结构,结合DNA
位于C端,结合激素、热休克蛋白,使受体二聚化, 激活转录
受体二聚化发生的部位
⑵ 相关配体 类固醇激素、甲状腺素和维A酸等
⑶ 功能 多为反式作用因子,当与相应配体结合后,能与DNA的顺式作
(cAMP-dependent protein kinase)
R: 调节亚基 C: 催化亚基
RC RC
PKA的激活
R
C
R C
目录
PKA(丝氨酸、苏氨酸蛋白激酶)
ATP
ADP
Thr Ser
-OH
蛋白激酶
Thr Ser -O-PO32-
酶蛋白
磷酸化的 酶蛋白
目录
PKA的作用
⑴ 对代谢的调节作用
目录
受体型PTK-Ras-MAPK途径 P395
组成:催化型受体,Grb2(衔接蛋白), SOS, Ras蛋白(低 分子量G蛋白), Raf蛋白,MAPK系统
衔接蛋白:Grb2 (growth factor receptor bound protein 2)
SH3
SH2
SH3
SH2 域 (src homology 2 domain)
细胞内某些连接物蛋白共有的氨基酸序列,该区域能识别 磷酸化的酪氨酸残基并与之结合
目录
SOS (son of sevenless)
富含脯氨酸,可与SH3结合,促使Ras的GDP换成GTP
Ras蛋白:低分子量G蛋白,类似于G蛋白的G 亚基
Raf蛋白:具有丝/苏氨酸蛋白激酶活性 MAPK系统
包括MAPK、MAPK激酶(MAPKK)、MAPKK激酶(MAPKKK) ,是一组酶兼底物的蛋白分子。
位于N端,具有转录激活功能 含有锌指结构,结合DNA
位于C端,结合激素、热休克蛋白,使受体二聚化, 激活转录
受体二聚化发生的部位
⑵ 相关配体 类固醇激素、甲状腺素和维A酸等
⑶ 功能 多为反式作用因子,当与相应配体结合后,能与DNA的顺式作
植物的细胞信号转导ppt文档

红光促进种子萌发/远红光抑制萌发
蓝光促进气孔开放/绿光抑制开放
光诱导的气孔运动 蓝光/绿光
干旱诱导的气孔运 动
干旱
根的向地性生长 重力
含羞草感震运动
机械刺激、电 波
光周期诱导植物开 花
光周期
低温诱导植物开花 低温
乙烯诱导果实成熟 乙烯
根通气组织的形成 乙烯、缺氧
植物抗病反应
病原体产生的 激发子
受体或感受部位 向光素 光敏色素 蓝光受体/玉米黄素
相应的生理生化反应 茎受光侧生长素浓度比背光侧低,受光侧生长 速率低于背光侧
图 植物细胞内几种主要的第二信使结构
细胞外环境信号和胞间信号与胞 内信号分子在功能上是密切合作的。 多细胞生物体受到外界环境刺激后, 常产生胞间化学信号,到达细胞表面 或胞内受体后,通过产生胞内信号起 作用,从而完成整个信号转导过程。
二、受体(receptor)的概念和类型
(一) 受体的概念:
② G 蛋白偶联受体(G protein-coupled receptor, GPCR)
受体蛋白的氨基端位于细胞外 侧,羧基端位于内侧,一条单 肽链形成几(七)个跨膜螺旋 结构。羧基端具有与G蛋白相 互作用的区域,受体活化后直 接将G蛋白激活,进行跨膜信 号转换。
这类受体的信息传递可归 纳为:激素(配体)→受体→G 蛋 白 → 酶 (AC 、 PLC 等 )→ 第 二信使(cAMP等)→蛋白激酶
→酶或功能蛋白→生物学效应。 图 G蛋白偶联受体结构模型图
2012年 诺贝尔 化学奖
③ 酶联受体(enzyme-linked receptor)
受体本身是一种具有跨膜结构酶蛋白,当细 胞外区域与配体结合时,可激活酶,并通过 细胞内侧酶的反应传递信号。 3个结构域:细胞外与配体的结合结构域
蓝光促进气孔开放/绿光抑制开放
光诱导的气孔运动 蓝光/绿光
干旱诱导的气孔运 动
干旱
根的向地性生长 重力
含羞草感震运动
机械刺激、电 波
光周期诱导植物开 花
光周期
低温诱导植物开花 低温
乙烯诱导果实成熟 乙烯
根通气组织的形成 乙烯、缺氧
植物抗病反应
病原体产生的 激发子
受体或感受部位 向光素 光敏色素 蓝光受体/玉米黄素
相应的生理生化反应 茎受光侧生长素浓度比背光侧低,受光侧生长 速率低于背光侧
图 植物细胞内几种主要的第二信使结构
细胞外环境信号和胞间信号与胞 内信号分子在功能上是密切合作的。 多细胞生物体受到外界环境刺激后, 常产生胞间化学信号,到达细胞表面 或胞内受体后,通过产生胞内信号起 作用,从而完成整个信号转导过程。
二、受体(receptor)的概念和类型
(一) 受体的概念:
② G 蛋白偶联受体(G protein-coupled receptor, GPCR)
受体蛋白的氨基端位于细胞外 侧,羧基端位于内侧,一条单 肽链形成几(七)个跨膜螺旋 结构。羧基端具有与G蛋白相 互作用的区域,受体活化后直 接将G蛋白激活,进行跨膜信 号转换。
这类受体的信息传递可归 纳为:激素(配体)→受体→G 蛋 白 → 酶 (AC 、 PLC 等 )→ 第 二信使(cAMP等)→蛋白激酶
→酶或功能蛋白→生物学效应。 图 G蛋白偶联受体结构模型图
2012年 诺贝尔 化学奖
③ 酶联受体(enzyme-linked receptor)
受体本身是一种具有跨膜结构酶蛋白,当细 胞外区域与配体结合时,可激活酶,并通过 细胞内侧酶的反应传递信号。 3个结构域:细胞外与配体的结合结构域
精品医学课件-细胞信号转导

游的蛋白激酶,通过多种途径逐级磷酸化细胞内某 些蛋白,进一步影响相关基因的表达。
52
53
多种途径逐 级磷酸化
54
2. JAK-STAT途径
• 配体:干扰素、白介素等细胞因子 • 受体:酪氨酸蛋白激酶型受体 • 效应蛋白及其作用:胞质PTK(非受体型的PTK),如JAK
(Janus kinase)。活化的JAK激活其底物信号转导子和转 录激活子(signal transducer and activator of transcription, STAT),STAT激活一系列后续蛋白质,调节基因表达。
• 两种形式:载体介导和通道介导
10
(二)主动转运(active transport)
1. 原发性主动转运
• ATP直接供能 • Na+-K+泵,ATP酶活性
11
2. 继发性主动转运或协同转运
• ATP间接供能 • Na+依赖式转运体蛋白
12
(三)胞吐与胞吞式转运
• 胞吐:通过一个耗能过程将细胞内物质分泌到细 胞外的过程。(固有性胞吐、调节性胞吐)
虽然这些微小的蛋白质看不见摸不着, 但是它们与我们的日常生活息息相关, 如果没有G蛋白偶联受体,人类根本无 法生存下去。如果没有视紫质,我们将 看不见光线;如果没有嗅觉受体,我们 将闻不见气味;如果没有β-肾上腺素受 体,我们将无法调节血糖;如果没有毒 蕈碱受体,乙酰胆碱将无法将心跳速度 限定在合理范围内;如果没有5-羟色胺 受体,我们甚至无法感受幸福……
15
(三)化学通讯
• 间接通讯方式:信 号分子→靶细胞
• 分3类:
1. 内分泌(endocrine) --血液循环 2. 旁分泌(paracrine) --扩散作用 3. 自分泌(autocrine) --同类或同一细胞 (常见于癌变细胞)
52
53
多种途径逐 级磷酸化
54
2. JAK-STAT途径
• 配体:干扰素、白介素等细胞因子 • 受体:酪氨酸蛋白激酶型受体 • 效应蛋白及其作用:胞质PTK(非受体型的PTK),如JAK
(Janus kinase)。活化的JAK激活其底物信号转导子和转 录激活子(signal transducer and activator of transcription, STAT),STAT激活一系列后续蛋白质,调节基因表达。
• 两种形式:载体介导和通道介导
10
(二)主动转运(active transport)
1. 原发性主动转运
• ATP直接供能 • Na+-K+泵,ATP酶活性
11
2. 继发性主动转运或协同转运
• ATP间接供能 • Na+依赖式转运体蛋白
12
(三)胞吐与胞吞式转运
• 胞吐:通过一个耗能过程将细胞内物质分泌到细 胞外的过程。(固有性胞吐、调节性胞吐)
虽然这些微小的蛋白质看不见摸不着, 但是它们与我们的日常生活息息相关, 如果没有G蛋白偶联受体,人类根本无 法生存下去。如果没有视紫质,我们将 看不见光线;如果没有嗅觉受体,我们 将闻不见气味;如果没有β-肾上腺素受 体,我们将无法调节血糖;如果没有毒 蕈碱受体,乙酰胆碱将无法将心跳速度 限定在合理范围内;如果没有5-羟色胺 受体,我们甚至无法感受幸福……
15
(三)化学通讯
• 间接通讯方式:信 号分子→靶细胞
• 分3类:
1. 内分泌(endocrine) --血液循环 2. 旁分泌(paracrine) --扩散作用 3. 自分泌(autocrine) --同类或同一细胞 (常见于癌变细胞)
细胞生物学第11章-细胞通讯与信号转导

(2)不同细胞对同一化学信号分子可能 具有不同的受体。如:Ach分别引起骨骼 肌的收缩、唾液腺的分泌。
(3)不同的细胞通过各自的受体,对胞外信号应答, 产生相同的效应。如:肝细胞肾上腺素受体和胰 高血糖素受体结合各自的配体激活以后,都能促 进血糖的升高。
(4)一种细胞具有一套多种类型的受体,应答多种 不同的胞外信号,从而启动细胞的不同生物学效 应。
(3)自分泌(autocrine):
细胞对自身分泌物产生反应,常见于病理 条件下。如:肿瘤细胞合成释放生长因子刺 激自身。
(4)化学突触传递神经信号:
神经细胞兴奋后,动作电位的传递,引起突 触前突起终末分泌化学信号,扩散至突触后细 胞,实现电信号和化学信号之间的转换。
2 通过细胞的直接接触(contactdependent signaling):即细胞间接 触性依赖的通讯
(3)气体信号分子: 第一个发现的气体信号分子是NO,可以进入细胞直 接激活效应酶,参与体内众多的生理和病理过程。
2. 受体(receptor)
是一种能够识别和选择性结合某种配体的大分子, 通过和配体的结合,经信号转导作用,最终表现为生 物学效应。
▪ 受体的结构特点:
多为糖蛋白,至少包含配体结合区和效应区2个 功能区域,分别具有结合特异性和效应特异性。
▪ 特异性 ▪ 放大作用 ▪ 信号终止或下调特征 ▪ 整合作用
第二节
细胞内受体介导的信号传递
一、细胞内受体与基因表达
细胞内受体活化的机制:
激活前:受体和抑制性蛋白结合成复合物 激活后:如果甾类激素和受体结合,导致抑制
性蛋白从复合物上解离下来,使受体暴露出 DNA结合位点,激素-受体复合物与基因调 控区(激素应答元件,hormone response element, HRE)结合,影响基因的转录。
(3)不同的细胞通过各自的受体,对胞外信号应答, 产生相同的效应。如:肝细胞肾上腺素受体和胰 高血糖素受体结合各自的配体激活以后,都能促 进血糖的升高。
(4)一种细胞具有一套多种类型的受体,应答多种 不同的胞外信号,从而启动细胞的不同生物学效 应。
(3)自分泌(autocrine):
细胞对自身分泌物产生反应,常见于病理 条件下。如:肿瘤细胞合成释放生长因子刺 激自身。
(4)化学突触传递神经信号:
神经细胞兴奋后,动作电位的传递,引起突 触前突起终末分泌化学信号,扩散至突触后细 胞,实现电信号和化学信号之间的转换。
2 通过细胞的直接接触(contactdependent signaling):即细胞间接 触性依赖的通讯
(3)气体信号分子: 第一个发现的气体信号分子是NO,可以进入细胞直 接激活效应酶,参与体内众多的生理和病理过程。
2. 受体(receptor)
是一种能够识别和选择性结合某种配体的大分子, 通过和配体的结合,经信号转导作用,最终表现为生 物学效应。
▪ 受体的结构特点:
多为糖蛋白,至少包含配体结合区和效应区2个 功能区域,分别具有结合特异性和效应特异性。
▪ 特异性 ▪ 放大作用 ▪ 信号终止或下调特征 ▪ 整合作用
第二节
细胞内受体介导的信号传递
一、细胞内受体与基因表达
细胞内受体活化的机制:
激活前:受体和抑制性蛋白结合成复合物 激活后:如果甾类激素和受体结合,导致抑制
性蛋白从复合物上解离下来,使受体暴露出 DNA结合位点,激素-受体复合物与基因调 控区(激素应答元件,hormone response element, HRE)结合,影响基因的转录。
细胞的信号转导完美版PPT

一、信号转导概述
信号转导——细胞外刺激信号作用于细胞的特殊结构,通过 一系列反应实现对细胞功能活动的调控。
(一)细胞外刺激信号 体内的信号物质一般为生物活性物质,如神经递质、激素、 细胞因子等,其中多数为水溶性物质。
(二)受体及其特征
1.受体的概念及其分类 受体(receptor)——位于细胞膜或细胞内能与某些信号
3.以神经-肌接头处兴奋传递为例,简述通道耦联的受体介导 的信号转导过程。
G蛋白作用模式
cAMP作为第二信使的发现
➢ 第二信使学说是E.W.萨瑟兰于1965年首先提出。他认为 人体内各种含氮激素(蛋白质、多肽和氨基酸衍生物)都 是通过细胞内的环磷酸腺苷(cAMP)而发挥作用的。首次 把cAMP叫做第二信使,激素等为第一信使。已知的第二 信使种类很少,但却能转递多种细胞外的不同信息,调节 大量不同的生理生化过程,这说明细胞内的信号通路具有 明显的通用性。
(3)G蛋白效应器(G protein effector)
(4)第二信使(second messenger) (5)蛋白激酶(protein kinase, PK)
G蛋白耦联受体介导的信号转导的基本过程
配体 受体
受体-配体
G蛋白
激活型G蛋白
G蛋白效应器
激活的 G蛋白效应器
[第二信使] 或
依赖于第二信使的酶或通道激活或抑制
某些蛋白质磷酸化
生物效应
2. G蛋白受体介导的信号转导的主要途径
(2)受体-G蛋白-DG/PKC途径: 配体与膜受体结合 膜中的G蛋白(Gq) 激活磷脂酶C(PLC) 膜脂质中的二磷酸磷脂酰肌醇(PIP2)迅速水解为 IP3(三磷酸肌醇)和DG(二酰甘油) DG激活蛋白激酶C(PKC) 进一步作用于下游的信号蛋白或功能蛋白 诱发细胞功能改变。
信号转导教学课件ppt

G蛋白偶联受体信号转导的通路
01
GPCR与配体结合后,引起G蛋白的活化,释放出GDP并替换为GTP,进而引起 下游效应分子的激活。
02
G蛋白可激活多种效应分子,如AC、PLC等,进而产生第二信使分子,如cAMP 和DAG,进一步调节细胞的生物学效应。
03
GPCR信号转导通路还包括抑制性通路和非抑制性通路,抑制性通路通过降低细 胞内cAMP水平来抑制细胞活动,而非抑制性通路则通过激活PLC并产生DAG和 IP3来促进细胞活动。
分类
根据结构和功能,细胞因子可分为白细胞介素(IL)、干扰素 (IFN)、肿瘤坏死因子(TNF)、集落刺激因子(CSF)等。
细胞因子受体的结构与功能
结构
细胞因子受体是一类跨膜蛋白,由胞内区和胞外区组成,胞内区具有酪氨酸 激酶活性。
功能
细胞因子受体通过与相应配体结合,传递信号至细胞内,触发一系列生物学 反应,如增殖、分化、凋亡等。
磷酸化
激活的受体通过磷酸化修饰,进一 步激活下游信号分子。
酶联型受体信号转导的通路
MAPK通路
酶联型受体激活后,通过MAPK通路传递信号,引发细胞反应。
JAK-STAT通路
酶联型受体激活后,通过JAK-STAT通路传递信号,调节细胞增殖和分化。
04
细胞因子信号转导
细胞因子的定义与分类
定义
细胞因子是由免疫细胞和非免疫细胞产生的一类小分子可溶 性蛋白,具有调节免疫应答和炎症反应等多种生物学功能。
信号转导与药物研发
了解信号转导的机制有助于开发新的药物,针对异常的信号转导过程进行干预和 治疗。
06
信号转导研究方法
基因敲除与敲入技术
基因敲除技术
利用同源重组或转座子等技术,将特定基因从染色质中剔除 ,以研究基因功能。
细胞信号转导异常与疾病(ppt)

细胞信号:
• 生物细胞所接受是的信号既可以物理信号(光、 热、电流),也可以是化学信号,但是在有机 体间和细胞间的通讯中最广泛的信号是化学信 号。
• 化学信号一般通过受体起作用,故又称为配体 (ligand),从产生和作用方式来看可分为内 分泌激素、神经递质、局部化学介导因子和气 体分子等。
• 一种配体常可以有两种以上的受体。
细胞信号转导异常 与疾病(ppt)
(优选)细胞信号转导异常与 疾病
Cell signal transduction
signal
cell
Biological change
Proliferation Differentiation
Metabolism Function Stress Apoptosis
GDP
G
GTP
G
◆ G蛋白激活:GTP与Gα相结合 ◆ G蛋白失活:GTP酶水解GTP
激活态和失活态可以相互转化。
G蛋白活性的调节
受体
GDP
GDP G
G
GTP
效应蛋白 G
效应蛋白
GTP G
• G蛋白与激活态G蛋白的相互转换,在信号转 导的级联反应中起着分子开关的作用。当 GPCR被配体激活后, G 上的GDP被GTP所 取代,这是G蛋白激活的关键步骤。
oror lossdisease
第一节 细胞信号转导的概述
细胞信号转导的概念:(concept)
细胞通过位于胞膜或胞内的受体感受胞外信号分子的刺激, 经细胞内信号转导系统转换而影响其生物学功能的过程。
signal
cell
Biological change
Proliferation Differentiation
第八章-细胞信号转导

• 化学信号根据其溶解性分为: 亲脂性信号分子:分子小、疏水性强、可透膜与胞内受体结合。
如甾类激素、甲状腺素… 亲水性信号分子:分子较大、亲水性强、不能透膜、只能与胞 外受体结合。如神经递质、生长因子、局部化学递质、大多数 激素… 气体性信号分子(NO):可以透膜直接激活效应酶。
• 化学信号根据作用方式分为: 内分泌信号、旁分泌信号、突触信号、接触依赖性信号 P220
接触性依赖的通讯
细胞间直接接触,信号分子与受体都是细胞的跨膜蛋白。这种通讯方式 在胚胎发育过程中对组织内相邻细胞的分化具有重要作用。(胚胎诱导)
P218
细胞通讯方式
通过胞外信号介导的细胞通讯步骤
①信号分子的产生; ②运送信号分子至靶细胞; ③信号分子与靶细胞受体特异性结合,并激活 受体; ④活化受体启动胞内一种或多种信号转导途 径; ⑤引发细胞功能、代谢或发育的改变; ⑥信号的解除并导致细胞反应终止。
G-蛋白耦联的受体(G-protein-linked receptor)
酶连受体(enzyme-linked receptor) 受体的两个功能区域:配体结合区(结合特异性)
效应区(效应特异性)
P221
亲水性信号
胞 外 受 体
亲脂性信号
胞 内 受 体
胞外受体和胞内受体
三种类型的细胞表面受体
NO合酶 (NOS)
L-Arg+NADPH
NO+L-瓜氨酸
• NO没有专门的储存及释放调节机制,靶细胞上NO的多少 直接与NO的合成有关。
P229
Guanylate cyclase
内源性 NO 由 NOS 催化合成后,扩散到邻近细胞,与鸟苷酸环化酶活 性中心的Fe2+结合,改变酶的构象,导致酶活性的增加和cGMP 合成增 强。 cGMP作为第二信使介导蛋白质的磷酸化,引起生理生化反应。