4.1 拉普拉斯变换定义与收敛域09

合集下载

拉普拉斯变换的定义、收敛域

拉普拉斯变换的定义、收敛域
0

4.tnu(t)
n st L t u ( t ) t e dt n 0
15 页
1 1 1 . 2 s s s
1 n st t e d( st ) s 0 t n st n n 1 st e t e dt 0 s s 0 n n 1 st t e dt s 0 n n n 1 t L t 所以 L s n1 1 0 1 L t L[t u (t )] L[u (t )] s s
主要内容
线性 原函数积分 s域平移 初值 卷积 对s域积分 原函数微分 延时(时域平移) 尺度变换 终值 对s域微分

17 页

一.线性
若 则 L f1 ( t ) F1 ( s ), L f 2 ( t ) F2 ( s ), K 1 , K 2为常数, LK 1 f1 ( t ) K 2 f 2 ( t ) K 1 F1 ( s ) K 2 F2 ( s )
VL (s) L sI L (s) iL (0 ) sL I L (s) LiL (0 )
I L s

Ls
Li L 0
V L s
电感元件的s模型

三.原函数的积分
F (s) f L f ( τ ) d τ 若L f (t ) F ( s),则 s

拉普拉斯变换与傅里叶变换的区别:
FT: 时域函数f(t) 变量 t 频域函数 F ( j ) 变量
10 页
都是实数) (变量 t、
LT: 时域函数f(t)
变量 t t(实数)
复频域函数 F ( s)

拉普拉斯变换的定义 收敛域

拉普拉斯变换的定义 收敛域

LT[sin(
t)]
s2
2
LT[cos(t)]
s2
s
2
12
4 1 求下列各函数的拉氏变换
(2) sin t 2cost
LT[sin
t
2cos t]
1 s2 1
2s s2 1
2s s2
1 1
(10) cos2 (t)
cos2 (t) 1 [cos(2t) 1] 2
F(s)
1 2
LT[cos(2t)]
st
ds
2j j
s j d 1 ds
j
2
对于不满足绝对可积条件的f (t), 即: lim f (t) t
则其傅里叶变换不存在. [ f (t)为因果信号]
寻找一衰减函数 et 使得 : lim f (t)et 0 t
则其傅里叶变换 : f (t)ete jtdt 存在. 0
s
j
F() FT[ f (t)]
F(s) LT[ f (t)]
f (t)e jt dt
0
f (t)estdt
0
3
单边拉普拉斯变换对
F (s) LT [ f (t)] f (t)estdt 0
象函数
f (t) LT 1[F (s)] 1
j
F
(s)e
st
ds
2j j
f (t) f (t)u(t)
0
0
LT[ (t)] 1
9
P2504 3 求下列函数的拉氏变换, 注意阶跃函数
的跳变时间.
(1) etu(t 2) (3) e(t2)u(t)
(1) LT[etu(t 2)] etu(t 2)est dt etest dt

拉普拉斯变换

拉普拉斯变换

拉普拉斯变换定义式:设有一时间函数f(t) [0,∞] 或 0≤t≤∞单边函数 ,其中,S=σ+jω是复参变量,称为复频率。

左端的定积分称为拉普拉斯积分,又称为f(t)的拉普拉斯变换;右端的F(S)是拉普拉斯积分的结果,此积分把时域中的单边函数f(t)变换为以复频率S为自变量的复频域函数F(S),称为f(t)的拉普拉斯象函数。

以上的拉普拉斯变换是对单边函数的拉普拉斯变换,称为单边拉普拉斯变换。

如f(t)是定义在整个时间轴上的函数,可将其乘以单位阶跃函数,即变为f(t)ε(t),则拉普拉斯变换为F(s),=mathcal left =int_ ^infty f(t),e^ ,dt 其中积分下标取0-而不是0或0+ ,是为了将冲激函数δ(t)及其导函数纳入拉普拉斯变换的范围。

z变换可将分散的信号(现在主要用于数字信号)从时域转换到频域。

作用和拉普拉斯变换(将连续的信号从时域转换到频域)是一样的。

拉普拉斯变换是将时域信号变换到“复频域”,与傅里叶变换的“频域”有所区别。

FT[f(t)]=从负无穷到正无穷对[f(t)exp(-jwt)]积分 ,LT[f(t)]=从零到正无穷对[f(t)exp(-st)]积分 ,(由于实际应用,通常只做单边拉普拉斯变换,即积分从零开始) .具体地,在傅里叶积分变换中,所乘因子为exp(-jwt),此处,-jwt显然是为一纯虚数;而在拉普拉斯变换中,所乘因子为exp(-st),其中s为一复数:s=D+jw,jw是为虚部,相当于Fourier变换中的jwt,而D则是实部,作为衰减因子,这样就能将许多无法作Fourier变换的函数(比如exp(at),a>0)做域变换。

拉普拉斯变换主要用于电路分析,作为解微分方程的强有力工具(将微积分运算转化为乘除运算)。

但随着CAD的兴起,这一作用已不怎么受重视了,但关于其收敛域的分析(零极点图)依然常用。

Fourier 变换则随着FFT算法(快速傅立叶变换)的发展已经成为最重要的数学工具应用于数字信号处理领域。

第9章拉普拉斯变换

第9章拉普拉斯变换
我们来考察

T1
x(t ) e
0 t
dt
s j 处,拉氏变换收敛的情况。
0
( 0 ) 0
e

( 0 ) t
为减函数。
减函数


T1
x(t ) e dt
( 0 )T1
t

T1
T1
x(t ) e
0 t ( 0 ) t
9.1拉普拉斯变换的导出
本小节我们通过复指数信号激励LTI系统的 分析,导出拉普拉斯正变换,并且分析拉 普拉斯变换的收敛问题。 复指数信号通过LTI系统时,利用卷积积分, 可以得到:
y(t ) h( )e


s ( t )
d
e
st



h( )e d e
s
st
将零点和极点在s平面上标记出来而形成的图称为零极点图 (Pole-zero plots)。
Im
× -2
× -1
0 1
Re
例题9.3的零极点图和收敛域
例题9.4 求信号
的拉普拉斯变换 解:
16 t 1 2t x(t ) (t ) e u (t ) e u (t ) 3 3
(t ) 1
s j
X ( s) e
0

( a ) t jt
e
dt
a0
Re{s} a
时收敛。
e
0

( s a ) t
1 dt sa
拉普拉斯变换的解析式是一个无穷积分,这个无穷积分是存在收
敛性问题的。上面的例题也告诉我们,对于某些

信号与系统教学课件第九章拉普拉斯变换

信号与系统教学课件第九章拉普拉斯变换

其他数值计算方法简介
数值逆变换方法
介绍基于数值计算的拉普拉斯逆 变换方法,如直接数值积分法、
离散化方法等。
优缺点分析
比较各种数值计算方法的优缺点, 如计算精度、计算速度、ቤተ መጻሕፍቲ ባይዱ用范围 等。
应用场景
根据实际需求,选择适合的数值计 算方法进行拉普拉斯逆变换求解, 并给出具体应用场景和实例。
04 拉普拉斯变换在信号处理 中的应用举例
频移性质
时域函数的频移对 应频域函数的相移 和幅度变化。
积分性质
时域函数的积分对 应频域函数的除法 运算。
拉普拉斯变换与傅里叶变换关系
01
02
03
04
拉普拉斯变换是傅里叶变换的 推广,可以处理不收敛的信号

傅里叶变换是拉普拉斯变换在 虚轴上的特例,即s=jω时的拉
普拉斯变换。
拉普拉斯变换提供了更广泛的 信号分析工具,适用于更复杂
信号与系统教学课件第九章拉普拉 斯变换
目录
• 拉普拉斯变换基本概念 • 拉普拉斯变换在信号与系统中的应用 • 拉普拉斯逆变换及计算方法 • 拉普拉斯变换在信号处理中的应用举

目录
• 拉普拉斯变换在控制系统稳定性分析 中的应用
• 总结回顾与拓展延伸
01 拉普拉斯变换基本概念
拉普拉斯变换定义
拉普拉斯变换是一种线性积分变 换,用于将时间域函数转换为复
上升时间与峰值时间
上升时间是指系统响应从某一低电平上升到高电平所需的时间,峰值时间是指系统响应达到最大值所需的时 间。上升时间和峰值时间是评价系统快速性的重要指标之一。
超调量与调节时间
超调量是指系统响应在达到稳态值之前出现的最大偏离量,调节时间是指系统响应从瞬态过程进入稳态过程 所需的时间。超调量和调节时间是评价系统准确性和稳定性的重要参数。

拉普拉斯变换

拉普拉斯变换

拉普拉斯变换 1、基本定义: ⎰∞∞--=dt e t x s X st )()(2、收敛域:(1)右边信号:−→−=<0)(0t x t t 时,极点右侧 (2)左边信号:−→−=>0)(0t x t t 时,极点左侧(3)双边信号:占有整个时间域的信号−→−带状区域 (4)时限信号:有限长信号,只在某一个时间区间不等于0,在其他所有时间内全为0−→−整个s 区域(意味着变换式中没有极点)4、拉式变换的主要性质:)()()()()()(11s X t x s X t x s X t x LLL−→←−→←−→← ROC: 21R R R5、用拉普拉斯变换分析与表征LTI 系统一个LTI 系统输入和输出的拉普拉斯变换是通过乘以系统单位冲激响应的拉普拉斯变换联系起来的,即)()()(s X s H s Y =当ωj s =时,)(s H 就是这个LTI 系统的频率响应;在拉普拉斯变换范畴内,一般称)(s H 为系统函数或转移函数(1)因果性(2)稳定性6、由线性常系数微分方程表征的LTI 系统 见504P7、系统函数的代数属性与方框图表示两系统级联:单位冲激响应 )()()(21t h t h t h *=→)()()(21s H s H s H=两系统并联:单位冲激响应 )()()()()()(2121s H s H s H t h t h t h +=→+=两LTI 系统的反馈互联:)()(1)()()()(211s H s H s H s H s X s Y +==−→−+)(t x )(t y8、单边拉式变换:重要价值在于求解非零状态下的系统响应⎪⎩⎪⎨⎧==⎰⎰+-∞-ωσωσπj j st st ds e s X t x dte t x s X )(21)()()(0 收敛域:要么在极点的右半平面,要么是整个s 平面(1)单边拉普拉斯变换性质(2)利用单边拉普拉斯变换求解微分方程 见518P。

(完整版)拉普拉斯变换

(完整版)拉普拉斯变换

t
Re(s) 0
4)卷积特性(convolution)
若 则有
f1 (t) L F1 (s) f 2 (t) L F2 (s)
Re( s) s 1 Re( s) s 2
f1 (t) f 2 (t) L F1 (s)F2 (s) Re( s) max( s 1,s 2 )
L[ f1(t) f2 (t)] 0
F
(
s)
1 s2
e - s 1
Re(s) -
例:单边周期信号的Laplace变换。 f(t)
单边周期信号的定义:
f(t)=f(t+nT); t0, n=0,1,2,...
0 T 2T 3T
t
定义:f1
(t)
f 0
(t
)
0t T 其它
单边周期信号
f (t)
k 0
f1(t - kT)u(t - kT)
L[ f (t)]
k 0
e-skT F1(s)
F1(s) 1- e-sT
Re(s) 0
例:求如图所示周期方波的Laplace变换。
f(t) 1
01
2345 周期方波信号
L[u(t) - u(t -1)] 1- e-s s
F(s) 1- e-s s
1 1- e-2s
1 s(1 e-s )

f (t) L F (s) Re( s) s 0
则有 f (at) L 1 F ( s ) aa
a 0, Re( s) as 0
L[ f (t)]
0-
f (at)e-st dt
1 a 0-
f
-st
(t)e a dt
1
F(

拉普拉斯变换LAPLACE TRANSFORM

拉普拉斯变换LAPLACE TRANSFORM

17
若 x(t ) 是右边信号,即 T 则有
t , 0 在ROC内,
绝对可积,即:
x(t )e
0t

T

T
x(t )e
0t
dt
若1
0 ,则
e


dt

T
x(t )e 1t dt
x(t )e e
( 1 0 )T 2 Re[ s] 1 此时 x(t ) 是双边信号。
26
27
作业5月8日
• 9.2 • 9.3 • 9.21(b)(h)
28
§9.3 拉氏反变换
The Inverse Laplace Transform
一. 定义: 由 X (s) x(t )e st dt

例2.反因果信号: x(t ) e at u(t )
X ( s ) e e dt e
at st
0
0
( s a )t
1 dt , Re[s] a sa
8
由以上例子,可以看出: 1. 拉氏变换与傅里叶变换一样存在收敛问题。并非 任何信号的拉氏变换都存在,也不是 S 平面上的任 何复数都能使拉氏变换收敛。 2.拉氏变换积分收敛的那些复数 S 的集合,称为拉
础可以用几何求值的方法从零极点图求得 X ( j ) 的特性。这在定性分析系统频率特性时有很大
用处。
34
作两个矢量 s 和 a ,则 1
矢量
X (s1 )
1.单零点情况: X ( s) s a 零点s a , 要求出 s s1 时的 X (s1 ),可以
X (s1 ) (s1 a)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拉普拉斯变换是研究线性系统的重要工具,可将时域中的常系数线性微分方程转换为复频域中的常系数线性代数方程。与傅立叶变换相比,拉普拉斯变换具有更广泛的应用范围,能处理更多类型的信号,如正指数信号。拉普拉斯变换的引入解决了傅立叶变换的局限性,如不是所有信ቤተ መጻሕፍቲ ባይዱ都满足狄里赫利条件。单边拉普拉斯变换特别适用于因果信号,其收敛域简单且计算方便。收敛域的确定是拉普拉斯变换中的一个关键问题,它决定了变换的有效性和应用范围。通过选择合适的实数σ,可以使得信号f(t)e-σt绝对可积,从而保证拉普拉斯变换的存在性。在确定收敛域时,需要考虑信号的特性以及变换的定义,确保变换后的函数在收敛域内具有唯一的解析表示。
相关文档
最新文档