韦达定理专项练习

合集下载

韦达定理练习题

韦达定理练习题

韦达定理练习题一、选择题A. x1 + x2 = b/aB. x1 x2 = b/aC. x1 x2 = √(b^2 4ac)/aD. x1 x2 = c/a2. 已知一元二次方程x^2 5x + 6 = 0的两根为x1和x2,则x1 x2的值为?A. 5B. 6C. 5D. 63. 若一元二次方程2x^2 4x + 1 = 0的两根为x1和x2,则x1 + x2的值为?A. 2B. 4C. 2D. 4二、填空题1. 已知一元二次方程x^2 3x + 2 = 0的两根为x1和x2,则x1 + x2 = ______,x1 x2 = ______。

2. 若一元二次方程3x^2 6x + 2 = 0的两根为x1和x2,则x1 + x2 = ______,x1 x2 = ______。

3. 已知一元二次方程4x^2 + 8x 9 = 0的两根为x1和x2,则x1 + x2 = ______,x1 x2 = ______。

三、解答题1. 已知一元二次方程x^2 (2a+1)x + a^2 = 0的两根为x1和x2,求x1 + x2和x1 x2的值。

2. 设一元二次方程x^2 (k+3)x + 2k = 0的两根为x1和x2,求x1 + x2和x1 x2的值。

3. 已知一元二次方程x^2 (a+b)x + ab = 0的两根为x1和x2,求x1 + x2和x1 x2的值。

4. 若一元二次方程x^2 (m+n)x + mn = 0的两根为x1和x2,求x1 + x2和x1 x2的值。

5. 已知一元二次方程x^2 (2a1)x + a^2 a = 0的两根为x1和x2,求x1 + x2和x1 x2的值。

四、应用题1. 在一个一元二次方程中,两根的和是10,两根的积是21,请写出这个方程。

2. 如果一元二次方程的两根分别是方程系数的倒数,且两根的积是1/6,求这个方程。

3. 有一个一元二次方程,它的两根的和是它们积的3倍,且两根的积是12,求这个方程。

韦达定理全面练习题及答案

韦达定理全面练习题及答案

韦达定理全面练习题及答案1、韦达定理(根与系数的关系)韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么1212,b c x x x x a a+=-= 说明:定理成立的条件0?≥练习题一、填空:1、如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = , 1x 2x = .2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = .5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = .6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 .7、以13+,13-为根的一元二次方程是 .8、若两数和为3,两数积为-4,则这两数分别为 .9、以23+和23-为根的一元二次方程是 .10、若两数和为4,两数积为3,则这两数分别为 .11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += .12、若方程062=+-m x x 的一个根是23-,则另一根是,m 的值是 .13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = .14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么nmx x ++2在实数范围内可分解为 .二、已知方程0232=--x x 的两根为1x 、2x ,且1x >2x ,求下列各式的值:(1)2212x x += ;(2)2111x x += ;(3)=-221)(x x = ;(4))1)(1(21++x x = .三、选择题:1、关于x 的方程p x x --822=0有一个正根,一个负根,则p 的值是()(A )0 (B )正数(C )-8 (D )-42、已知方程122-+x x =0的两根是1x ,2x ,那么=++1221221x x x x ()(A )-7 (B) 3 (C ) 7 (D) -33、已知方程0322=--x x 的两根为1x ,2x ,那么2111x x +=()(A )-31 (B) 31(C )3 (D) -34、下列方程中,两个实数根之和为2的一元二次方程是()(A )0322=-+x x (B ) 0322=+-x x(C )0322=--x x (D )0322=++x x5、若方程04)103(422=+--+a x a a x 的两根互为相反数,则a 的值是() (A )5或-2 (B) 5 (C ) -2 (D) -5或26、若方程04322=--x x 的两根是1x ,2x ,那么)1)(1(21++x x 的值是()(A )-21(B) -6 (C ) 21 (D) -257、分别以方程122--x x =0两根的平方为根的方程是()(A )0162=++y y (B ) 0162=+-y y(C )0162=--y y (D )0162=-+y y四、解答题:1、若关于x 的方程02352=++m x x 的一个根是-5,求另一个根及m 的值.2、关于x 的方程04)2(222=++-+m x m x 有两个实数根,且这两根平方和比两根积大21. 求m 的值.3、若关于x 的方程03)2(2=---+m x m x 两根的平方和是9. 求m 的值.4、已知方程032=--m x x 的两根之差的平方是7,求m 的值.5、已知方程0)54(22=+--+m x m m x 的两根互为相反数,求m 的值.6、关于x 的方程0)2()14(322=++--m m x m x 的两实数根之和等于两实数根的倒数和,求m 的值.7、已知方程m x x 322+-=0,若两根之差为-4,求m 的值.8、已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值.答案:。

韦达定理练习题

韦达定理练习题

韦达定理练习题一、选择题1. 已知二次方程 \( ax^2 + bx + c = 0 \) 的两个根为 \( x_1 \) 和 \( x_2 \),根据韦达定理,下列哪个选项是错误的?A. \( x_1 + x_2 = -\frac{b}{a} \)B. \( x_1x_2 = \frac{c}{a} \)C. \( x_1 + x_2 = \frac{c}{a} \)D. \( x_1x_2 = -\frac{b}{a} \)2. 对于二次方程 \( x^2 - 5x + 6 = 0 \),使用韦达定理,下列哪个选项是正确的?A. 根的和为 5B. 根的积为 -6C. 根的和为 3D. 根的积为 63. 如果二次方程 \( 2x^2 - 4x + 1 = 0 \) 的一个根是 \( x = 1 \),那么另一个根是:A. 0.5B. 2C. -2D. 1二、填空题4. 假设二次方程 \( 3x^2 - 6x + 2 = 0 \) 的根为 \( x_1 \) 和\( x_2 \),根据韦达定理,\( x_1 + x_2 \) 等于 ________。

5. 对于二次方程 \( x^2 + 4x + 4 = 0 \),其根的积 \( x_1x_2 \)等于 ________。

6. 如果二次方程 \( ax^2 + bx + c = 0 \) 的两个根相等,即\( x_1 = x_2 \),那么 \( b^2 \) 与 \( 4ac \) 之间的关系是\( b^2 \) ________ \( 4ac \)。

三、解答题7. 已知二次方程 \( x^2 - 7x + 10 = 0 \),求出它的两个根,并验证韦达定理是否成立。

8. 给定一个二次方程 \( 2x^2 - 12x + 10 = 0 \),使用韦达定理求出它的两个根,并计算根的和与积。

9. 如果二次方程 \( ax^2 + bx + c = 0 \) 的根的和为 5,根的积为 6,求出 \( a \)、\( b \) 和 \( c \) 的值。

根与系数的关系(韦达定理)(专项培优训练)—2023-2024学年九年级数学上册(苏科版)(解析版)

根与系数的关系(韦达定理)(专项培优训练)—2023-2024学年九年级数学上册(苏科版)(解析版)

根与系数的关系(韦达定理)(专项培优训练)试卷满分:100分考试时间:120分钟难度系数:0.43一、选择题(本大题共10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在括号内)1.(2分)(2023•射阳县校级二模)已知x1、x2是关于x的方程x2﹣2x﹣1=0的两个实数根,下列结论正确的是()A.x1=x2B.﹣2x1=﹣2x2C.x1+x2=﹣2 D.x1•x2=1解:∵Δ=(﹣2)2﹣4×1×(﹣1)=8>0,∴方程有两个不相等的实数解,即x1≠x2,所以A选项不符合题意;∵x1、x2是关于x的方程x2﹣2x﹣1=0的两个实数根,∴﹣2x1﹣1=0,﹣2x2﹣1=0,∴﹣2x1﹣1=﹣2x2﹣1,即﹣2x1=﹣2x2,所以B选项符合题意;∵x1、x2是关于x的方程x2﹣2x﹣1=0的两个实数根,∴x1+x2=2,x1x2=﹣1,所以C选项和D选项不符合题意.故选:B.2.(2分)(2023•苏州模拟)关于x的方程(x﹣1)(x﹣2)﹣m2=0的根的情况是()A.有一正一负两个不相等的实数根B.有两个正的不相等实数根C.至多有一个正的实数根D.至少有一个正的实数根解:方程整理得:x2﹣3x+2﹣m2=0,∵Δ=9﹣4(2﹣m2)=4m2+1>0,∴方程有两个不相等的实数根,∵方程的两个根和为3>0,∴至少有一个正的实数根,故选:D.3.(2分)(2020秋•盐城期末)设a,b是方程x2+x﹣2021=0的两个实数根,则a2+b2+a+b的值是()A.0 B.2020 C.4040 D.4042解:∵a,b是方程x2+x﹣2021=0的两个实数根,∴a2+a=2021、b2+b=2021、a+b=﹣1,∴则a2+b2+a+b=(a2+a)+(b2+b)=2021+2021=4042.故选:D.4.(2分)(2020秋•金坛区月考)已知关于x的一元二次方程x2+(2m+1)x+m﹣1=0的两个根分别是x1,x2,且满足x12+x22=3,则m的值是()A.0 B.﹣2 C.0 或﹣D.﹣2或0解:∵方程x2+(2m+1)x+m﹣1=0的两个根分别是x1,x2,∴x1+x2=﹣(2m+1),x1x2=m﹣1,∵x12+x22=3,即(x1+x2)2﹣2x1x2=3,∴[﹣(2m+1)]2﹣2(m﹣1)=3,解得m=0或m=﹣,∵Δ=(2m+1)2﹣4(m﹣1)=4m2+5>0,∴m为任意实数,方程均有实数根,∴m=0或m=﹣均符合题意.故选:C.5.(2分)(2020秋•江都区月考)若a、b是一元二次方程x2+3x﹣6=0的两个不相等的根,则a2﹣3b的值是()A.3 B.﹣15 C.﹣3 D.15解:∵a、b是一元二次方程x2+3x﹣6=0的两个不相等的根,∴a2+3a﹣6=0,即a2=﹣3a+6,a+b=﹣3,则a2﹣3b=﹣3a+6﹣3b=﹣3(a+b)+6=﹣3×(﹣3)+6=9+6=15,故选:D.6.(2分)(2021•建邺区一模)关于x的方程3x2﹣7x+4=0的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.无实数根解:∵a=3,b=﹣7,c=4,∴Δ=b2﹣4ac=49﹣4×3×4=1>0,∴关于x的方程3x2﹣7x+4=0有两个实数根.设关于x的方程3x2﹣7x+4=0的两根分别是α、β.又∵αβ=>0,∴α、β同号.∵α+β=>0,∴α>0,β>0.∴该方程有两个正根.故选:A.7.(2分)(2021秋•常熟市校级月考)关于x的一元二次方程x2+kx﹣3=0有一个根为﹣3,则另一根为()A.1 B.﹣2 C.2 D.3解:设方程x2+kx﹣3=0的另一个根为a,∵关于x的一元二次方程x2+kx﹣3=0有一个根为﹣3,∴由根与系数的关系得:﹣3a=﹣3,解得:a=1,即方程的另一个根为1,故选:A.8.(2分)(2020秋•锡山区校级月考)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的有()个.①方程x2﹣x﹣2=0是倍根方程;②若(x﹣2)(mx+n)=0是倍根方程,则4m2+5mn+n2=0;③若p、q满足pq=2,则关于x的方程px2+3x+q=0是倍根方程;④若方程ax2+bx+c=0是倍根方程,则必有2b2=9ac.A.1 B.2 C.3 D.4 解:①解方程x2﹣x﹣2=0得,x1=2,x2=﹣1,得,x1≠2x2,∴方程x2﹣x﹣2=0不是倍根方程;故①不正确;②若(x﹣2)(mx+n)=0是倍根方程,x1=2,因此x2=1或x2=4,当x2=1时,m+n=0,当x2=4时,4m+n=0,∴4m2+5mn+n2=(m+n)(4m+n)=0,故②正确;③∵pq=2,则px2+3x+q=(px+1)(x+q)=0,∴,x2=﹣q,∴,因此是倍根方程,故③正确;④方程ax2+bx+c=0的根为:,,若x1=2x2,则,即,∴,∴,∴,∴9(b2﹣4ac)=b2,∴2b2=9ac.若2x1=x2时,则,则,∴,∴,∴,∴b2=9(b2﹣4ac),∴2b2=9ac.故④正确,∴正确的有:②③④共3个.故选:C.9.(2分)(2018秋•相城区期中)已知m,n是方程x2﹣2018x+2019=0的两个根,则(m2﹣2019m+2018)(n2﹣2019n+2018)的值是()A.1 B.2 C.4037 D.4038解:∵m,n是方程x2﹣2018x+2019=0的两个根,∴m+n=2018,mn=2019,m2﹣2018m+2019=0,n2﹣2018n+2019=0,∴m2﹣2019m+2018=﹣m﹣1,n2﹣2019n=﹣n﹣1,∴(m2﹣2019m+2018)(n2﹣2019n+2018)=(﹣m﹣1)(﹣n﹣1)=mn+m+n+1=2019+2018+1=4038,故选:D.10.(2分)(2021•武进区校级自主招生)设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A.B.C.D.解:方法1、∵方程有两个不相等的实数根,则a≠0且Δ>0,由(a+2)2﹣4a×9a=﹣35a2+4a+4>0,解得﹣<a<,∵x1+x2=﹣,x1x2=9,又∵x1<1<x2,∴x1﹣1<0,x2﹣1>0,那么(x1﹣1)(x2﹣1)<0,∴x1x2﹣(x1+x2)+1<0,即9++1<0,解得<a<0,最后a的取值范围为:<a<0.故选D.方法2、由题意知,a≠0,令y=ax2+(a+2)x+9a,由于方程的两根一个大于1,一个小于1,∴抛物线与x轴的交点分别在1两侧,当a>0时,x=1时,y<0,∴a+(a+2)+9a<0,∴a<﹣(不符合题意,舍去),当a<0时,x=1时,y>0,∴a+(a+2)+9a>0,∴a>﹣,∴﹣<a<0,故选:D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请将正确答案填写在横线上)11.(2分)(2023•工业园区校级模拟)已知:一元二次方程x2﹣5x+c=0有一个根为2,则另一根为.解:设方程的另一根为α,则α+2=5,解得α=3.故答案为:3.12.(2分)(2023•徐州二模)关于x的方程x2+mx﹣4=0的一根为x=1,则另一根为.解:设这个一元二次方程的另一根为x2,∵关于x的方程x2+mx﹣4=0的一根为x=1,∴∴x2=﹣4故答案为:x=﹣4.13.(2分)(2023•玄武区二模)已知关于x的方程x2+px+q=0的两根为﹣3和﹣1,则p+q=.解:∵关于x的方程x2+px+q=0的两根为﹣3和﹣1,∴﹣3+(﹣1)=﹣p,﹣3×(﹣1)=q,∴p=4,q=3,∴p+q=7,故答案为:7.14.(2分)(2023•海陵区校级二模)若关于x的一元二次方程x2+5x﹣1=0的两个实数根分别为x1,x2,则x1+x2=.解:∵关于x的一元二次方程x2+5x﹣1=0的两个实数根分别为x1,x2,∴,故答案为:﹣5.15.(2分)(2022秋•海陵区校级期末)已知一元二次方程2x2+4x﹣3=0的两根为a和b,则a2+b2的值为.解:由题意可得,a+b=﹣=﹣2,ab=﹣∴a2+b2=(a+b)2﹣2ab=4﹣2×(﹣)=7,故答案为:7.(2011秋•江宁区校级期中)已知x1,x2是方程x2+6x+3=0的两实数根,则+的值为.(2分)16.解:根据题意得x1+x2=﹣6,x1x2=3,所以+====10.故答案为10.17.(2分)(2021秋•东台市期中)在解一元二次方程x2+px+q=0时,小明看错了系数p,解得方程的根为1和﹣3;小红看错了系数q,解得方程的根为4和﹣2,则p=,q=.解:∵小明看错了系数p,解得方程的根为1和﹣3,∴q=1×(﹣3)=﹣3,∵小红看错了系数q,解得方程的根为4和﹣2,∴﹣p=4﹣2=2,∴p=﹣2,故答案为:﹣2、﹣3.18.(2分)(2020x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另外一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的有(填序号)①方程x2﹣x﹣2=0是倍根方程;②若(x﹣2)(mx+n)=0是倍根方程:则4m2+5mn+n2=0;③若p,q满足pq=2,则关于x的方程px2+3x+q=0是倍根方程;④若方程以ax2+bx+c=0是倍根方程,则必有2b2=9ac.解:①解方程x2﹣x﹣2=0得,x1=2,x2=﹣1,得,x1≠2x2,∴方程x2﹣x﹣2=0不是倍根方程;故①不正确;②若(x﹣2)(mx+n)=0是倍根方程,x1=2,因此x2=1或x2=4,当x2=1时,m+n=0,当x2=4时,4m+n=0,∴4m2+5mn+n2=(m+n)(4m+n)=0,故②正确;③∵pq=2,则:px2+3x+q=(px+1)(x+q)=0,∴x1=﹣,x2=﹣q,∴x2=﹣q=﹣=2x1,因此是倍根方程,故③正确;④方程ax2+bx+c=0的根为:x1=,x2=,若x1=2x2,则,=×2,即,﹣×2=0,∴=0,∴=0,∴3=﹣b∴9(b2﹣4ac)=b2,∴2b2=9ac.若2x1=x2时,则,×2=,即,则,×2﹣=0,∴=0,∴﹣b+3=0,∴b=3,∴b2=9(b2﹣4ac),∴2b2=9ac.故④正确,故答案为:②③④(2分)(2019春•崇川区校级期末)设a,b是方程x2+x﹣2019=0的两个实数根,则a2+2a+b的值为;19.解:∵设a,b是方程x2+x﹣2019=0的两个实数根,∴a+b=﹣1,a2+a﹣2019=0,∴a2+a=2019,∴a2+2a+b=(a2+a)+(a+b)=2019+(﹣1)=2018,故答案为:2018.20.(2分)(2019秋•江阴市期中)若关于x的方程x2+kx﹣12=0的两根均是整数,则k的值可以是.(只要求写出两个).解:∵﹣12=2×(﹣6)=6×(﹣2)=﹣3×4=﹣4×3等等,∴k=2+(﹣6)=﹣4,或6+(﹣2)=4,或k=±1,故填空答案:4或﹣4.答案不唯一.三、解答题(本大题共8小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(6分)(2016秋•吴江区期中)已知关于x的一元二次方程x2﹣6x﹣k2=0(k为常数).(1)求证:方程有两个不相等的实数根;(2)设x1,x2为方程的两个实数根,且x1+2x2=14,试求出方程的两个实数根和k的值.解:(1)证明:∵在方程x2﹣6x﹣k2=0中,Δ=(﹣6)2﹣4×1×(﹣k2)=36+4k2≥36,∴方程有两个不相等的实数根.(2)∵x1,x2为方程x2﹣6x﹣k2=0的两个实数根,∴x1+x2=6,∵x1+2x2=14,∴x2=8,x1=﹣2.将x=8代入x2﹣6x﹣k2=0中,得:64﹣48﹣k2=0,解得:k=±4.答:方程的两个实数根为﹣2和8,k的值为±4.22.(6分)(2015秋•灌云县校级月考)已知关于x的方程(1)若方程有两个相等的实数根,求m的值,并求出此时方程的根;(2)是否存在正数m,使方程的两个实数根的平方和等于224.若存在,求出满足条件的m的值;若不存在,请说明理由.解:(1)∵a=,b=﹣(m﹣2),c=m2方程有两个相等的实数根,∴Δ=0,即Δ=b2﹣4ac=[﹣(m﹣2)]2﹣4××m2=﹣4m+4=0,∴m=1.原方程化为:x2+x+1=0 x2+4x+4=0,(x+2)2=0,∴x1=x2=﹣2.(2)不存在正数m使方程的两个实数根的平方和等于224.∵x1+x2=﹣=4m﹣8,x1x2==4m2x12+x22=(x1+x2)2﹣2x1x2=(4m﹣8)2﹣2×4m2=8m2﹣64m+64=224,即:8m2﹣64m﹣160=0,解得:m1=10,m2=﹣2(不合题意,舍去),又∵m1=10时,Δ=﹣4m+4=﹣36<0,此时方程无实数根,∴不存在正数m使方程的两个实数根的平方和等于224.23.(8分)(2022秋•张家港市校级月考)阅读材料:材料1:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=,x1x2=.材料2:已知一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,求m2n+mn2的值.解:∵一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,∴m+n=1,mn=﹣1,则m2n+mn2=mn(m+n)=﹣1×1=﹣1.根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程2x2﹣3x﹣1=0的两个根为x1,x2,则x1+x2=.x1x2=.(2)类比应用:已知一元二次方程2x2﹣3x﹣1=0的两根分别为m、n,求的值.(3)思维拓展:已知实数s、t满足2s2﹣3s﹣1=0,2t2﹣3t﹣1=0,且s≠t,求的值.解:(1)∵一元二次方程2x2﹣3x﹣1=0的两个根为x1,x2,∴x1+x2==,x1x2==﹣,故答案为:,﹣;(2)∵一元二次方程2x2﹣3x﹣1=0的两根分别为m、n,∴m+n=,mn=﹣,∴====;(3)∵实数s、t满足2s2﹣3s﹣1=0,2t2﹣3t﹣1=0,∴s与t看作是方程2x2﹣3x﹣1=0的两个实数根,∴s+t=,st=﹣,∴(s﹣t)2=(s+t)2﹣4st,(s﹣t)2=()2﹣4×(﹣),(s﹣t)2=,∴s﹣t=,∴====.24.(8分)(2022秋•通州区校级月考)关于x的方程kx2+(k+2)x+=0有两个不相等的实数根.(1)求k的取值范围.(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由.解:(1)∵方程有两个不相等的实数根,∴Δ=(k+2)2﹣4k•>0且k≠0,∴k2+4k+4﹣k2>0,且k≠0,∴k>﹣1且k≠0,即k的取值范围是k>﹣1且k≠0.(2)不存在.理由如下:∵关于x的方程kx2+(k+2)x+=0的两根分别为x1、x2,∴x1+x2=−,x1•x2=,假设存在实数k,使得方程的两个实数根x1,x2的倒数和为0,则x1,x2不为0,且+=0,∴+==﹣=0,∴k+2=0,∴k=﹣2,而k=﹣2与方程有两个不相等实数根的条件k>﹣1且k≠0矛盾,故使方程的两个实数根的倒数和为0的实数k不存在.25.(8分)(2021秋•泰兴市校级月考)关于x的方程:2(x﹣k)=x﹣4①和关于x的一元二次方程:(k﹣1)x2+2mx+(3﹣k)+n=0②(k、m、n均为实数),方程①的解为非正数.(1)求k的取值范围;(2)如果方程②的解为负整数,k﹣m=2,2k﹣n=6且k为整数,求整数m的值;(3)当方程②有两个实数根x1、x2,满足(x1+x2)(x1﹣x2)+2m(x1﹣x2+m)=n+5,且k为正整数,试判断|m|≤2是否成立?请说明理由.解:(1)∵关于x的方程:2(x﹣k)=x﹣4.解得x=2k﹣4∵关于x的方程:2(x﹣k)=x﹣4的解为非正数.∴2k﹣4≤0,∴解得k≤2,∵由方程②可知k≠1,∴k≤2且k≠1.(2)∵一元二次方程一元二次方程:(k﹣1)x2+2mx+(3﹣k)+n=0中k﹣m=2,2k﹣n=6,∴k=m+2,n=2k﹣6=2m+4﹣6=2m﹣2,∴把k=m+2,n=2m﹣2代入原方程得:(m+1)x2+2mx+m﹣1=0,因式分解得,[(m+1)x+(m﹣1)](x+1)=0,∴x1=﹣,x2=﹣1,∵方程②的解为负整数,﹣=﹣1,∴m+1=﹣1或﹣2,∴m=﹣2或﹣3.(3)|m|≤2成立,理由是:由(1)知:k≤2且k≠1,∵k是正整数,∴k=2,(k﹣1)x2+2mx+(3﹣k)+n=0有两个实数根x1、x2,∴x1+x2=﹣=﹣2m,x1x2==1+n,∵(x1+x2)(x1﹣x2)+2m(x1﹣x2+m)=n+5,∴2m2=n+5,Δ=(2m)2﹣4(k﹣1)[(3﹣k)+n]=4m2﹣(n+1)≥0②,把①代入②得:4m2﹣4(2m2﹣4)≥0,m2≤4,则|m|≤2,∴|m|≤2成立.26.(8分)(2022秋•洪泽区期中)阅读材料:材料1:若关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2则x1+x2=﹣,x1x2=.材料2:已知一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,求m2n+mn2的值.解:∵一元二次方程x2﹣x﹣1=0的两个实数根分别为m,n,∴m+n=1,mn=﹣1,则m2n+mn2=mn(m+n)=﹣1×1=﹣1.根据上述材料,结合你所学的知识,完成下列问题:(1)材料理解:一元二次方程x2﹣3x﹣1=0的两个根为x1,x2,则x1+x2=,x1x2=.(2)初步体验:已知一元二次方程x2﹣3x﹣1=0的两根分别为m、n,求的值.(3)类比应用:已知实数s、t满足s2﹣3s﹣1=0,t2﹣3t﹣1=0,且s≠t,求的值.(4)思维拓展:已知实数a、b、c满足a+b=c﹣5、ab=,且c<5,求c的最大值.解:(1)∵一元二次方程x2﹣3x﹣1=0的两个根为x1,x2,∴x1+x2=﹣=3,x1x2==﹣1,故答案为:3,﹣1;(2)∵一元二次方程x2﹣3x﹣1=0的两根分别为m,n,∴m+n=3,mn=﹣1,∴=﹣11;(3)∵实数s,t满足s2﹣3s﹣1=0,t2﹣3t﹣1=0,且s≠t,∴s,t是一元二次方程2x2﹣3x﹣1=0的两个实数根,∴s+t=3,st=﹣1.∵(t﹣s)2=(t+s)2﹣4st=32﹣4×(﹣1)=13,∴t﹣s=±∴;(4)∵a+b=c﹣5,ab=,∴将a、b看作是方程x2﹣(c﹣5)x+=0的两实数根.∵Δ=(c﹣5)2﹣4×≥0,而c<5,∴(5﹣c)3≥64,∴5﹣c≥4,即c≤1,∴c的最大值为1.27.(8分)(2021秋•海陵区校级月考)已知关于x的一元二次方程x2﹣2(k+1)x+k2+k+3=0(k为常数).(1)若方程的两根为菱形相邻两边长,求k的值;(2)是否存在满足条件的常数k,使该方程的两解等于边长为2的菱形的两对角线长,若存在,求k的值;若不存在,说明理由.解:(1)∵方程的两根为菱形相邻两边长,∴此方程有两个相等的实数根,∴Δ=0,∴[﹣2(k+1)]2﹣4(k2+k+3)=0,4(k2+2k+1)﹣4k2﹣4k﹣12=0,4k2+8k+4﹣4k2﹣4k﹣12=0,4k﹣8=0,k=2,(2)不存在,理由如下:∵该方程的两解是菱形的两对角线长,∴a+b=2(k+1),ab=k2+k+3,设菱形的两对角线长a,b.∵菱形的两对角线互相垂直平分,∴由勾股定理得,+=4,+=4,b2+a2=16,∴b2+2ab+a2﹣2ab=16,(a+b)2﹣2ab=16,[2(k+1)]2﹣2(k2+k+3)=16,解得k=,∵Δ=4k﹣8,∴4k﹣8≥0.∴k≥2,∵k=<2,∴不存在满足条件的常数k.28.(8分)(2022秋•惠山区校级月考)已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:无论m取何值方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的等腰三角形的周长.(1)证明:∵Δ=(m+2)2﹣4﹣1)=(m﹣2)2+4,∴在实数范围内,m无论取何值,(m﹣2)2+4≥4,即△≥4,∴关于x的方程x2﹣(m+2)x+(2m﹣1)=0恒有两个不相等的实数根;(2)根据题意,得12﹣1×(m+2)+(2m﹣1)=0,解得,m=2,则方程的另一根为:m+2﹣1=2+1=3;①当该等腰三角形的腰为1、底边为3时,∵1+1<3∴构不成三角形;②当该等腰三角形的腰为3、底边为1时,等腰三角形的周长=3+3+1=7。

韦达定理练习

韦达定理练习

韦达走理练习1、已知关于X的一元二次方程x+x+1二0有两个不相等的实数根,则k的取值范围是5、已知x1、x2是方程x+6x+3二0的两个实数根,则6、如果关于x的一元二次方程x - 6x+c=0没有实根,那么c 的取值范围是_________ 、7、已知关于x的一元二次方程x+2x-m二0有两个相等的实数根,则m的值是8、方程x - 2x - 1=0的两个实数根分别为xl, x2,则二9、已知a, 0是一元二次方程x-4x-3二0的两实数根,则代数式二________ 、10、已知x二2是方程x+mx-2二0的一个解,则方程的另一个解为11、用指定的方法解方程22 - 25=0 x+4x - 5=0[1 **********]的值等于-10+25=04) 2x - 7x+3=012、+3+2=013、已知关于x的一元二次方程x+2x+m二0、当m二3时,判断方程的根的情况;当m=- 3时,求方程的根、14、当实数k为何值时,关于x的方程x-4x+3-k二0有两个相等的实数根?并求出这两个相等的实数根、15、阅读材料:如果xl, x2是一元二次方程ax+bx+c=O的两根,那么有xl+x2= - , xlx2二、这是一元二次方程根与系数的关系,我们利用它可以用来解题,例xl, x2是方程x+6x-3二0的两根,求222222xl+x2的值、解法可以这样:Vxl+x2=6, xlx2=-3 则xl+x2=-2xlx2-2X =42、请你根据以上解法解答下题:已知xl, x2是方程x - 4x+2=0 的两根,求:的值;222222222 的值、16、已知xl, x2是方程3x+2x - 1=0的两根,求xl+x2的值、17、已知关于x的一元二次方程x+kx - 1=0,求证:方程有两个不相等的实数根;设方程的两根分别为xl, x2,且满足xl+x2二xl・x2,求k的值、18、已知x1、x2是一元二次方程2x - 2x+l - 3m=0的两个实数根,且x1、x2满足不等式xl・x2+2>0,求实数m的取值范围、19、已知xl, x2是方程x-2x-2二0的两实数根,不解方程求下列各式的值:20、已知一元二次方程X - 2x+m二0、若方程有两个实数根,求m的范围;若方程的两个实数根为xl, x2,且xl+3x2=3,求m的值、2222222;、21、阅读材料:如果x1、x2是一元二次方程ax+bx+c二0的两根,那么,名的韦达定理、现在我们利用韦达定理解决问题:2已知m与n是方程2x - 6x+3二0的两根填空:m+n= ________ , m* n= _________ ;计算22、已知关于x的一元二次方程x-2x-0二0、如果此方程有两个不相等的实数根,求a的取值范围;如果此方程的两个实数根为xl, x2,且满足23、已知关于x的一元二次方程kx- 2x+k - 1=0有两个不相等的实数根xl, X2、求k的取值范围;是否存在实数k,使+二1成立?若存在,请求出k的值;若不存在,请说明理由、222,、这就是著的值、,求a的值、。

韦达定理练习题初三

韦达定理练习题初三

韦达定理练习题初三一、选择题1. 若一个一元二次方程的两个根分别是α和β,则下列选项中正确的是()A. α + β = 0B. αβ = 1C. α + β = b/aD. αβ = c/a2. 已知一元二次方程x^2 5x + 6 = 0的两个根为x1和x2,则x1 x2的值为()A. 5B. 6C. 5D. 63. 若一元二次方程ax^2 + bx + c = 0(a ≠ 0)的两个根为x1和x2,则下列说法错误的是()A. x1 + x2 = b/aB. x1 x2 = c/aC. 若a > 0,则方程有两个实数根D. 若b^2 4ac < 0,则方程有两个不相等的实数根二、填空题1. 已知一元二次方程2x^2 4x + 1 = 0的两个根为x1和x2,则x1 + x2 = _______。

2. 若一元二次方程x^2 3x + k = 0有两个实数根,则k的取值范围是_______。

3. 已知一元二次方程x^2 (2a+1)x + a^2 = 0的两个根为x1和x2,则x1 x2 = _______。

三、解答题1. 已知一元二次方程x^2 (k+3)x + 2k = 0的两个根为x1和x2,且x1 x2 = 6,求k的值。

2. 已知一元二次方程x^2 (a+2)x + a = 0的两个根为x1和x2,且x1 + x2 = 4,求a的值。

3. 设一元二次方程ax^2 + bx + c = 0(a ≠ 0)的两个根为x1和x2,且x1 + x2 = 5,x1 x2 = 6,求a、b、c的关系。

4. 已知一元二次方程x^2 4x + m = 0的两个根为x1和x2,且x1和x2是两个连续的正整数,求m的值。

5. 已知一元二次方程x^2 (k+2)x + k^2 5 = 0有两个实数根,求k的取值范围。

四、应用题1. 小华解一元二次方程x^2 (3a+1)x + 2a^2 = 0时,发现两个根的和是7,请问a的值是多少?2. 在一个三角形中,三边的长度分别是x、x+1和x+2,已知x是方程x^2 (a+3)x + 6 = 0的一个根,求a的值。

韦达定理(精品讲解与专题练习)

韦达定理(精品讲解与专题练习)

x1 ●2= 3k x1 =-3
k =-2
答:方程的另一个根是-3 , k的值是-2。
1、韦达定理及证明
2、利用韦达定理解决有关一元二次方程 根与系数问题时,注意隐含条件: 根的判别式△ ≥0
1、已知方程3x2-19x+m=0的一个根是1,求它的另一个根及m的值。
解:设方程的另一个根为x1, 19 则x1+1= 3 , ∴ x1=
韦达定理
韦达(1540-1603) 法国数学家 十六世纪最有影响的 数学家之一,被尊称为 “代数学之父”。 他是第一个引进系统的 代数符号,并对方程论 做了改进的数学家。
韦达定理
一:思考、发现, 噢,是这样哎!
二:疑问,为什么会是这样呢?能证明吗?
三:疑问,我学习它有什么用呢?
第一段
做准备:
1.一元二次方程 ax2+bx+c=0(a≠0) 的求根公式:
b b 2 4ac 2a
X=
2.方程合家欢,(
十字相乘 )
是首选。
第一段
解下列方程并完成填空: (1)x2-7x+12=0 (2)x2+3x-4=0 两根 x1 x2 4 -4
1 2
(3) 2x2+3x-2=0 两根和 X1+x2 7 -3 3 - 2 两根积 x 1x 2 12 -4 -1
又x1 1=

m 3
16 3,
,
∴ m= 3x1 = 16 x1+x2= - 2 , x1 · x2=
3 2 3 )+1= 2
2、设x1,x2是方程2x2+4x-3=0的两个根,求(x1+1)(x2+1)的值。
解: 由韦达定理,得

专项韦达定理(一)

专项韦达定理(一)

18、设21,x x 是方程()031222=-+--m x m x 的两个实数根。

(1)当m 取何值时,21x x ≠;(2)当42221=+x x 时,求m 的值。

19、已知关于x 的一元二次方程()()002122>=-+--m m x m mx(1)求证:这个方程有两个不相等的实数根;(2)如果这个方程的两个实数根分别为21,x x 且()()m x x 53321=--,求m 的值.20、已知关于x 的方程:x m x m 22240---=() (1)求证:无论m 取什么实数值,这个方程总有两个相异实根;(2)若这个方程的两个实根x 1、x 2满足x x 212=+,求m 的值及相应的x 1、x 2。

《韦达定理》练习2一 填空题:1、如果()51222+++-m x m x 是一个完全平方公式,则=m ______。

2、已知x 的二次方程04422=++k kx x 的一个根是–2,那么k=__________3、已知关于x 的一元二次方程02=++q px x 的两根为2和3,则q p +=________.4、已知关于x 的一元二次方程02=--k x x 无实数恨,则k 的取值范围是=_________5、关于x 的一元二次方程()01122=-+++k x k kx 有两个实数根,则k 的取值范围是______。

6、若m 、n 是方程0120022=-+x x 的两个实数根,则mn mn n m -+22的值是 .7、如果关于x 的一元二次方程022=+-m x x 有两个相等的实数根,那么m =________。

8、如果关于x 的方程022=+-k x x 的两根的差等于6,那么k=___________9、若关于x 的方程0122=-+kx x 的两根均是整数,则k 的值可以是________。

(只要求写出两个)。

10、已知α,β是方程0522=-+x x 的两个实数根,则ααβα22++的值为=_________二.选择题:11、若关于x 的一元二次方程0122=+-x kx 有实数根,则k 的取值范围是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

韦达定理专项练习
韦达定理:对于一元二次方程20(0)ax
bx c a ++=≠,如果方程有两
个实数根12,x x ,那么 1212,b c x x x x a a
+=-= 说明:定理成立的条件0∆≥
记住下面公式:
专项练习题
一、填空:
1、如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = , 1x 2x = .
2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .
3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .
4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = .
5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = .
6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 .
7、以13+,13-为根的一元二次方程是 .
8、若两数和为3,两数积为-4,则这两数分别为 .
9、以23+和23-为根的一元二次方程是 .
10、若两数和为4,两数积为3,则这两数分别为 .
11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += .
12、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 .
13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = .
14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么n mx x ++2在实数范围内可分解为 .
二、已知方程0232=--x x 的两根为1x 、2x ,且1x >2x ,求下列各式的值:
(1)2212x x += ; (2)2
111x x += ; (3)=-221)(x x = ; (4))1)(1(21++x x = .
三、选择题:
1、关于x 的方程p x x --822=0有一个正根,一个负根,则p 的值是( )
(A )0 (B )正数 (C )-8 (D )-4
2、已知方程122-+x x =0的两根是1x ,2x ,那么=++12
21221x x x x ( )
(A )-7 (B) 3 (C ) 7 (D) -3
3、已知方程0322=--x x 的两根为1x ,2x ,那么2111x x +=( ) (A )-31 (B) 3
1 (C )3 (D) -3 4、下列方程中,两个实数根之和为2的一元二次方程是( )
(A )0322=-+x x (B ) 0322=+-x x (C )
0322=--x x (D )0322=++x x 5、若方程04)103(422=+--+a x a a x 的两根互为相反数,则a 的值是( )
(A )5或-2 (B) 5 (C ) -2 (D) -5或2
6、若方程04322=--x x 的两根是1x ,2x ,那么)1)(1(21++x x 的值是( )
(A )-21 (B) -6 (C ) 21 (D) -2
5 7、分别以方程122--x x =0两根的平方为根的方程是( )
(A )0162=++y y (B ) 0162=+-y y
(C )0162=--y y (D )0162=-+y y
四、解答题(注意解题步骤的规范)
1、若关于x 的方程02352=++m x x 的一个根是-5,求另一个根及m 的值.
2、关于x 的方程04)2(222=++-+m x m x 有两个实数根,且这两根平方和比两根积大21. 求m 的值.
3、若关于x 的方程03)2(2=---+m x m x 两根的平方和是9. 求m 的值.
4、已知方程032=--m x x 的两根之差的平方是7,求m 的值.
5、已知方程0)54(22=+--+m x m m x 的两根互为相反数,求m 的值.
6、关于x 的方程0)2()14(322=++--m m x m x 的两实数根之和等于两实数根的倒数和,求m 的值.
7、已知方程m x x 322+-=0,若两根之差为-4,求m 的值.
8、已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.
(1) 是否存在实数k ,使12123(2)(2)2
x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使
1221
2x x x x +-的值为整数的实数k 的整数值.。

相关文档
最新文档