合金元素对相变影响
1.2 第1章_钢合金化概论-钢的强化和韧化

2、影响塑性的因素
溶质 原子
↓ 韧性,间隙溶质原子 > 置换溶质原子。
晶粒 度
第二 相 杂质
细晶既↑σS,又 ↑ 韧性 → 最佳组织因素。
K↓韧性。K 小、匀、圆、适量 → 工艺努力方向。
杂质往往是形变断裂的孔洞形成核心, → 提高钢的冶金质量是必须的。
3、改善钢韧性的途径
1.改善延性断裂的途径 2.改善解理断裂抗力的途 径 3.改善沿晶断裂抗力的途径
锰对钢γ区的影响
铬对钢γ区的影响
3、对γ-Fe区的影响
A形成元素Ni、Mn等使γ-Fe区扩大→钢在室 温下也为A体 — A钢; F形成元素Cr、Si等使γ-Fe区缩小→钢在高 温下仍为F体 — 铁素体钢。
二、 合金钢的加热A化
α+ Fe3C (或 K) →
γ
α→γ: 需要Fe重组和 C扩散
Fe3C或K:需要溶解于γ
s 0 Ks d
著名的Hall-petch公式 式中,d为晶粒直径,Ks为系数
1/ 2
机理
晶粒越细 → 晶界、亚晶界越多→ 有效 阻止位错运动,产生位错塞积强化。
效果
↑钢的强度,又↑塑性和韧度 这是最理想的强化途径.
3、第二相强化
表达式
P K P
1
机理
微粒第二相钉扎位错运动→强化效果 主要有切割机制和绕过机制。在钢中主 要是绕过机制。 两种情况:回火时弥散沉淀析出强化, 淬火时残留第二相强化。 有效提高强度,但稍降低塑韧性。
效果
提高强度,降低塑韧性
固溶强化的规律
( 1)溶质元素在溶剂中的饱和溶解度愈小,其固溶 强化效果愈好。
置换元素对α-Fe屈服强度的影响
固溶强化的规律
第七章 合金元素在钢中作用

4.常用钢种
40 40 4ZSiMn 低淬透性合金调质钢 Cr、 MnB、 38 40 中淬透性合金调质钢 CrMoAl、 CrNi 高淬透性合金调质钢 CrMnMo、 Cr Ni4WA 40 25 2
四、合金弹簧钢
1.弹簧性能特点
要求必须具有高的弹性极限,高的屈 要求必须具有高的弹性极限, 强比(Gs/50)高的疲劳强度( 强比(Gs/50)高的疲劳强度(尤其 是缺口疲劳强度) 是缺口疲劳强度)及足够韧性。
4.合金元素对M相变温度也有影响 4.合金元素对M
大多数合金元素使Ms点下降 大多数合金元素使Ms点下降
第二节 合金钢的分类与编号
一、合金钢分类 通用分类方法有 : 1.按合金元素的质量分数 2.按合金元素的种类分:铬钢、锰钢、铬镍 按合金元素的种类分:铬钢、锰钢、 钢、硅锰钼钒钢等 3.按主要用途分
建 筑 及 工 程 用 结 构 钢 结构钢 机 械 制 造 用 结 构 钢 工 具 钢 特 殊 性 能 钢
二、合金钢的牌号
命名原则:由钢中碳的质量分数、 命名原则:由钢中碳的质量分数、 合金元素的种类和质量分数的组合 来表示。 来表示。当钢中合金元素的平均质 量分数<1.5%钢号中只标出元素符 量分数<1.5%钢号中只标出元素符 不标明元素的平均质量分数。 号,不标明元素的平均质量分数。 >1.5%、2.5%、3.5%在元素符 当>1.5%、2.5%、3.5%在元素符 号的后面相应标出2 ……。 号的后面相应标出2、3、4……。
例:20crMnTi钢制造汽车变速箱 20crMnTi钢制造汽车变速箱 齿轮工艺路线: 齿轮工艺路线: 锻造 正火 加工齿形 局部镀 铜(防渗碳) 渗碳 防渗碳) 预冷淬火+ 预冷淬火+ 低温回火 喷丸 磨齿 20crMnTi汽车变速齿轮热处理工 20crMnTi汽车变速齿轮热处理工 艺曲线及显微组织与力学性能。 艺曲线及显微组织与力学性能。
合金元素在钢中的作用

1. 合金元素对钢性能的影响钢材中合金元素可以提高钢铁材料洁净度、均匀度、组织细度等影响材料性能,提高冶金行业资源、能源利用效率,实现节能、环保,促进钢铁行业可持续发展。
主要有以下几个方面:(1)结晶强化。
结晶强化就是通过控制结晶条件,在凝固结晶以后获得良好的宏观组织和显微组织,从而提高金属材料的性能。
它包括:(2)形变强化。
金属材料经冷加工塑性变形可以提高其强度。
这是由于材料在塑性变形后位错运动的阻力增加所致。
(3)固溶强化.通过合金化(加入合金元素)组成固溶体,使金属材料得到强化称为固溶强化。
(4)相变强化。
合金化的金属材料,通过热处理等手段发生固态相变,获得需要的组织结构,使金属材料得到强化,称为相变强化。
(5)晶界强化。
晶界部位的自由能较高,而且存在着大量的缺陷和空穴,在低温时,晶界阻碍了位错的运动,因而晶界强度高于晶粒本身;但在高温时,沿晶界的扩散速度比晶内扩散速度大得,晶界强度显著降低。
因此强化晶界对提高钢的热强性是很有效的。
硼对晶界的强化作用,是由于硼偏集于晶界上,使晶界区域的晶格缺位和空穴减少,晶界自由能降低;硼还减缓了合金元素沿晶界的扩散过程;硼能使沿晶界的析出物降低,改善了晶界状态,加入微量硼、锆或硼+锆能延迟晶界上的裂纹形成过程;此外,它们还有利于碳化物相的稳定。
(6)综合强化。
在实际生产上,强化金属材料大都是同时采用几种强化方法的综合强化,以充分发挥强化能力。
例如:1)固溶强化十形变强化,常用于固溶体系合金的强化。
2)结晶强化+沉淀强化,用于铸件强化。
3)马氏体强化+表面形变强化。
对一些承受疲劳载荷的构件,常在调质处理后再进行喷丸或滚压处理。
4)固溶强化+沉淀强化。
对于高温承压元件常采用这种方法,以提高材料的高温性能。
有时还采用硼的强化晶界作用,进一步提高材料的高温强度。
2.合金元素的存在形式根据合金元素与碳的作用不同,可将合金元素分为两大类:碳化物形成元素,它们比Fe具有更强的亲碳能力,在钢中将优先形成碳化物,依其强弱顺序为Zr、Ti、Nb、V、W、Mo、Cr、Mn、Fe等,它们大多是过渡族元素,在周期表上均位于Fe的左侧;非碳化物形成元素,主要包括Ni、Si、Co、Al等,他们与碳一般不生成碳化物而固溶于固溶体中,或生成其它化合物如AlN,一般位于周期表的右侧。
钢的合金化原理

按化学成分分:碳素钢和合金钢;
按工艺特点分:铸钢, 渗碳钢, 易削钢等;
按质量等级分: 普通质量钢、优质钢、高级优质钢和特 级优质钢。
2. 合金钢的编号方法
含碳量C:一般以平均含碳量的万分之几来表示。 如 30CrMnA: 平均含碳量为0.30%; 60Si2Mn: 平均含碳量为0.60%。
一. 铁基固溶体
1. 置换(代位)固溶体 Ni, Co, Mn与γ-Fe形成无限固溶体。 Cr, V 与α-Fe形成无限固溶体。 其它置换原子与γ- Fe或α- Fe形成有限固溶体。
2. 间隙固溶体 间隙原子:B,C,N,O,H 间隙原子总是部分占据溶剂金属点阵的八面体或四面体间
按照M对Fe-M影响:
扩大γ相区 使A3降低,A4升高。一般为奥氏体形成元素。
缩小γ相区: 使A3升高,A4降低。一般为铁素体形成元素。
扩大γ相区 分为两类:
1)开启γ相区
Mn, Ni, Co
Fe-Ni合金
2)扩大γ相区
有C,N,Cu等。如Fe-C相图,形成的扩大的γ相区, 构成了钢的热处理的基础。
合金元素M
平均含量小于1.5%时,只标元素。如:20MnVB: 0.20%C, <1.5%Mn, <0.2%V, 微量B;
平 均 含 量 在 1.5-2.49 % , 2.50-3.49 % …22.50-23.49 %…应相应地写为 2, 3,… , 23; 如 55Si2Mn: 0.55%C, 2%Si, <1.5% Mn 0Cr18Ni9Ti: <0.08%C, 18%Cr, 9%Ni, 少量Ti
Ti, V, Cr, Mn, Co, Ni, Cu; Y, Zr, Nb, Mo; W, Ta, La系。
相变作业及答案

相变作业及答案第一章奥氏体的形成1.从热力学出发,合金相可能存在哪几种状态?试举例说明。
答:按照热力学第二定律,隔离体系中,过程自发的方向为自由能降低的方向。
可以判断,体系处于自由能最低的状态为稳定状态。
照此规律,合金相可以分下述三种状态:1)稳定相:在体系中处于自由能最低的相。
例如,在室温存在的铁素体,在910~1394℃存在的奥氏体等;2)亚稳相:在体系中处于自由能较低且与最低自由能位的相由能垒相分隔的相。
例如,在室温存在的渗碳体,马氏体等;3)不稳定相:在体系中处于自由能较低且与稳定相和亚稳相之间无能垒相分隔的相。
例如,过冷奥氏体等。
2.综述奥氏体的主要性能。
(200字以内)答:奥氏体是碳溶于r Fe中的间隙固溶体,碳的溶入,使点阵发生畸变,从而点阵常数增大;虽然,大多合金元素为置换型的,但由于二者的原子半径不等,从而亦引起点阵畸变,上述因素均使奥氏体得到强化。
在钢的各种组织中,A的比容最小,而线膨胀系数最大,且为顺磁性,根据这些性能不仅可以定量分析奥氏体量,测定相对开始点,而且可以用来控制热处理变形及制作功能元器件。
A的导热系数较小,仅比渗碳体大,为避免工件的变形,故不宜采用过大的加热速较低,易于塑性变形,故工件的塑性变形常常加热度。
由于奥氏体塑性好,σS到奥氏体单相区中进行。
C亚稳平衡图,说明加热时奥氏体的形成机理。
3.画出Fe-Fe3答:加热时,奥氏体的形成,是在固态下实现的相变,它属于形核长大型,是受扩散控制的。
1)奥氏体的形核(1)形核的成分、结构条件由Fe—Fe3C相图知,在A1温度C%0.0218 6.690.77结构体心立方复杂斜方面心立方可见,转变前的二相与转变产物不仅在成分上,而且在结构上都很大差异。
所以,奥氏体的形核需同时满足成分、结构及能量上的要求。
(2)形核的自由能判据珠光体转变为奥氏体时,体系总的自由能变化为其中为A与P的自由能差为晶体缺陷处形核时引起的自由能降低为弹性应变能为产生新相后引入的界面能由热力学知,在A1温度,=0,而、、均为正植,并且仅仅依靠缺陷以及能量起伏提供的能量,并不能使,所以相变必须在一定的过热度下,使得,才能得。
合金元素对钢的影响43

3、增大回火脆性
回火脆性:在某些温度区间回火时,钢的硬度显著下 降的现象。
消除方法:①快冷;②加入 Mo 或 W
合金钢的强化机制:
合金F 的固溶强化 M位错强化 细晶强化(F、M晶粒度,P片间距↓) 弥散强化(也称第二相(沉淀)强化)
六、结构钢中常用的合金元素及其作用
主加元素:Cr、Ni、Si、Mn 辅加元素:W、Mo、V、Ti、B
vtinbzr强烈阻碍a体晶粒长大wcrmo中等阻碍a体晶粒长大mnb促进a体晶粒长大2合金元素对过冷奥氏体转变的影响合金元素对c曲线的影响除co外几乎所有合金元素溶入奥氏体后都增大过冷奥氏体的稳定性使c曲线右移即提高钢的淬透性
第三节 合金元素对钢的影响
为什么要加入合金元素?
一、碳钢的局限性 1.淬透性低 2.强度和屈强比低 3.高温强度差 4.不能满足特殊性能的要求
☆ Co、Ni等部分非碳化物形成元素能增大C的扩散速 度,使奥氏体形成速度加快。
☆ Al、Si、Mn等合金元素对奥氏体形成速度影响不大。
⑵对奥氏体晶粒大小的影响
➢除Co、Ni以外,绝大多数合金元素,特别是强 碳化物形成元素由于形成合金渗碳体和特殊碳化 物,更难溶入奥氏体中,并且阻碍奥氏体晶界的 移动和奥氏体晶粒的长大,起到细化晶粒的作用。 ➢V、Ti、Nb、Zr强烈阻碍A体晶粒长大 ➢W、Cr、Mo中等阻碍A体晶粒长大 ➢Mn、B促进A体晶粒长大
使共晶转变点E 左移 → 钢中出现Ld ' 。
3、对共析转变温度A1的影响 扩大A相区的元素使铁碳合金相图中共析转变 温度A1下降;缩小A相区的元素则使其上升, 并都使共析反应在一个温度范围内进行。
四、合金元素对钢热处理的影响
1、合金元素对加热时相变的影响
相变原理课后习题

1 分析固态相变的动力和阻力。
动力:体系自由能差阻力:1.两相表面能产生界面能2.界面原子同时受到两相的制约,原子所处的位置要偏离其平衡位置,产生额外应变能。
2 讨论固态相变新相形状的影响因素。
3 比较扩散型相变和非扩散型相变的特点。
1以共析钢为例,说明奥氏体的形成过程,并讨论为什么在铁素体相消失的瞬间,还有部分渗碳体未溶解?共析钢在加热和冷却过程中经过A 1线时,发生珠光体与奥氏体间的相互转变,奥氏体形成时系统总自由能变化为只有当温度高于A 1时,珠光体向奥氏体转变的驱动力才能克服界面能,奥氏体才能自发形成。
所以,奥氏体形成必须要有一定的过冷度。
奥氏体的形成过程是由碳含量和点阵结构不同的两个相转变为另一种点阵结构的均匀相,包括C 原子的扩散重新分布和Fe 原子由体心立方向面心立方的点阵重构。
1。
奥氏体的形核形核部位:铁素体和渗碳体两相界面上,以及珠光体团边界处。
2.奥氏体晶核长大,碳在奥氏体中扩散,也在铁素体中扩散。
3. 剩余碳化物溶解4.奥氏体均匀化由于:奥氏体向铁素体中的长大速度比向渗碳体中的长大速度快很多,渗碳体剩余。
2奥氏体的晶粒度由几种表示方法?并讨论影响奥氏体晶粒度的影响因素。
起始晶粒度;实际晶粒度;本质晶粒度。
1 加热温度和保温时间的影响随加热温度升高奥氏体晶粒长大速度提高。
当加热温度较低时,保温时间对奥氏体晶粒大小影响不大;当加热温度较高时,初期保温时间奥氏体晶粒长大速度较大,随后逐渐降低。
加热温度较高时,保温时间应当缩短,才能保持较小的奥氏体晶粒。
eS V G G G G ∆+∆+∆=∆2 加热速度的影响加热速度提高,奥氏体形成温度提高,形核率和长大速率都提高,但形核率和长大速率之比增大,所以起始晶粒细小。
如果保温时间过长,由于起始晶粒小,温度高,晶粒长大速度快,所以只有快速加热、短时保温才能获得细小的实际奥氏体晶粒。
3 钢中碳含量的影响:在一定的碳含量范围内,随碳含量的增加,碳原子和铁原子的扩散速度提高,促进奥氏体晶粒长大;但碳含量过高,二次渗碳体不能全部溶解,形成第二相质点,阻碍奥氏体晶粒长大。
影响珠光体动力学的因素

影响珠光体动力学的因素:(1) 碳含量的影响①亚共析钢先共析铁素体的孕育期增长C%珠光体转变的孕育期增长②过共析钢在完全奥氏体化时,C%↑↑渗碳体的形核率↑先共析渗碳体析出的孕育期↓析出速度↑P转变孕育期↓不完全奥氏体化时,组织为A+残余碳化物促进P形核和晶体长大P转变孕育期↓转变速度↑(2)合金元素的影响除Co以外,只要合金元素溶入奥氏体中,均使钢的TTT 曲线右移;除Ni、Mn以外,常用合金元素使鼻尖温度移向高温。
①合金元素自扩散的影响一般认为,当转变温度较高以及合金元素含量较高时,转变一开始就能形成特殊碳化物(即使仍形成渗碳体型碳化物,也是溶有合金元素的合金渗碳体),即合金元素在转变一开始就通过扩散进行了再分配,而合金元素的扩散系数远远小于碳的扩散系数,使珠光体的转变速度大大减慢。
②合金元素对碳扩散的影响大多数合金元素降低碳在奥氏体中的扩散系数,使珠光体转变速度减慢。
而Co则提高碳在奥氏体中的扩散系数,使珠光体转变加速。
③合金元素对γ→α转变的影响合金元素可改变γ→α转变的速度,如Co提高了γ→α转变的转变速度,加速珠光体的转变。
合金元素对相变临界点的影响在相同转变温度下,加入合金元素将改变过冷度,从而影响珠光体转变速度。
⑤合金元素对γ/α界面移动的拖拽作用在亚共析钢中,Mn、Mo聚集在γ/α相界面处,起到阻止界面移动的拖拽作用,从而降低了先共析铁素体的长大速度,也降低了珠光体的形成速度(3)加热温度和保温时间的影响增加A中碳和合金元素的含量加热温度升高→P转变孕育期↑保温时间延长A成分越均匀,A晶粒越粗大→P形核部位↓推迟P转变(4)奥氏体晶粒度的影响单位体积内的晶界面积↑,P形奥氏体晶粒越细小核部位增多,促进P转变。
促进先共析铁素体和先共析渗碳体析出。
(5)应力和塑性变形的影响对奥氏体施加拉应力或进行塑性变形,将造成晶体点阵畸变和位错密度增高,有利于碳和Fe原子的扩散及晶体点阵重构,促进珠光体的形核和晶体长大,加速珠光体的转变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 合金元素对加热时相转变的影响
合金元素影响加热时奥氏体形成的速度和奥氏体晶粒的大小。
(1)对奥氏体形成速度的影响:Cr、Mo、W、V等强碳化物形成元素与碳的亲合力大, 形成难溶于奥氏体的合金碳化物, 显著减慢奥氏体形成速度;Co、Ni等部分非碳化物形成元素, 因增大碳的扩散速度, 使奥氏体的形成速度加快;Al、Si、Mn等合金元素对奥氏体形成速度影响不大。
(2)对奥氏体晶粒大小的影响:大多数合金元素都有阻止奥氏体晶粒长大的作用, 但影响程度不同。
强烈阻碍晶粒长大的元素有:V、Ti、Nb、Zr等;中等阻碍晶
粒长大的元素有:W、Mn、Cr等;对晶粒长大影响不大的元素有:Si、Ni、Cu等;促进晶粒长大的元素:Mn、P等。
2. 合金元素对过冷奥氏体分解转变的影响
除Co外, 几乎所有合金元素都增大过冷奥氏体的稳定性, 推迟珠光体类型组织的转变, 使C曲线右移, 即提高钢的淬透性。
常用提高淬透性的元素有:Mo、Mn、Cr、Ni、Si、B等。
必须指出, 加入的合金元素, 只有完全溶于奥氏体时, 才能提高淬透性。
如果未完全溶解, 则碳化物会成为珠光体的核心, 反而降低钢的淬透性。
另外, 两种或多种合金元素的同时加入(如, 铬锰钢、铬镍钢等), 比单个元素对淬透性的影响要强得多。
除Co、Al外, 多数合金元素都使Ms和Mf点下降。
其作用大小的次序是:Mn、Cr、Ni、Mo、W、Si。
其中Mn的作用最强, Si实际上无影响。
Ms和Mf点的下降, 使淬火后钢中残余奥氏体量增多。
残余奥氏体量过多时,可进行冷处理(冷至Mf点以下), 以使其转变为马氏体; 或进行多次回火, 这时残余奥氏体因析出合金碳化物会使Ms、Mf点上升, 并在冷却过程中转变为马氏体或贝氏体(即发生所谓二次淬火)。
3. 合金元素对回火转变的影响
(1)提高回火稳定性合金元素在回火过程中推迟马氏体的分解和残余奥氏体的
转变(即在较高温度才开始分解和转变),提高铁素体的再结晶温度, 使碳化物难以聚集长大,因此提高了钢对回火软化的抗力, 即提高了钢的回火稳定性。
提高回火稳定性作用较强的合金元素有:V、Si、Mo、W、Ni、Co等。