1.1集合的概念与运算

合集下载

高考数学一轮复习 1.1 集合的概念与运算

高考数学一轮复习 1.1 集合的概念与运算
的属性(是点集、数集或其他情形),从研究集合中元素的构成入手是解决集 合问题的前提.
2.如果集合 A 中含有 n 个元素,则集合 A 有 2n 个子集,2n-1 个真子集. 3.正确理解交、并、补集的含义是解决集合的运算问题的关键.数轴和 Venn 图是进行集合交、并、补运算的有力工具.
12
核心考点
(4)空集: 不含任何元素的集合
叫做空集,记作: ⌀
.
规定:空集是 任何集合的子集 .
4
知识梳理
双击自测
知识梳理
-5-
3.集合的基本运算
并集
符号 表示
A∪B
图形 表示
交集 A∩B
补集
设全集为 U,集合 A 的 补集∁UA
含义
A∪
B={x|x∈A,或 x∈B}
A∩B={x|x∈A,且 x∈B}
∁UA={x|x∈U,且 x∉ A}
-13-
考点一
考点二
考点三
考点一集合的基本概念
1.设集合 A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则 M 中元素的
个数为( )
A.3
B.4
C.5
D.6
关闭
由题意知 x=a+b,a∈A,b∈B,则 x 的可能取值为 5,6,7,8.因此,集合 M 共有 4 个元素.故选 B.
关闭
B
13 解析 答案
核心考点
-14-
考点一
考点二
考点三
2.若集合 A={x∈R|ax2+ax+1=0}中只有一个元素,则 a=( )
(6)设全集为 R,函数 y= 1-������2的定义域为 M,则∁RM={x|x>1,或 x<1}.( )

【九章方略】集合与常用逻辑用语含答案解析

【九章方略】集合与常用逻辑用语含答案解析

第一章集合与常用逻辑用语§1.1 集合的概念及运算已知数集A={0,1,x+2},那么x的取值集合为() A.{x⎪⎪⎪x≠-2} B.{x⎪⎪⎪x≠-1}C.{x⎪⎪⎪x≠-2且x≠-1} D.x∈R下列判断正确的命题个数为()①a∈{a}; ②{a}∈{a,b};③{a,b}⊆{b,a}; ④∅⊆{0};A.1个B.2个C.3个D.4个集合A={1,2,3}的非空真子集的个数为()A.3个B.6个C.7个D.8个设全集U=R,A={x⎪⎪x<1},B={x⎪⎪x>m},若∁U A⊆B,则实数m的取值范围为()A.m<1 B.m≤1 C.m>1 D.m≥1已知{1,2}⊆A⊆{1,2,3,4,5},则集合A的个数为____________ .设全集U=R,A={x|1≤x≤3},B={x|2<x<4},则A∩B=____________;A∪B=____________;A∪∁U B=____________.【知识导图】【知识梳理】集合与元素(1)集合中元素的三个特征:______、______、______.(2)元素与集合的关系是____或______两种,用符号__或____表示. (3)集合的表示法:______、______、______. (4)常见数集的记法集合间的基本关系集合的基本运算知识点一 集合的含义与表示已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为____________.【跟踪反馈】(2020·江苏模拟)已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b ,0},则a2019+b2019=____________.若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a=()A.92 B.98C.0D.0或98知识点二集合的基本关系(2019·安徽三模)已知集合A={x|x(x-2)<0}, B={x⎪⎪ln x>0},则A∩B是( )A.{x|1<x<2} B.{x|0<x<2}C.{x⎪⎪x>0} D.{x⎪⎪x>2}【跟踪反馈】(2019·广东三模)已知集合A={x|x2+x-2<0},集合B={x|x>0},则集合A∪B=( )A.{x|x<1} B.{x|x>-2}C.{x|0<x<1} D.{x|-2<x<1}已知集合A={x|-1<x<2},B={x|-m<x<m},若B⊆A,则m的取值范围为____________.知识点三集合中的新定义问题(1)(2020·武汉模拟)设A,B是两个非空集合,定义集合A-B={x|x∈A,且x∉B}.若A={x∈N|0≤x≤5},B={x|x2-7x+10<0},则A-B=() A.{0,1} B.{1,2}C.{0,1,2} D.{0,1,2,5}(2)若对任意的x∈A,有1x∈A,则称A是“伙伴关系集合”,则集合M=⎩⎨⎧⎭⎬⎫-1,0,12,1,2的所有非空子集中,具有伙伴关系的集合的个数为____________.【跟踪反馈】设A ,B 是非空集合,定义A ⊗B ={x |x ∈A ∪B 且x ∉A ∩B }.已知集合A ={x |0<x <2},B ={y |y ≥0},则A ⊗B =____________.若全集U =R ,集合A ={x |x 2-5x -6<0},B ={x |2x <1},则如图1-1-1所示阴影部分表示的集合是( )A .{x |2<x <3}B .{x |-1<x ≤0}C .{x |0≤x <6}D .{x |x <-1}图1-1-1一、选择题已知集合A={y|y=|x|-1,x∈R},B={x|x≥2},则下列结论正确的是( ) A.-3∈A B.3∉BC.A∩B=B D.A∪B=B(2019·石嘴山三模)已知集合P={-1,1},集合Q={x∈N|x<3},则P∪Q =( )A.{-1,1,2} B.{-1,0,1,2}C.{-1,1,2,3} D.{-1,0,1,2,3}(2019·海南三模)设集合A={a,a+1},B={1,2,3},若A∪B的元素个数为4,则a的取值集合为( )A.{0} B.{0,3}C.{0,1,3} D.{1,2,3}已知集合A={x|-1<x<0},B={x|x≤a},若A⊆B,则a的取值范围为( ) A.(-∞,0] B.[0,+∞)C.(-∞,0) D.(0+∞)(2020·沈阳模拟)已知全集U ={1,3,5,7},集合A ={1,3},B ={3,5},则如图1-1-2所示阴影区域表示的集合为( )A .{3}B .{7}C .{3,7}D .{1,3,5}图1-1-2(多选)设集合M ={-1,1},N =⎝ ⎛⎭⎪⎫x |1x <2,则下列结论中正确的是()A .NM B .M NC .M ∩N =M D. M ∩N =N二、填空题(2020·江苏模拟)若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a =____________.(2019·江苏卷)集合{-1,0,1}共有____________个子集.已知集合A={m+2,2m2+m},若3∈A,则实数m的值为____________.(2019·江苏卷)已知集合A={-1,0,1,6},B={x|x>0,x∈R},则A∩B =____________,A∩B的子集个数为____________.三、解答题(2020·江苏模拟)已知全集U={2,3,a2+2a-3},A={|2a-1|,2},∁U A ={5},求实数a的值.(2020·江苏模拟)已知集合A={x|1<x<3},集合B={x|2m<x<1-m}.(1)当m=-1时,求A∪B;(2)若A⊆B,求实数m的取值范围;(3)若A∩B=∅,求实数m的取值范围.【B 组】 提升篇一、选择题(2019·安徽三模)设集合A ={x ∈N |x 2-4x -5<0},集合B ={y |y =4-x ,x∈[2,4]},则A ∩B 等于( )A .{1,2}B .{3,4}C .∅D .{0,1,2}(2020·湖南模拟)已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x +31-x ≥0,则∁R A =( )A .[-3,1)B .(-∞,-3]∪(1,+∞)C .(-3,1)D .(-∞,-3)∪[1,+∞)(多选)已知集合P ={2,3,4,5,6},Q ={3,5,7}.若M =P ∩Q ,则下列结论正确的有( )A .集合M 中有2个元素B .集合M 的真子集个数为3C .集合M 的子集个数为3D .集合M 的子集个数为4二、填空题若集合A ={x |x 2+2x -8<0},集合B ={x |5-m <x <2m -1},若全集U=R ,A ∩(∁U B )=A ,则实数m 的取值范围是____________.若=⎩⎨⎧⎭⎬⎫sin π2,a ,b a =⎩⎨⎧⎭⎬⎫cos π2,a 2,a +b ,则a =____________,a2020+b2020的值为____________.三、解答题若集合A={(x,y)|x2+mx-y+2=0,x∈R},B={(x,y)|x-y+1=0,0≤x≤2},当A∩B≠∅时,求实数m的取值范围.C因为集合的元素满足互异性,所以x+2≠0且x+2≠1,得x≠-2且x≠-1,故选C.C①集合的表示方法,正确;②两个集合之间的关系,不正确;③正确;④∅是任何集合的子集,正确,故选C.B若一个集合的元素个数为n,则其子集个数为2n,真子集的个数为2n-1,非空子集的个数为2n-1,则非空真子集的个数为2n-2,故选B.A因为集合A={x⎪⎪x<1},所以集合∁U A={x⎪⎪⎪x≥1},又∁U A⊆B,所以m<1,故选A.,全集与补集的性质.8问题可转化为求集合{3,4,5}的子集个数,即集合A的个数为8.{x|2<x≤3};{x|1≤x<4};{x|x≤3或x≥4}在数轴上分别表示出集合A,B,∁U B,即得∁U B={x≤2或x≥4}.交集与并集的概念;②交集与并集的运算和性质.集合与元素确定性、互异性、无序性.属于或不属于∈或∈/列举法、描述法、图示法.(4)常见数集的记法集合间的基本关系A B(或B A)集合的基本运算知识点一 集合的含义与表示-32因为3∈A ,所以m +2=3或者2m 2+m =3.当m +2=3时,m =1,此时m +2=2m 2+m ,不成立,舍去.当2m 2+m =3时,m =1(舍去)或者m =-32 ,此时集合A =⎩⎨⎧⎭⎬⎫12,3.综上所述,满足条件的实数m =-32.确定元素与集合之间的关系,注意检验集合是否满足元素的互异性. 【跟踪反馈】-1由条件得ba =0,所以b =0.因此{a ,0,1}={a 2,a ,0},所以⎩⎪⎨⎪⎧a 2=1,a ≠1,所以a =-1.所以a2019+b2019=-1.D知识点二 集合的基本关系A因为集合A ={x |0<x <2},B ={x ⎪⎪x >1},所以A ∩B ={x ⎪⎪1<x <2},故答案选A.判断集合间的关系,要注意先对集合进行化简,再进行判断,并且在描述关系时,要尽量精确.常用数轴、Venn 图等来直观解决这类问题.【跟踪反馈】B因为集合A ={x |-2<x <1},所以A ∪B ={x ⎪⎪⎪x >-2},故选B.m ≤1当m ≤0时,B =∅;当m >0时, ⎩⎪⎨⎪⎧m ≤2,-m ≥-1,得0<m ≤1.所以m ≤1.知识点三 集合中的新定义问题(1)D ;(2)7(1)A ={0,1,2,3,4,5},B ={x |2<x <5},所以A -B ={0,1,2,5}. (2)具有伙伴关系的元素组有-1;1;2和12共三组,它们中任一组、两组、三组均可组成非空伙伴关系集合,所以非空伙伴关系集合分别为{1},{-1},⎩⎨⎧⎭⎬⎫12,2,{-1,1},⎝ ⎛⎭⎪⎫-1,12,2,⎝ ⎛⎭⎪⎫1,12,2,⎝ ⎛⎭⎪⎫-1,1,12,2,共7个.(1)紧扣“新”定义,把新定义所叙述的问题的本质弄清楚.(2)把握“新”性质,要善于从试题中发现可以使用集合性质的一些因素.(3)遵守“新”法则,准确把握新定义的运算法则【跟踪反馈】{0}∪[2,+∞)A ∪B ={x |x ≥0},A ∩B ={x |0<x <2},则A ⊗B ={0}∪[2,+∞).CA={x|-1<x<6},B={x|x<0},阴影表示数字集合A∩(∁U B),而∁U B={x|x≥0},所以A∩(∁U B)={x|0≤x<6}.故选C.C因为集合A={y|y≥-1},所以A∩B={x|x≥2}=B,A∪B={x|x≥-1}=A,故选C.B因为集合Q={0,1,2},所以P∪Q={-1,0,1,2},故选B.B若a=0,则A∪B={0,1,2,3}共4个元素;若a=1,则A∪B={1,2,3}共3个元素;若a =2,则A ∪B ={1,2,3}共3个元素;若a =3,则A ∪B ={1,2,3,4}共4个元素.所以a =0或a =3,故选B.D因为A ⊆B ,则a >0,故选D.B将元素按要求填入相应区域可得阴影区域表示的集合为{7}.故选B.BC因为集合N =⎩⎨⎧⎭⎬⎫x |x ≥12或x ≤0,所以M N ,故选B ,C二、填空题0或98因为集合A 只有一个元素,所以a =0或⎩⎪⎨⎪⎧a ≠0,(-3)2-8a =0,得a =0或a=98.8元素个数为n的集合的子集个数为2n.-32∵3∈A,∴m+2=3或2m2+m=3;当m+2=3时,m=1,2m2+m=3,根据集合中元素的互异性,m=1不合题意(舍去);当2m2+m=3时,m=1(舍去)或m=-32,m=-32时,A=⎩⎨⎧⎭⎬⎫12,3,符合题意,综上m=-3 2.{1,6};4因为A={-1,0,1,6},B={x|x>0,x∈R},故A∩B={1,6}.三、解答题2因为∁U A ={5},∴5∈U , ∴a 2+2a -3=5,a 2+2a -8=0,∴a =2或a =-4.a =2时,|2a -1|=3满足题设;a =-4时,|2a -1|=9∈/ U ,舍去.所以a 的值为2.(1){x |-2<x <3};(2)(-∞,-2];(3)[0,+∞)(1)当m =-1时,B ={x |-2<x <2},则A ∪B ={x |-2<x <3}. (2)由A ⊆B知⎩⎪⎨⎪⎧2m ≤1,1-m ≥3,解得m ≤-2,即实数m 的取值范围为(-∞,-2].(3)由A ∩B =∅,得①若2m ≥1-m ,即m ≥13时,B =∅,符合题意;②若2m <1-m ,即m <13时,由A ∩B =∅得⎩⎪⎨⎪⎧m <13,1-m ≤1或⎩⎪⎨⎪⎧m <13,2m ≥3,得0≤m <13. 综上知m ≥0,即实数m 的取值范围为[0,+∞).【B 组】 提升篇一、选择题D因为集合A ={0,1,2,3,4},集合B ={x ⎪⎪⎪0≤x ≤2},则A ∩B ={0,1,2},故选D.D由x +31-x≥0,得(x +3)(x -1)≤0且x ≠1,∴A ={x |-3≤x <1},∴∁R A =(-∞,-3)∪[1,+∞).故选D.ABD因为P ∩Q ={3,5},所以集合M 的子集个数为4,真子集个数为3.故选A ,B ,D .二、填空题(-∞,3]∵集合A ={x |x 2+2x -8<0}={x |-4<x <2},B ={x |5-m <x <2m -1},全集U =R ,∴∁U B ={x |x ≤5-m 或x ≥2m -1},∵A ∩(∁U B )=A ,∴A ⊆∁U B ,∴当B ≠∅时,⎩⎪⎨⎪⎧5-m <2m -1,5-m ≥2或⎩⎪⎨⎪⎧5-m <2m -1,2m -1≤-4,解得2<m ≤3;当B =∅时,5-m ≥2m -1,m ≤2.综上所述,实数m 的取值范围是(-∞,3].1;1因为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫sin π2,a ,b a =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫cos π2,a 2,a +b ,所以⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b},所以⎩⎪⎨⎪⎧b a =0,a a 2=1,解得⎩⎪⎨⎪⎧a =-1,b =0或⎩⎪⎨⎪⎧a =1,b =0(舍去),故a 2020+b 2020=1.三、解答题m ∈(-∞,-1]∵集合A ={(x ,y )|x 2+mx -y +2=0,x ∈R }={(x ,y )|y =x 2+mx +2,x ∈R },B ={(x ,y )|x -y +1=0,0≤x ≤2}={(x ,y )|y =x +1,0≤x ≤2},∴A ∩B ≠∅等价于方程组⎩⎪⎨⎪⎧y =x 2+mx +2,y =x +1在x ∈[0,2]上有解,即x 2+mx +2=x +1在[0,2]上有解,即x 2+(m -1)x +1=0在[0,2]上有解,显然,x =0不是该方程的解,从而问题等价于-(m -1)=x +1x 在(0,2]上有解.又∵当x ∈(0,2]时,1x +x ≥2(当且仅当1x =x ,即x =1时取“=”),∴-(m -1)≥2,∴m ≤-1,即m ∈(-∞,-1].。

高三数学一轮复习 第1单元 1.1 集合的概念与运算课件 理 新人教A版

高三数学一轮复习 第1单元 1.1 集合的概念与运算课件 理 新人教A版

1.集合元素的三个特征:确定性、互异性、 无序性 . 2.集合的表示法:列举法、 描述法 、图示法.
提示:(1)注意集合表示的列举法与描述法在形式上的区别,列举法一般适合 于有限集,而描述法一般适合于无限集.
(2)注意集合中元素的互异性:集合{x|x2-2x+1=0}可写为{1},但不可写为 {1,1}. 3.元素与集合的关系有:属于和不属于,分别用符号∈ 和 ∉ 表示.
结合思想方法的运用.
二、集合的运算 1.两个集合的交、并、补的运算分别与逻辑联结词且、或、非对应,但不能等同
和混淆. 2.数形结合的思想方法在集合的运算中也是常见的,对于一般的集合运算时可用
文氏图直观显示,例如若A⊆S,B⊆S,则全集S最多被四个集合A∩B,A∩(∁SB), B∩(∁SA)和∁U(A∪B)所划分;对于可以用区间表示的数集可以利用数轴进行集合 的运算.
【例2】 (2010·衡水中学调研)已知集合A={x|x2+ x+1=0},B={y|y=x2+a,
x∈R},若A∩B≠∅,则a的取值范围是( )
A.(-∞,- ] B.
C.
D.(-∞,-2]
解析:由x2+ x+1=0得(2x+1)(x+2)=0,则x=- ,或x=-2,
既A= ≤- .
. 又B={y|y=x2+a,x∈R}=[a,+∞).由A∩B≠∅,知a
1.已知全集U=R,则正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的韦恩 (Venn)图是( )
解析:N={x|x2+x=0}={-1,0},则N M,故选B. 答案:B
2. 已知集合A={-1,2},B={x|mx+1=0},若A∩B=B,则所有实数m的值组 成的集合是( ) A.{-1,2} B.{1,- } C.{1,0,- } D.{-1,0, } 解析:∵A∩B=B,即B⊆A,若m=0,B=∅⊆A; 若m≠0,B={x|x=- };由B⊆A得:- =-1或- =2, ∴m=1或m=- .综上选C. 答案:C

1.1 集合与集合的运算

1.1 集合与集合的运算
2
={x|-2≤x<4}. (2)当P≠⌀时,由P∪Q=Q,得P⊆Q,所以
a 1 2, 2a 1 5, 2a 1 a 1,
解得0≤a≤2;
高考第一轮复习用书· 数学(理科)
第一章 1.1 集合与集合的运算
当P=⌀,即2a+1<a+1时,有P⊆Q,得a<0. 综上,实数a的取值范围是(-∞,2]. 【点评】求集合的交、并、补集时,注意数形结合的运用;P ∪Q=Q⇔P⊆Q,P∩Q=P⇔P⊆Q,当子集是待定的集合时,要
高考第一轮复习用书· 数学(理科)
2
第一章 1.1 集合与集合的运算
(2)已知集合A={x|ax -3x-4=0,x∈R},若A中至多有一个元素, 则实数a的取值范围是 .
【分析】(1)按照新的定义,先确定集合A*B中的元素,然后求 出该集合中所有元素之和. (2)集合A是方程ax -3x-4=0的解集,A中至多有一个元素,则a ≠0时,应有Δ≤0;a=0时,恰有一个元素. 【解析】(1)依据A*B的定义,当A={1,2},B={0,2}时,A*B={0, 2,4},因此A*B中所有元素之和为6.
∪A.
5.A∩ UA=⌀,A∪ UA=U, U( UA)=A.
高考第一轮复习用书· 数学(理科)
第一章 1.1 集合与集合的运算
6. (A∪B)=( UA)∩( UB), (A∩B)=( UA)∪( UB).
U U
7.A∪B=A⇔B⊆A,A∩B=A⇔A⊆B,A⊆B且B⊆C⇒A⊆C.
高考第一轮复习用书· 数学(理科)
【点评】理解子、交、并、补集的概念,掌握有关术语和符 号,熟练掌握两个集合之间包含关系的判断问题.在判断两个 抽象集合之间的关系时,则应尽可能地把问题具体化、形象 化;在判断两个具体集合之间的关系时,要弄清楚集合元素所 具有的形式及其含有哪些元素.

2021版《九章方略》§1.1 集合的概念及运算

2021版《九章方略》§1.1 集合的概念及运算

C.(-3,1)
D.(-∞,-3)∪[1,+∞)
D 由1x-+x3≥0,得(x+3)(x-1)≤0 且 x≠1,∴A={x|-3≤x<1},∴∁RA=(-∞,-3) ∪[1,+∞). 故选 D.
§1.1 集合的概念及运算
二、多项选择题
已知集合 P={2,3,4,5,6},Q={3,5,7}.若 M=P∩Q,则下列结论正确的有( )
§1.1 集合的概念及运算
§1.1 集合的概念及运算
第一章 集合与常用逻辑用语
§1.1 集合的概念及运算
§1.1 集合的概念及运算
一、单项选择题
【A 组】 基础篇
已知集合 A={y|y=|x|-1,x∈R},B={x|x≥2},则下列结论正确的是( )
A.-3∈A
B.3∉B
C.A∩B=B
D.A∪B=B
C
因为集合 A={y|y≥-1},所以 A∩B={x|x≥2}=B,A∪B={x|x≥-1}=A,故选 C.
§1.1 集合的概念及运算
(2020·石嘴山模拟)已知集合 P={-1,1},集合 Q={x∈N|x<3},则 P∪Q=( )
A.{-1,1,2}
B.{-1,0,1,2}
C.{-1,1,2,3}
A∩B 等于()
A.{1,2}
B.{3,4}
C.∅
D.{0,1,2}
D
因为集合 A={0,1,2,3,4},集合 B={x0≤x≤2 },则 A∩B={0,1,2},故选 D.
§1.1 集合的概念及运算
(2020·湖南模拟)已知集合 A=x|x1+-3x≥0,则∁RA=(
)
A.[-3,1)
B.(-∞,-3]∪(1,+∞)

(完整版)高中数学中集合的概念与运算的解题归纳,推荐文档

(完整版)高中数学中集合的概念与运算的解题归纳,推荐文档

§1.1 集合的概念与运算一、知识导学1.集合:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.2.元素:集合中的每一个对象称为该集合的元素,简称元.3.子集:如果集合A 的任意一个元素都是集合B 的元素(若则),则称A a ∉B a ∈集合A 为集合B 的子集,记为A B 或B A ;如果A B ,并且A B ,这时集合A 称为集⊆⊇⊆≠合B 的真子集,记为A B 或B A.4.集合的相等:如果集合A 、B 同时满足A B 、B A ,则A=B.⊆⊇5.补集:设A S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,⊆记为 .A C s 6.全集:如果集合S 包含所要研究的各个集合,这时S 可以看做一个全集,全集通常记作U.7.交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作A B.⋂8.并集:一般地,由所有属于集合A 或者属于B 的元素构成的集合,称为A 与B 的并集,记作A B.⋃9.空集:不含任何元素的集合称为空集,记作.Φ10.有限集:含有有限个元素的集合称为有限集.11.无限集:含有无限个元素的集合称为无限集.12.集合的常用表示方法:列举法、描述法、图示法(Venn 图).13.常用数集的记法:自然数集记作N ,正整数集记作N +或N ,整数集记作Z ,有理*数集记作Q ,实数集记作R .二、疑难知识导析1.符号,,,,=,表示集合与集合之间的关系,其中“”包括“”和⊆⊇⊆“=”两种情况,同样“”包括“”和“=”两种情况.符号,表示元素与集合之间⊇∈∉的关系.要注意两类不同符号的区别.2.在判断给定对象能否构成集合时,特别要注意它的“确定性”,在表示一个集合时,要特别注意它的“互异性”、“无序性”.3.在集合运算中必须注意组成集合的元素应具备的性质.4.对由条件给出的集合要明白它所表示的意义,即元素指什么,是什么范围.用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或文氏图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用文氏图形表示,容易被忽视,如在关系式中,B =易漏掉的情况.Φ5.若集合中的元素是用坐标形式表示的,要注意满足条件的点构成的图形是什么,用数形结合法解之.6.若集合中含有参数,须对参数进行分类讨论,讨论时既不重复又不遗漏.7.在集合运算过程中要借助数轴、直角坐标平面、Venn 图等将有关集合直观地表示出来.8.要注意集合与方程、函数、不等式、三角、几何等知识的密切联系与综合使用.9.含有n 个元素的集合的所有子集个数为:,所有真子集个数为:-1n 2n2三、经典例题导讲[例1] 已知集合M={y |y =x 2+1,x∈R },N={y|y =x +1,x∈R },则M∩N=( )A .(0,1),(1,2)B .{(0,1),(1,2)}C .{y|y=1,或y=2}D .{y|y≥1}错解:求M∩N 及解方程组 得 或 ∴选B⎩⎨⎧+=+=112x y x y ⎩⎨⎧==10y x ⎩⎨⎧==21y x 错因:在集合概念的理解上,仅注意了构成集合元素的共同属性,而忽视了集合的元素是什么.事实上M 、N 的元素是数而不是实数对(x,y ),因此M 、N 是数集而不是点集,M 、N 分别表示函数y =x 2+1(x∈R ),y =x +1(x∈R )的值域,求M∩N 即求两函数值域的交集.正解:M={y |y =x 2+1,x∈R }={y |y ≥1}, N={y|y=x +1,x∈R }={y|y∈R }.∴M∩N={y |y ≥1}∩{y|(y∈R)}={y |y ≥1}, ∴应选D .注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x |y =x 2+1}、{y |y =x 2+1,x ∈R }、{(x ,y )|y =x 2+1,x ∈R },这三个集合是不同的.[例2] 已知A={x |x 2-3x +2=0},B={x |ax -2=0}且A∪B=A,求实数a 组成的集合C .错解:由x 2-3x +2=0得x =1或2.当x =1时,a =2, 当x =2时,a=1.错因:上述解答只注意了B 为非空集合,实际上,B=时,仍满足A∪B=A.当a =0时,B=,符合题设,应补上,故正确答案为C={0,1,2}.正解:∵A∪B=A ∴B A 又A={x |x 2-3x +2=0}={1,2}∴B=或 ∴C={0,1,2}{}{}21或[例3]已知m A,n B, 且集合A=,B=,又∈∈{}Z a a x x ∈=,2|{}Z a a x x ∈+=,12|C=,则有: ( ){}Z a a x x ∈+=,14|A .m +n A B. m +n B C.m +n C D. m +n 不属于A ,B ,C 中任意一个∈∈∈错解:∵m A ,∴m =2a ,a ,同理n =2a +1,a Z, ∴m +n =4a +1,故选C∈Z ∈∈错因是上述解法缩小了m +n 的取值范围.正解:∵m A, ∴设m =2a 1,a 1Z , 又∵n ,∴n =2a 2+1,a 2 Z ,∈∈B ∈∈∴m +n =2(a 1+a 2)+1,而a 1+a 2 Z , ∴m +n B, 故选B.∈∈[例4] 已知集合A={x|x 2-3x -10≤0},集合B={x|p +1≤x≤2p-1}.若BA ,求实数p 的取值范围.错解:由x 2-3x -10≤0得-2≤x≤5.欲使B A ,只须 3351212≤≤-⇒⎩⎨⎧≤-+≤-p p p ∴ p 的取值范围是-3≤p≤3.错因:上述解答忽略了"空集是任何集合的子集"这一结论,即B=时,符合题设. 正解:①当B≠时,即p +1≤2p-1p≥2.由B A 得:-2≤p+1且2p -1≤5.由-3≤p≤3.∴ 2≤p≤3②当B=时,即p +1>2p -1p <2.由①、②得:p≤3.点评:从以上解答应看到:解决有关A∩B=、A∪B=,A B 等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题.[例5] 已知集合A={a,a +b,a +2b},B={a,ac,ac 2}.若A=B ,求c 的值.分析:要解决c 的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.解:分两种情况进行讨论.(1)若a +b=ac 且a +2b=ac 2,消去b 得:a +ac 2-2ac=0,a=0时,集合B 中的三元素均为零,和元素的互异性相矛盾,故a≠0.∴c 2-2c +1=0,即c=1,但c=1时,B 中的三元素又相同,此时无解.(2)若a +b=ac 2且a +2b=ac ,消去b 得:2ac 2-ac -a=0,∵a≠0,∴2c 2-c -1=0,即(c -1)(2c +1)=0,又c≠1,故c=-.21点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验.[例6] 设A 是实数集,满足若a∈A,则A ,且1∉A.a -11∈1≠a ⑴若2∈A,则A 中至少还有几个元素?求出这几个元素.⑵A 能否为单元素集合?请说明理由.⑶若a∈A,证明:1-∈A.a1⑷求证:集合A 中至少含有三个不同的元素.解:⑴2∈A ⇒ -1∈A ⇒∈A ⇒ 2∈A 21∴ A 中至少还有两个元素:-1和21⑵如果A 为单元素集合,则a =a -11即=012+-a a该方程无实数解,故在实数范围内,A 不可能是单元素集⑶a∈A ⇒ ∈A ⇒ ∈A ⇒A ,即1-∈A a -11a --1111111---a a ∈a 1⑷由⑶知a∈A 时,∈A, 1-∈A .现在证明a,1-, 三数互不相等.a-11a 1a 1a -11①若a=,即a2-a+1=0 ,方程无解,∴a≠a -11a-11②若a=1-,即a 2-a+1=0,方程无解∴a≠1- a 1a1 ③若1- =,即a2-a+1=0,方程无解∴1-≠.a 1a -11a 1a -11综上所述,集合A 中至少有三个不同的元素.点评:⑷的证明中要说明三个数互不相等,否则证明欠严谨.[例7] 设集合A={|=,∈N +},集合B={|=,∈N +},试证:a a 12+n n b b 542+-k k k A B .证明:任设∈A,a 则==(+2)2-4(+2)+5 (∈N +),a 12+n n n n ∵ n∈N*,∴ n +2∈N*∴ a∈B 故 ①显然,1,而由{}*2,1|Nn n a a A ∈+==∈B={|=,∈N +}={|=,∈N +}知1∈B,于是A≠B b b 542+-k k k b b 1)2(2+-k k ②由①、② 得A B .点评:(1)判定集合间的关系,其基本方法是归结为判定元素与集合之间关系.(2)判定两集合相等,主要是根据集合相等的定义.四、典型习题导练1.集合A={x|x 2-3x -10≤0,x∈Z},B={x|2x 2-x -6>0, x∈ Z},则A∩B 的非空真子集的个数为( )A .16B .14C .15D .322.数集{1,2,x 2-3}中的x 不能取的数值的集合是( )A .{2,-2 }B .{-2,- }C .{±2,± }D .{,-}55553. 若P={y|y=x 2,x∈R},Q={y|y=x 2+1,x∈R},则P∩Q 等于( )A .PB .QC .D .不知道4. 若P={y|y=x 2,x∈R},Q={(x ,y)|y=x 2,x∈R},则必有( )A .P∩Q=B .P QC .P=QD .P Q5.若集合M ={},N ={|≤},则M N =( )11|<xx x 2x x A . B .}11|{<<-x x }10|{<<x x C . D .}01|{<<-x x ∅6.已知集合A={x|x 2+(m +2)x +1=0,x∈R },若A∩R +=,则实数m 的取值范围是_________.7.(06高考全国II 卷)设,函数若的解集为A ,a R ∈2()22.f x ax x a =--()0f x >,求实数的取值范围。

第一章§1.1 集合的概念及运算

第一章§1.1 集合的概念及运算

栏目索引
3.(2018天津文,1,5分)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩C= () A.{-1,1} B.{0,1} C.{-1,0,1} D.{2,3,4} 答案 C 本题主要考查集合的运算. 由题意得A∪B={1,2,3,4,-1,0},∴(A∪B)∩C={1,2,3,4,-1,0}∩{x∈R|-1≤x<2}={-1,0,1}.故选C.
栏目索引
高考数学 (天津专用)
第一章 集合与常用逻辑用语
§1.1 集合的概念及运算
五年高考
栏目索引
A组 自主命题·天津卷题组
1.(2019天津理,1,5分)设集合A={-1,1,2,3,5},B={2,3,4},C={x∈R|1≤x<3},则(A∩C)∪B= () A.{2} B.{2,3} C.{-1,2,3} D.{1,2,3,4} 答案 D 本题主要考查集合的交集、并集运算,通过集合的交集、并集运算考查了学生的 运算求解能力,体现了数学运算的核心素养. 由题意可知A∩C={1,2},则(A∩C)∪B={1,2,3,4},故选D.
2.(2017山东,1,5分)设函数y= 4 x2 的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B= ( ) A.(1,2) B.(1,2] C.(-2,1) D.[-2,1) 答案 D 由4-x2≥0,解得-2≤x≤2,由1-x>0,解得x<1,∴A∩B={x|-2≤x<1}.故选D.
栏目索引
2.(2018天津,1,5分)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁RB)= ( ) A.{x|0<x≤1} B.{x|0<x<1} C.{x|1≤x<2} D.{x|0<x<2} 答案 B 本题主要考查集合的基本运算. 由B={x|x≥1},得∁RB={x|x<1}, 借助于数轴,可得A∩(∁RB)={x|0<x<1},故选B.

高考数学《集合的概念及运算》

高考数学《集合的概念及运算》
(2)本题考查集合的并集运算、一元一次不等式和一元二次不等式的解法.A={x|x(2- x)≥0}={x|0≤x≤2},B={x|1≤x≤4},所以 A∪B={x|0≤x≤4},故选 A.
(3)本题考查韦恩图及集合的基本运算.如图所示的阴影部分用集合可表示为(∁UA)∩B 或 ∁U(A∩B)∩B.故选 BC.
(2022·连云港模拟)若非空且互不相 等的集合 M,N,P 满足:M∩N=M,N∪P= P,则 M∪P=( )
A.∅ B.M C.N D.P
板书
【答案】D
【解析】本题考查集合的交集、并集运算.由题意可知 M∩N=M,则 M N,又 N∪P =P,则 N P,所以 M N P,所以 M∪P=P,故选 D.
【归纳】研究集合问题时,要把握以下几个关键点:一是集合中的元素是什么,即弄清集合 是数集还是点集;二是集合中的元素满足什么限制条件,特别注意集合中元素的互异性;三是 能根据已知条件(元素的限制条件)构造关系式解决相关问题.
(2022·江苏模拟)已知 a,b∈R,若 a,ba,1={a2,a+b,0},则 a2 019+b2 019= ____________.
A.(∁UA)∪B C.∁U(A∩B)∩B
B.(∁UA)∩B D.∁U(A∪B)∪B
板书
【答案】(1)B (2)A (3)BC
【解析】(1)由对数中真数大于 0,得 M={x|x<-2 或 x>2},所以∁RM={x|-2≤x≤2}. 又 N={x|0<x<4},所以(∁RM)∩N={x|0<x≤2},故选 B.
【归纳】(1)紧扣“新”定义,把新定义所叙述的问题的本质弄清楚.(2)把握“新”性质,要善于 从试题中发现可以使用集合性质的一些因素.(3)遵守“新”法则,准确把握新定义的运算法则.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.1集合的概念与运算1.集合与元素(1)集合元素的三个特征:_,_,_(2)元素与集合的关系是_或_关系,用符号或表示.(3)集合的表示法:、(4)常见数集的记法(1)子集:.(2)真子集:(3)空集(4)若A含有n个元素,则A的子集有个,A的非空子集有个.(5)集合相等:若A⊆B,且B⊆A,则3.集合的运算并集的性质:A∪∅=A;A∪A=A;A∪B=B∪A;A∪B=A⇔.交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔补集的性质:A∪(∁U A)=;A∩(∁U A)=;∁U(∁U A)=1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)A={x|y=x2+1}={y|y=x2+1}={(x,y)|y=x2+1}.()(2){1,2,3}={3,2,1}.()(3)∅={0} ()(4)若A∩B=A∩C,则B=C. ()(5)已知集合M={1,2,3,4},N={2,3},则M∩N=N. ()(6)若全集U={-1,0,1,2},P={x∈Z|x2<4},则∁U P={2}.() 2.(2013·北京)已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B等于 () A.{0} B.{-1,0}C.{0,1} D.{-1,0,1}3.(2013·山东)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是()A .1B .3C .5D .94. (2013·课标全国Ⅱ)已知集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N 等于( )A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}5. 设集合A ={x |x 2+2x -3>0},集合B ={x |x 2-2ax -1≤0,a >0}.若A ∩B 中恰含有一个整数,则实数a 的取值范围是________.题型一 集合的基本概念例1 (1)已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( ) A .3 B .6C .8D .10(2)设a ,b ∈R ,集合{1,a +b ,a }=⎩⎨⎧⎭⎬⎫0,b a ,b ,则b -a =________. 思维启迪 解决集合问题首先要理解集合的含义,明确元素的特征,抓住集合的“三性”.思维升华 (1)用描述法表示集合,首先要搞清楚集合中代表元素的含义,再看元素的限制条件,明白集合的类型,是数集、点集还是其他类型集合;(2)集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.(1)已知集合A={(x,y)|x,y∈R,且x2+y2=1},B={(x,y)|x,y∈R,且y=x},则A∩B的元素个数为()A.0 B.1 C.2 D.3(2)若集合A={x|ax2-3x+2=0}的子集只有两个,则实数a=________.题型二集合间的基本关系例2(1)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1 B.2 C.3 D.4(2)已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},若B⊆A,则实数m的取值范围是________.思维启迪对于含有有限个元素的集合的子集,可按含元素的个数依次写出;B⊆A不要忽略B=∅的情形.思维升华(1)空集是任何集合的子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解;(2)已知两个集合间的关系求参数时,关键是将条件转化为元素或区间端点间的关系,进而转化为参数所满足的关系.常用数轴、Venn 图来直观解决这类问题.(1)设M为非空的数集,M⊆{1,2,3},且M中至少含有一个奇数元素,则这样的集合M共有() A.6个B.5个C.4个D.3个(2)已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.题型三 集合的基本运算例3 (1)(2013·湖北)已知全集为R ,集合A =⎩⎨⎧⎭⎬⎫x |(12)x ≤1,B ={}x |x 2-6x +8≤0,则A ∩(∁R B )等于( )A .{x |x ≤0}B .{x |2≤x ≤4}C .{x |0≤x <2或x >4}D .{x |0<x ≤2或x ≥4}(2)(2012·天津)已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =________,n =________.思维启迪 集合的运算问题可先对集合进行化简,然后结合数轴或Venn 图计算.思维升华 (1)一般来讲,集合中的元素若是离散的,则用Venn 图表示;集合中的元素若是连续的实数,则用数轴表示,此时要注意端点的情况.(2)运算过程中要注意集合间的特殊关系的使用,灵活使用这些关系,会使运算简化.(1)设集合A =⎩⎪⎨⎪⎧x ∈R |⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x +1≥0,x -3≤0,B ={x ∈Z |x -2>0},则A ∩B=( )A .{x |2<x ≤3}B .{3}C .{2,3}D .{x |-1≤x <2}(2)设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0}.若(∁A)∩B=∅,则m的值是________.U题型四集合中的新定义问题例4在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:①2 014∈[4];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.其中,正确结论的个数是()A.1 B.2 C.3 D.4思维启迪解答本题要充分理解[k]的意义,然后对选项逐一验证.思维升华解决以集合为背景的新定义问题,要抓住两点:(1)紧扣新定义.首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题难点的关键所在;(2)用好集合的性质.解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的运算与性质.设U为全集,对集合X,Y,定义运算“”,满足X Y=(∁X)∪Y,则对于任意集合X,Y,Z,X(Y Z)等于U()A.(X∪Y)∪(∁U Z)B .(X ∩Y )∪(∁U Z )C .[(∁U X )∪(∁U Y )]∩ZD .(∁U X )∪(∁U Y )∪Z遗忘空集致误典例:(5分)若集合P ={x |x 2+x -6=0},S ={x |ax +1=0},且S ⊆P ,则由a 的可取值组成的集合为__________.温馨提醒 (1)根据集合间的关系求参数是高考的一个重点内容.解答此类问题的关键是抓住集合间的关系以及集合元素的特征.(2)在解答本题时,存在两个典型错误.一是忽略对空集的讨论,如a =0时,S =∅;二是易忽略对字母的讨论.如-1a 可以为-3或2.因此,在解答此类问题时,一定要注意分类讨论,避免漏解.方法与技巧1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到.解题后要进行检验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号.3.对离散的数集间的运算,或抽象集合间的运算,可借助Venn 图.这是数形结合思想的又一体现.失误与防范1.集合问题解题中要认清集合中元素的属性(是数集、点集还是其他类型集合),要对集合进行化简.2.空集是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.3.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系.4.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法要特别注意端点是实心还是空心.5.要注意A⊆B、A∩B=A、A∪B=B、∁U A⊇∁U B、A∩(∁U B)=∅这五个关系式的等价性.A组专项基础训练(时间:30分钟)一、选择题1.(2013·重庆)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)等于()A.{1,3,4} B.{3,4}C.{3} D.{4}2.下列集合中表示同一集合的是() A.M={(3,2)},N={(2,3)}B.M={2,3},N={3,2}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={2,3},N={(2,3)}3.已知全集S={1,2,a2-2a+3},A={1,a},∁S A={3},则实数a等于()A.0或2 B.0C.1或2 D.24.设集合M={m∈Z|m≤-3或m≥2},N={n∈Z|-1≤n≤3},则(∁Z M)∩N等于()A.{0,1} B.{-1,0,1}C.{0,1,2} D.{-1,0,1,2}5.已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个6.已知集合A={x|x2-x-2<0},B={x|-1<x<1},则()A.A⊆B B.B⊆AC.A=B D.A∩B=∅7.(2013·辽宁)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B等于()A.(0,1) B.(0,2] C.(1,2) D.(1,2]8.设全集U为整数集,集合A={x∈N|y=7x-x2-6},B={x∈Z|-1<x≤3},则右图中阴影部分表示的集合的真子集的个数为()A.3 B.4 C.7 D.8二、填空题9.已知集合A={1,3,a},B={1,a2-a+1},且B⊆A,则a=__________.10.已知集合A={(0,1),(1,1),(-1,2)},B={(x,y)|x+y-1=0,x,y∈Z},则A∩B=__________.11.(2013·天津改编)已知集合A ={x ||x |≤2},B ={x |x ≤1},则A ∩B =________.12.已知集合A ={x |1≤x <5},C ={x |-a <x ≤a +3}.若C ∩A =C ,则a 的取值范围是________.B 组 专项能力提升 (时间:15分钟)1.若集合A ={x |x 2-9x <0,x ∈N +},B ={y |4y ∈N +},则A ∩B 中元素个数为( ) A .0个 B .1个 C .2个D .3个2. 已知集合M ={x |xx -1≥0,x ∈R },N ={y |y =3x 2+1,x ∈R },则M ∩N 等于( )A .∅B .{x |x ≥1}C .{x |x >1}D .{x |x ≥1或x <0}3. 已知U ={x ∈Z |y =ln ⎝⎛⎭⎫9x -1},M ={x ∈Z ||x -4|≤1},N ={x ∈N |6x∈Z },则集合{4,5}等于( )A .M ∩NB .M ∩(∁U N )C .N ∩(∁U M )D .(∁U M )∪(∁U N )4. 已知U ={y |y =log 2x ,x >1},P ={y |y =1x,x >2},则∁U P =________..5. 已知集合A ={x |y =lg(x -x 2)},B ={x |x 2-cx <0,c >0},若A ⊆B ,则实数c 的取值范围是________.6. 已知集合A ={(x ,y )|y =a },B ={(x ,y )|y =b x+1,b >0,b ≠1},若集合A ∩B 只有一个真子集,则实数a 的取值范围是________.§1.2命题及其关系、充分条件与必要条件1.命题的概念__,叫作命题.其中__的语句叫真命题,__的语句叫假命题.2.四种命题及相互关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有__的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性__关系.4.充分条件与必要条件(1)如果p⇒q,则p是q的__,q是p的__;(2)如果p⇒q,q⇒p,则p是q的__.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)“x2+2x-3<0”是命题.()(2)“sin 45°=1”是真命题.()(3)命题“三角形的内角和是180°”的否命题是三角形的内角和不是180°.( )(4)若一个命题是真命题,则其逆否命题是真命题( )(5)“a =2”是“(a -1)(a -2)=0”的必要不充分条件.( ) (6)若α∈(0,2π),则“sin α=-1”的充要条件是“α=32π”.( ) 2. 设a ,b 是向量,命题“若a =-b ,则|a |=|b |”的逆命题是( )A .若a ≠-b ,则|a |≠|b |B .若a =-b ,则|a |≠|b |C .若|a |≠|b |,则a ≠-bD .若|a |=|b |,则a =-b3. 命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π44. (2013·福建)已知集合A ={1,a },B ={1,2,3},则“a =3”是“A ⊆B ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5. (2012·天津)设φ∈R ,则“φ=0”是“f (x )=cos(x +φ)(x ∈R )为偶函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件题型一 四种命题及真假判断 例1 (1)下面是关于复数z =2-1+i的四个命题: p 1:|z |=2, p 2:z 2=2i ,p 3:z 的共轭复数为1+i , p 4:z 的虚部为-1. 其中的真命题为( ) A .p 2,p 3 B .p 1,p 2 C .p 2,p 4D .p 3,p 4(2)已知命题“若函数f (x )=e x -mx 在(0,+∞)上是增函数,则m ≤1”,则下列结论正确的是( )A .否命题“若函数f (x )=e x -mx 在(0,+∞)上是减函数,则m >1”是真命题B .逆命题“若m ≤1,则函数f (x )=e x -mx 在(0,+∞)上是增函数”是假命题C .逆否命题“若m >1,则函数f (x )=e x -mx 在(0,+∞)上是减函数”是真命题D .逆否命题“若m >1,则函数f (x )=e x -mx 在(0,+∞)上不是增函数”是真命题思维启迪 (1)可化简复数z ,再利用复数的知识判断命题真假;(2)利用四种命题的定义判断四种命题形式是否正确,可利用四种命题的关系判断命题是否为真.思维升华 (1)熟悉四种命题的概念是正确书写或判断四种命题真假的关键;(2)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假;(3)判断一个命题为假命题可举反例.(1)命题“若α=π3,则cos α=12”的逆命题是( )A .若α=π3,则cos α≠12B .若α≠π3,则cos α≠12C .若cos α=12,则α=π3D .若cos α≠12,则α≠π3(2)命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是 ( ) A .若x +y 是偶数,则x 与y 不都是偶数 B .若x +y 是偶数,则x 与y 都不是偶数 C .若x +y 不是偶数,则x 与y 不都是偶数 D .若x +y 不是偶数,则x 与y 都不是偶数 题型二 充要条件的判定例2 已知下列各组命题,其中p 是q 的充分必要条件的是( )A .p :m ≤-2或m ≥6;q :y =x 2+mx +m +3有两个不同的零点B .p :f (-x )f (x )=1;q :y =f (x )是偶函数C .p :cos α=cos β;q :tan α=tan βD .p :A ∩B =A ;q :A ⊆U ,B ⊆U ,∁U B ⊆∁U A思维启迪 首先要分清条件和结论,然后可以从逻辑推理、等价命题或集合的角度思考问题,做出判断. 思维升华 充要条件的三种判断方法 (1)定义法:根据p ⇒q ,q ⇒p 进行判断;(2)集合法:根据p ,q 成立的对象的集合之间的包含关系进行判断; (3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,如“xy ≠1”是“x ≠1或y ≠1”的何种条件,即可转化为判断“x =1且y =1”是“xy =1”的何种条件.(1)(2012·福建)已知向量a =(x -1,2),b =(2,1),则a ⊥b 的充要条件是( )A .x =-12B .x =-1C .x =5D .x =0(2)设集合A ={x ∈R |x -2>0},B ={x ∈R |x <0},C ={x ∈R |x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的 ( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件题型三 充分条件与必要条件的应用例3 (1)函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-2x +a ,x ≤0有且只有一个零点的充分不必要条件是( ) A .a <0 B .0<a <12C.12<a <1D .a ≤0或a >1(2)设p :|4x -3|≤1,q :x 2-(2a +1)x +a (a +1)≤0,若非p 是非q 的必要不充分条件,则实数a 的取值范围是( )A.⎣⎡⎦⎤0,12B.⎝⎛⎭⎫0,12 C .(-∞,0]∪⎣⎡⎭⎫12,+∞D .(-∞,0)∪⎝⎛⎭⎫12,+∞思维启迪(1)根据图像交点先求得f(x)有一个零点的充要条件,再利用“以小推大”(集合间关系)判定;(2)考虑条件所对应集合间的包含关系.思维升华充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.(1)若“x2>1”是“x<a”的必要不充分条件,则a的最大值为________.(2)已知命题p:实数m满足m2+12a2<7am(a>0),命题q:实数m满足方程x2 m-1+y22-m=1表示的焦点在y轴上的椭圆,且p是q的充分不必要条件,则a 的取值范围为_______..等价转化思想在充要条件中的应用典例:(12分)已知集合A={y|y=x2-32x+1,x∈[34,2]},B={x|x+m2≥1}.p:x∈A,q:x∈B,并且p是q的充分条件,求实数m的取值范围.思维启迪(1)先对集合进行化简;(2)将条件间的关系转化为集合间的包含关系;(3)利用集合间的关系列出关于m的不等式,求出实数m的范围.温馨提醒本例涉及参数问题,直接解决较为困难,先用等价转化思想,将复杂、生疏的问题转化为简单、熟悉的问题来解决.一般地,在涉及字母参数的取值范围的充要关系问题中,常常要利用集合的包含、相等关系来考虑,这是破解此类问题的关键.方法与技巧1.写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;在判断原命题及其逆命题、否命题以及逆否命题的真假时,要借助原命题与其逆否命题同真或同假,逆命题与否命题同真或同假来判定.2.充要关系的几种判断方法(1)定义法:直接判断若p则q、若q则p的真假.(2)等价法:即利用A⇒B与綈B⇒綈A;B⇒A与綈A⇒綈B;A⇔B与綈B⇔綈A的等价关系,对于条件或结论是否定形式的命题,一般运用等价法.(3)利用集合间的包含关系判断:设A={x|p(x)},B={x|q(x)},若A⊆B,则p是q的充分条件或q是p的必要条件;若A=B,则p是q的充要条件.失误与防范1.当一个命题有大前提而要写出其它三种命题时,必须保留大前提,也就是大前提不动.2.判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p则q”的形式.3.判断条件之间的关系要注意条件之间关系的方向,正确理解“p的一个充分而不必要条件是q”等语言.A组专项基础训练(时间:30分钟)一、选择题1.命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”2.下列命题中为真命题的是()A.命题“若x>y,则x>|y|”的逆命题B.命题“若x>1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>0,则x>1”的逆否命题3.已知集合M={x|0<x<1},集合N={x|-2<x<1},那么“a∈N”是“a∈M”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件4.与命题“若a,b,c成等比数列,则b2=ac”等价的命题是()A.若a,b,c成等比数列,则b2≠acB.若a,b,c不成等比数列,则b2≠acC.若b2=ac,则a,b,c成等比数列D.若b2≠ac,则a,b,c不成等比数列5. 已知向量a =(m 2,-9),b =(1,-1),则“m =-3”是“a ∥b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.有设a ,b ∈R ,i 是虚数单位,则“ab =0”是“复数a +bi 为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件7. 给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图像不过第四象限,在它的逆命题、否命题、逆否命题3个命题中,真命题的个数是( )A .3B .2C .1D .0.8. 函数f (x )=x 2+mx +1的图像关于直线x =1对称的充要条件是( )A .m =-2B .m =2C .m =-1D .m =1 二、填空题9. 若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________. 10.“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中正确命题的个数是________.11.“x =2”是“向量a =(x +2,1)与向量b =(2,2-x )共线”的________条件. 12.若x <m -1或x >m +1是x 2-2x -3>0的必要不充分条件,则实数m 的取值范围是________.B 组 专项能力提升 (时间:15分钟)1. 若集合A ={x |2<x <3},B ={x |(x +2)(x -a )<0},则“a =1”是“A ∩B =∅”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.“λ<1”是“数列a n =n 2-2λn (n ∈N +)是递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3. 命题“函数y =f (x )的导函数为f ′(x )=e x+k 2e x -1k(其中e 为自然对数的底数,k为实数),且f (x )在R 上不是单调函数”是真命题,则实数k 的取值范围是( ) A.⎝⎛⎭⎫-∞,-22 B.⎝⎛⎭⎫-22,0 C.⎝⎛⎭⎫0,22D.⎝⎛⎭⎫22,+∞ 4. “m <14”是“一元二次方程x 2+x +m =0有实数解”的____________条件.5. 已知集合A =⎩⎨⎧⎭⎬⎫x |12<2x <8,x ∈R ,B ={x |-1<x <m +1,x ∈R },若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________. 6. 下列四个结论中:①“λ=0”是“λa =0”的充分不必要条件;②在△ABC 中,“AB 2+AC 2=BC 2”是“△ABC 为直角三角形”的充要条件; ③若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 全不为零”的充要条件; ④若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 不全为零”的充要条件. 正确的是________.。

相关文档
最新文档