集合的概念与运算例题及答案
高考专题复习集合的概念及运算集合的概念和运算测试题含答案

A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1.(2012·新课标全国)已知集合A={x|x2-x-2<0},B={x|-1<x<1},则().A.A⊆B B.B AC.A=B D.A∩B=∅解析A={x|x2-x-2<0}={x|-1<x<2},则B A.答案 B2.(2012·浙江)设全集U={1,2,3,4,5,6},集合P={1,2,3,4},Q={3,4,5},则P∩(∁U Q)=().A.{1,2,3,4,6} B.{1,2,3,4,5}C.{1,2,5} D.{1,2}解析∁U Q={1,2,6},∴P∩(∁U Q)={1,2}.答案 D3.(2012·郑州三模)设集合U={x|x<5,x∈N*},M={x|x2-5x+6=0},则∁U M =().A.{1,4} B.{1,5} C.{2,3} D.{3,4}解析U={1,2,3,4},M={x|x2-5x+6=0}={2,3},∴∁U M={1,4}.答案 A4.(2012·长春名校联考)若集合A={x||x|>1,x∈R},B={y|y=2x2,x∈R},则(∁R A)∩B=().A.{x|-1≤x≤1} B.{x|x≥0}C.{x|0≤x≤1} D.∅解析∁R A={x|-1≤x≤1},B={y|y≥0},∴(∁R A)∩B={x|0≤x≤1}.答案 C二、填空题(每小题5分,共10分)5.(2013·湘潭模拟)设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =________.解析 ∵3∈B ,又a 2+4≥4,∴a +2=3,∴a =1. 答案 16.(2012·天津)集合A ={x ∈R ||x -2|≤5}中的最小整数为________.解析 由|x -2|≤5,得-5≤x -2≤5,即-3≤x ≤7,所以集合A 中的最小整数为-3. 答案 -3 三、解答题(共25分)7.(12分)若集合A ={-1,3},集合B ={x |x 2+ax +b =0},且A =B ,求实数a ,b .解 ∵A =B ,∴B ={x |x 2+ax +b =0}={-1,3}. ∴⎩⎨⎧-a =-1+3=2,b =(-1)×3=-3,∴a =-2,b =-3. 8.(13分)已知集合A ={-4,2a -1,a 2},B ={a -5,1-a ,9},分别求适合下列条件的a 的值. (1)9∈(A ∩B ); (2){9}=A ∩B .解 (1)∵9∈(A ∩B ),∴9∈A 且9∈B .∴2a -1=9或a 2=9,∴a =5或a =-3或a =3. 经检验a =5或a =-3符合题意.∴a =5或a =-3. (2)∵{9}=A ∩B ,∴9∈A 且9∈B , 由(1)知a =5或a =-3.当a =-3时,A ={-4,-7,9},B ={-8,4,9}, 此时A ∩B ={9};当a =5时,A ={-4,9,25},B ={0,-4,9}, 此时A ∩B ={-4,9},不合题意. 综上知a =-3.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2012·南昌一模)已知全集U =R ,函数y =1x 2-4的定义域为M ,N ={x |log 2(x -1)<1},则如图所示阴影部分所表示的集合是( ).A .[-2,1)B .[-2,2]C .(-∞,-2)∪[3,+∞)D .(-∞,2)解析 图中阴影表示的集合是(∁U N )∩M ,又M =(-∞,-2)∪(2,+∞),N =(1,3),(∁U N )=(-∞,1]∪[3,+∞),故(∁U N )∩M =(-∞,-2)∪[3,+∞). 答案 C2.(2012·潍坊二模)设集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x 24+3y24=1,B ={y |y =x 2},则A ∩B =( ).A .[-2,2]B .[0,2]C .[0,+∞)D .{(-1,1),(1,1)}解析 A ={x |-2≤x ≤2},B ={y |y ≥0},∴A ∩B ={x |0≤x ≤2}=[0,2]. 答案 B二、填空题(每小题5分,共10分)3.给定集合A ,若对于任意a ,b ∈A ,有a +b ∈A ,且a -b ∈A ,则称集合A 为闭集合,给出如下三个结论:①集合A ={-4,-2,0,2,4}为闭集合; ②集合A ={n |n =3k ,k ∈Z }为闭集合;③若集合A 1,A 2为闭集合,则A 1∪A 2为闭集合. 其中正确结论的序号是________.解析 ①中-4+(-2)=-6∉A ,所以不正确.②中设n 1,n 2∈A ,n 1=3k 1,n 2=3k 2,n 1+n 2∈A ,n 1-n 2∈A ,所以②正确.③令A 1={n |n =3k ,k ∈Z },A 2={n |n =2k ,k ∈Z },3∈A 1,2∈A 2,但是,3+2∉A 1∪A 2,则A 1∪A 2不是闭集合,所以③不正确. 答案 ② 4.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪6x +1≥1,x ∈R ,B ={x |x 2-2x -m <0},若A ∩B ={x |-1<x <4},则实数m 的值为________. 解析 由6x +1≥1,得x -5x +1≤0, ∴-1<x ≤5,∴A ={x |-1<x ≤5}. ∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4}, ∴有42-2×4-m =0,解得m =8.此时B ={x |-2<x <4},符合题意,故实数m 的值为8. 答案 8三、解答题(共25分)5.(12分)设A ={x |x 2-8x +15=0},B ={x |ax -1=0}. (1)若a =15,试判定集合A 与B 的关系; (2)若B ⊆A ,求实数a 组成的集合C .解 由x 2-8x +15=0,得x =3或x =5.∴A ={3,5}. (1)当a =15时,由15x -1=0,得x =5. ∴B ={5},∴BA .(2)∵A ={3,5}且B ⊆A ,∴若B =∅,则方程ax -1=0无解,有a =0. 若B ≠∅,则a ≠0,由方程ax -1=0,得x =1a ,∴1a =3或1a =5,即a =13或a =15,∴C =⎩⎨⎧⎭⎬⎫0,13,15. 6.(13分)(2013·衡水模拟)设全集I =R ,已知集合M ={x |(x +3)2≤0},N ={x |x 2+x -6=0}. (1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,已知集合B ={x |a -1≤x ≤5-a ,a ∈R },若B ∪A =A ,求实数a 的取值范围.解 (1)∵M ={x |(x +3)2≤0}={-3}, N ={x |x 2+x -6=0}={-3,2},∴∁I M ={x |x ∈R 且x ≠-3},∴(∁I M )∩N ={2}. (2)A =(∁I M )∩N ={2},∵B ∪A =A ,∴B ⊆A ,∴B =∅或B ={2}. 当B =∅时,a -1>5-a ,∴a >3; 当B ={2}时,⎩⎨⎧a -1=2,5-a =2,解得a =3.综上所述,所求a 的取值范围是{a |a ≥3}.。
集合的含义与表示例题练习及讲解

第一章第一节 集合的含义与表示典型例题例1:判断下列各组对象能否构成一个集合 (1)班级里学习好的同学 (2)考试成绩超过90分的同学 (3)很接近0的数 (4)绝对值小于的数答: 否 能 否 能例2:判断以下对象能否构成一个集合 (1)a ,-a (2)12,答:否 否例3:判断下列对象是否为同一个集合 {1,2,3} {3,2,1} 答:是同一个集合例4:42=x 解的集合 答:{2,-2}例5:文字描述法的集合 (1)全体整数(2)考王教育里的所有英语老师 答:{整数} {考王教育的英语老师} 例6:用符号表示法表示下列集合 (1)5的倍数(2)三角形的全体构成的集合(3)一次函数12-=x y 图像上所有点的集合 (4)所有绝对值小于6的实数的集合 答:(1)},5z k k x x ∈={ (2){三角形}(3)(){}12,-=x y y x (4){}R x x x ∈<<-,66例如7:用韦恩图表示集合A={1,2,3,4} 答:例8:指出以下集合是有限集还是无限集(1)一百万以内的自然数; (2)和之间的小数 答:有限集;无限集例9:(1)写出x^2+1=o 的解的集合。
(2)分析并指出其含义:0;{0};∅;{};{∅} 答:(1)∅;(2)分别是数字零,含有一个元素是0的集合;空集;空集;含有一个元素是空集的集合。
随堂测验1、{x^2,x }是一个集合,求x 的取值范围2、集合{}2,1,2--=x x A ,{}2,12,2---=x x B ,A 、B 中有且仅有一个相同的元素-2,求x.3、指出下列对象是否构成集合,如果是,指出该集合的元素。
(1)young 中的字母; (2)五中高一(1)班全体学生; (3)门前的大树(4)漂亮的女孩4、用列举法表示下列集合(1)方程()()0422=--x x 的解集;(2)平方不超过50的非负整数; (3)大于10的奇数.5、指出以下集合的区别{}1-=x y {}1-=x y x{}1-=x y y(){}1,-=x y y x6、某班有30个同学选修A 、B 两门选修课,其中选修A 的同学有18人,选修B的同学有15人,什么都没选的同学有4人,求同时选修A 、B 的人数。
高三数学集合的概念试题答案及解析

高三数学集合的概念试题答案及解析1.设集合,,若,则的值为()A.B.1C.D.0【答案】D【解析】由题意得且,则,,所以.【考点】集合的运算与集合的元素.2.对于集合,定义集合,记集合中的元素个数为.若是公差大于零的等差数列,则=____________.【答案】17【解析】不妨设,由题意,集合中最小项为,最大项为,对任意的,如果,则可取,若,可取,显然由于,有,即,所以.【考点】集合的元素.3.若x∈A,则∈A,就称A是“伙伴关系集合”,集合M=的所有非空子集中具有伙伴关系的集合的个数是________.【答案】3【解析】具有伙伴关系的元素组是-1;,2,所以具有伙伴关系的集合有3个:{-1},,4.若集合A={0,1},B={-1,a2},则“a=1”是“A∩B={1}”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】a=1A∩B={1};A∩B={1}a=±1,故为充分不必要条件.5.已知集合M={1,2,3},N={2,3,4},则M∩N=________.【答案】M∩N={2,3}【解析】M∩N={1,2,3}∩{2,3,4}={2,3}.6.已知全体实数集,集合(1)若时,求;(2)设,求实数的取值范围.【答案】(1);(2).【解析】(1)集合的运算,要先确定集合中的元素时,,,则,并集就是两集合的所有元素组成,要注意几何元素的互异性.(2)即集合A中的元素都在集合B中,所以.试题解析:(1)当时,,则故(2),,若,则【考点】1、集合的运算;2、集合见得关系;3、集合中元素的确定性.7.设集合,,则使M∩N=N成立的的值是()A.1B.0C.-1D.1或-1【答案】C【解析】由于集合中的元素互不相同,所以.又因为M∩N=N,所以.【考点】集合的特征及集合的基本运算.8.已知集合,集合.(1)求集合;(2)若,求实数的取值范围.【答案】(1);(2) .【解析】(1)求集合,要认清这个集合的代表元是什么?这个代表元具有什么性质?也即这人集合实质是什么?象本题中集合实质就是不等式的解集,故我们只要解这个不等式即可,当然分式不等式的解法是移项,把不等式的右边变为0,左边变成若干因式的积或商,再转化为整式不等式,还要注意的转化时要注意等价转化(主要是原分式不等式中分母不能为0);(2)条件,说明,不需要求出,而是利用集合的关系解决问题.试题解析:解:(1)由,得 2分所以 2分(2) 2分2分由,得 2分所以或所以的范围为 2分【考点】(1)分式不等式;(2)子集的性质.9.若集合,则满足条件有个.【答案】3【解析】集合A显然一定含有元素1,2,而元素3,4可以都没有,也可以有一个,但不能两个都含有,故这样的A有3个,实质是这里集合A的个数是集合的真子集的个数.【考点】子集.10.设非空集合满足:当时,有,给出如下三个命题:①若则;②若则;③若则.其中正确命题的是 ( )A.①B.①②C.②③D.①②③【答案】D【解析】①若则,根据“当时,有”可得即,所以正确;②若则或,根据题意可得,所以正确;③若则,所以正确.【考点】集合的概念11.设集合,.(1)当1时,求集合;(2)当时,求的取值范围.【答案】(1);(2).【解析】(1)当时,集合就是函数的定义域,解不等式就可得到集合;(2)由知,集合是不等式的解集,在解不等式时可先化为一元二次不等式,然后对相应方程的根的大小进行讨论,具体化集合,再由确定的取值范围.试题解析:(1)当1时,,由, 3分解得,所以集合; 7分(2)因为,则, 8分由,得.(ⅰ)当时,,显然不满足题意; 10分(ⅱ)当时,,由题意知解得. 13分综上所述,所求的取值范围是. 14分【考点】集合的运算、子集的含义.12.已知集合,则的所有非空真子集的个数是.【答案】【解析】,则,则,即.故中共有9个元素,因此的所有非空真子集的个数是个.【考点】1.集合中元素的确定;2.集合的子集个数.13.若集合则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】,,∵,∴,∴,∴是的充分不必要条件.【考点】1.一元二次不等式的解法;2.绝对值不等式的解法;3.集合间的关系;4.充分必要条件. 14.设集合,,,则M中元素的个数为()A.3B.4C.5D.6【答案】B【解析】由题意知,,则x的可能取值为5,6,7,8.因此集合M共有4个元素,故选B.【考点】集合的概念15.对于E={a1,a2,….a100}的子集X={,,…, },定义X的“特征数列”为x1,x2…,x100,其中==…==1.其余项均为0,例如子集{a2,a3}的“特征数列”为0,1,0,0,…,0 子集{a1,a3,a5}的“特征数列”的前三项和等于________________;若E的子集P的“特征数列”P1,P2,…,P100满足P1+Pi+1="1," 1≤i≤99;E 的子集Q的“特征数列”q1,q2,…,q100满足q1=1,q1+qj+1+qj+2=1,1≤j≤98,则P∩Q的元素个数为___________.【答案】2;17【解析】(1)子集{a1,a3,a5}的“特征数列”为1,0,1,0,1,0…,0,故前3项和为2;(2)依题意,E的子集P的“特征数列”为1,0,1,0,1,0…,1;E 的子集Q的“特征数列”为1,0,0,1,0,0,1,0,0…,1,0;将目标转化为求数列与数列在时有几个公共元素,可知有17个.16.集合的元素个数是 ( )A.1B.2C.3D.4【答案】C【解析】={0,1,2},所以,集合的元素个数是3个,故选C。
高考数学一轮复习讲练测专题1.1集合的概念及其基本运算(讲)理(含解析)

1},专题1.1集合的概念及其基本运算(讲)【辭析】由已知得^ = {1,4}.当口 = <时.A = [3],则討二〔12*卜・4厂直=0,当也=1时,J = ;L3j ; 则JU5 = {1.3r 4} p = 当a = 4时.^ = {4.3}, = (1,3.4}, -40-8={4}.当疽产1,戊戸吳。
否4时…儿丘二卩”丸好,JO^ =0,综上所述,当a = 3时—儿P = {1S4齐AClB^Qi 当应"时,血JH"4}, /仃丘二{1»当*4时,则加UE 二口34、“5={4}f 当口工1, 口产3, a 芦4时I dl-再三卜 B =0.2.【2015高考天津,理1】已知全集U 1,2,3,4,5,6,7,8 ,集合A 2,3,5,6,集合B 1,3,4,6,7则集合AI ejB () (A )2,5( B )3,6 (C ) 2,5,6 ( D ) 2,3,5,6,8【答案】A【赭斤】^5 = (2,5,8}_所以二冷5},故选九3. 【云南省玉溪一中 2015届高三上学期第一次月考试卷】设集合B {(x, y) y 3x },则A B 的子集的个数是( )A. 4 B. 3C. 2D. 1【答案】A1.【课本典型习题,P12第3题】设集合Ax(x a)(x 3) 0,a R , Bx(x 4)(x 1) 0 ,AUB , AI B .【答案】当a 3时,AU B 1,3,4 , AI B ;当a 1 时,AU B1,3,4,AI B 1 ;当 a时,贝U AU B 1,3,4 , AIB 4 ;当 a 1 ,a 3, a 4时, AU B1,3,4, a , AI B【课前小测摸底细】求4{(“)話【解析】篥會話为橢區|兰+匸=1上的昌集合卫为扌無心煎i' = 丁上的点,由于指纹函数恒过点(Q1)・16 -4* 斗由于点121在椭圆兰十二“曲内部,因此扌旨数函数与椭圆有2个交点.,的子篥的个数次F =4个,16 4故答累为扎4. 【基础经典试题】集合M ={y | y= x2—1, x R},集合N={x|y= 9 x2, x R},则MIN等于( )A. {t|0 t 3} B . {t|—1 t 3} C . {(- . 2,1),( .2,1) D •【答案】B【鱷析】■・」=/—in —h 二対=[—h +工)・又丫)=嗣-》匸9 - ? > 0 +/■[- 3,3]. ■- M A -V = [-l(3].5. 【改编自2012年江西卷理科】若集合A={— 1,1}, B= 0,2,则集合{z|z= x+ y, x A, y B}中的元素的非空子集个数为()A. 7 B . 6 C . 5 D . 4【答案】A【鋒析】由已知得,集台V尸K+F送用ye ^={-1.1.3}-所以其非空子集个数冷2为二7,故选【考点深度剖析】高考对集合知识的考查要求较低,均是以小题的形式进行考查,一般难度不大,要求考生熟练掌握与集合有关的基础知识•纵观近几年的高考试题,主要考查以下两个方面:一是考查具体集合的关系判断和集合的运算•解决这类问题的关键在于正确理解集合中元素所具有属性的含义,弄清集合中元素所具有的形式以及集合中含有哪些元素•二是考查抽象集合的关系判断以及运算•【经典例题精析】考点1集合的概念K【1-1 】若a, b R,集合{1 , a b, a 0,-,b,求b a的值_____________________ .a【答案】2iy【解析】由d d+方卫}=0—血可知“山则只能卄庄0,则有以下对应关爲CJ - b = 0.b—=c ab = 1.Jl_2【1-2】已知集合A={x|x+ m好4 = 0}为空集,则实数m的取值范围是()A. ( —4, 4) B . [ —4, 4] C . ( —2, 2) D . [ —2, 2]【答案】A【解析】依题意知一元二次方程F十ww十4二0无解,^flzA A= w;_16 < 0(解得一4€楞羔4.故选A.【1-3】已知A={a+ 2, (a+ 1)2, a2+ 3a+ 3},若1€ A,则实数a构成的集合B的元素个数是()A. 0 B . 1 C . 2 D . 3【答案】B丽析】若口则1,代入集合」」得川={1"1},与集合元责的互异性若S+1F=1,帶住=0或一2,代入集合4帰/=匸切}或去{0二1},后■看与集合的互异性矛盾,故尸0 符合要求J若/+3卄3=1,则尸—诫-拿代人黑皆出得沪{山1}或看•戶{轴助都与集合的互异性相矛盾, 無上可如只有口二。
集合的概念与运算经典例题及习题

第1讲 集合的概念和运算【例1】►已知a ∈R ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a ,1={a 2,a +b,0},则a 2 014+b 2 014=________. 答案 1【训练1】 集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N *⎪⎪⎪ 12x ∈Z 中含有的元素个数为( ).A .4B .6C .8D .12答案 B【例2】►已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,求实数m 的取值范围.答:m 的取值范围为m ≤4.【训练2】 已知集合A ={x |log 2x ≤2},B =(-∞,a ),若A ⊆B ,则实数a 的取值范围是(c ,+∞),其中c =________.答案 4【例3】►设U =R ,集合A ={x |x 2+3x +2=0},B ={x |x 2+(m +1)x +m =0}.若(∁U A )∩B =∅,则m 的值是________.答案 1或2【训练3】 (1)(2012·陕西)集合M ={x |lg x >0},N ={x |x 2≤4},则M ∩N =( ).A .(1,2)B .[1,2)C .(1,2]D .[1,2](2)(2012·山东)已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B 为( ).A .{1,2,4}B .{2,3,4}C .{0,2,4}D .{0,2,3,4}答案 (1)C (2)C【真题探究1】► (2012·北京)已知集合A ={x ∈R |3x +2>0},B ={x ∈R |(x +1)(x -3)>0},则A ∩B =( ).A .(-∞,-1)B.⎩⎨⎧⎭⎬⎫-1,-23C.⎝ ⎛⎭⎪⎫-23,3 D .(3,+∞) [答案] D【试一试1】 已知全集U ={y |y =log 2x ,x >1},集合P =⎩⎨⎧⎭⎬⎫y |y =1x ,x >3,则∁U P =( ).A.⎣⎢⎡⎭⎪⎫13,+∞B.⎝ ⎛⎭⎪⎫0,13 C .(0,+∞) D .(-∞,0)∪⎣⎢⎡⎭⎪⎫13,+∞ 答案 A【真题探究2】► (2012·新课标全国)已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x -y ∈A },则B 中所含元素的个数为( ).A .3B .6C .8D .10[答案] D【试一试2】 定义集合运算:A B ={z |z =xy ,x ∈A ,y ∈B },设A ={-2 014,0,20 14},B ={ln a ,e a },则集合A B 的所有元素之和为( ).A .2 014B .0C .-2 014D .ln 2 014+e 2 014答案 B习题1.(2011·广东)已知集合A ={(x ,y )|x ,y 是实数,且x 2+y 2=1},B ={(x ,y )|x ,y 是实数,且y =x },则A ∩B 的元素个数为( ).A .0B .1C .2D .3 2.(2012·潍坊二模)设集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x 24+3y 24=1,B ={y |y =x 2},则A ∩B =( ). A .[-2,2] B .[0,2]C .[0,+∞)D .{(-1,1),(1,1)} 3.(2012·浙江)设集合A ={x |1<x <4},集合B ={x |x 2-2x -3≤0},则A ∩(∁R B )=( ).A .(1,4)B .(3,4)C .(1,3)D .(1,2)∪(3,4)4.(2012·长春名校联考)若集合A ={x ||x |>1,x ∈R },B ={y |y =2x 2,x ∈R },则(∁R A )∩B = ( ).A .{x |-1≤x ≤1}B .{x |x ≥0}C .{x |0≤x ≤1}D .∅ 5.给定集合A ,若对于任意a ,b ∈A ,有a +b ∈A ,且a -b ∈A ,则称集合A 为闭集合,给出如下三个结论:①集合A ={-4,-2,0,2,4}为闭集合;②集合A ={n |n =3k ,k ∈Z }为闭集合;③若集合A 1,A 2为闭集合,则A 1∪A 2为闭集合.其中正确结论的序号是________.6.已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪6x +1≥1,x ∈R ,B ={x |x 2-2x -m <0},若A ∩B ={x |-1<x <4},则实数m 的值为________.7.(13分)(2012·衡水模拟)设全集I =R ,已知集合M ={x |(x +3)2≤0},N ={x |x 2+x -6=0}.(1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,已知集合B ={x |a -1≤x ≤5-a ,a ∈R },若B ∪A =A ,求实数a 的取值范围.答案 1.C 2.B 3.B 4.C 5. ② 6. 87. 解 (1) (∁I M )∩N ={2}.(2) a 的取值范围是{a |a ≥3}.。
高中数学必修一人教A版1.1 集合的概念-单选专项练习(含答案及解析)

1.1 集合的概念1.定义集合运算:(){},,A B z z x x y x A y B ==-∈∈※︳,设集合 {}1,2A =,{}2,3B =,则集合 A B ※ 的所有元素个数为( )A .2B .3C .4D .5答案:B 解析:求出集合 A B ※ 的所有元素,即得解.详解:当1,2x y ==时,1(12)1z =⨯-=-;当1,3x y ==时,1(13)2z =⨯-=-;当2,2x y ==时,2(22)0z =⨯-=;当2,3x y ==时,2(23)2z =⨯-=-.所以集合 A B ※ 的共有3个元素.故选:B点睛:本题主要考查集合的新定义,考查集合的元素的互异性,意在考查学生对这些知识的理解掌握水平.2.设集合M=x|x 2-3x≤0},则下列关系式正确的是( )A .2⊆MB .2∉MC .2∈MD .2}∈M答案:C解析:本题已知集合M ,先将相应的不等式化简,得到集合中元素满足的条件,再看元素2是否满足条件,可得到正确选项.详解:230x x -,03x ∴, 2{|30}{|03}M x x x x x ∴=-=.又023<<,2M ∴∈.故选:C .点睛:本题考查的是集合知识,重点是判断元素与集合的关系,难点是对一元二次不等式的化简.计算量较小,属于容易题.3.已知集合{}012M =,,,则M 的子集有( ) A .3个B .4个C .7个D .8个答案:D 解析:根据集合子集的个数计算公式求解.详解:因为集合{}012M =,,共有3个元素,所以子集个数为328=个. 故选:D.4.已知集合{}1,2A =,{}2,4B =,则集合{},,M z z x y x A y B ==⋅∈∈中元素的个数为( )A .1个B .2个C .3个D .4个答案:C解析:根据集合{},,M z z x y x A y B ==⋅∈∈列举求解.详解:因为集合{}1,2A =,{}2,4B =,所以集合{}2,4,8M =,故选:C5.设全集为U ,定义集合M 与N 的运算:{()*|M N x x M N =∈⋃且()}x M N ∉⋂,则()**N N M = A .MB .NC .U MN D .U N M答案:A 解析:先由题意得出*N M 表示区域,再由题中的定义,即可得出()**N N M 表示的区域,从而可得出结果.详解:如图所示,由定义可知*N M 为图中的阴影区域,()**N N M ∴为图中阴影Ⅰ和空白的区域,即()**N N M M =.故选A.点睛:本题主要考查集合的交集与并集的应用,熟记概念即可,属于常考题型.6.对于集合{}22,,M a a x y x y ==-∈∈Z Z ,给出如下三个结论:①如果{}21,P b b n n ==+∈Z ,那么P M ⊆;②如果42,c n n =+∈Z ,那么c M ∉;③如果1a M ∈,2a M ∈,那么12a a M ∈.其中正确结论的个数是A .0B .1C .2D .3答案:D解析:①根据2221(1)n n n +=+-,得出21n M +∈,即P M ⊆;②根据42c n =+,证明42n M ,即c M ∉;③根据1a M ∈,2a M ∈,证明12a a M ∈.详解:解:集合22{|M a a x y ==-,x ∈Z ,}y Z ∈,对于①,21b n =+,n Z ∈,则恒有2221(1)n n n +=+-,21n M ∴+∈,即{|21P b b n ==+,}n Z ∈,则P M ⊆,①正确;对于②,42c n =+,n Z ∈, 若42n M ,则存在x ,y Z ∈使得2242x y n, 42()()n x y x y ∴+=+-, 又x y +和x y -同奇或同偶,若x y +和x y -都是奇数,则()()x y x y +-为奇数,而42n +是偶数;若x y +和x y -都是偶数,则()()x y x y +-能被4整除,而42n +不能被4整除,42n M ∴+∉,即c M ∉,②正确;对于③,1a M ∈,2a M ∈,可设22111a x y =-,22222a x y =-,i x 、i y Z ∈;则2222121122()()a a x y x y =--222212121221()()()()x x y y x y x y =+--2212121221()()x x y y x y x y M =+-+∈那么12a a M ∈,③正确.综上,正确的命题是①②③.故选D .点睛:本题考查了元素与集合关系的判断、以及运算求解能力和化归思想,是难题.7.已知集合 A =1,2,3, 4,5, 6},{|,,,}b T x x a b A a b a ==∈>,则集合T 中元素的个数为A .9B .10C .11D .12答案:C解析:先阅读题意,再写出集合T 即可.详解:解:由集合 A =1,2,3, 4,5, 6},{|,,,}b T x x a b A a b a ==∈>, 则11213123415,,,,,,,,,,23344555566T ⎧⎫=⎨⎬⎩⎭, 则集合T 中元素的个数为11,故选C.点睛:本题考查了元素与集合的关系,重点考查了阅读能力,属基础题.8.关于集合下列正确的是( )A .0∈∅B .0N ∉C .{}0∅∈D .0Q ∈答案:D解析:根据元素和集合的关系进行判断即可.详解:解:0∈∅,故A 错;0N ∈,故B 错,{}0∅⊆,故C 错,0Q ∈,故D 正确.故选:D点睛:本题主要考查元素和集合关系的判断,比较基础,正确理解N ,Z ,R ,集合的意义是解决本题的关键.9.下列关系中正确的个数是( )①12Q ∈ R ③*0N ∈ ④π∈ZA .1B .2C .3D .4答案:A解析:根据集合的概念、数集的表示判断.详解:120不是正整数,π是无理数,当然不是整数.只有①正确. 故选:A .点睛:本题考查元素与集合的关系,掌握常用数集的表示是解题关键.10.已知集合{}1,2,3M =,(){},,,N x y x M y M x y M =∈∈+∈,则集合N 中的元素个数为( )A .2B .3C .8D .9答案:B解析:由,,x M y M x y M ∈∈+∈即可求解满足题意的点(),x y 的坐标.详解:解:由题意,满足条件的平面内以(),x y 为坐标的点集合()()(){}1,1,1,2,2,1N =,所以集合N 的元素个数为3.故选:B.11.设集合{}12|M x x =<<,{}|3N x x =<,则集合M 和集合N 的关系是( )A .N M ∈B .M N ∈C .M N ⊆D .N M ⊆答案:C解析:由子集的概念进行判断结合选项得出答案.详解:集合{}12|M x x =<<中的每一个元素都是集合{}|3N x x =<中的元素,∴集合M 是集合N 的子集 故选:C12.对于任意两个正整数m 、n ,定义某种运算,当m 、n 都为正偶数或正奇数时,m n m n ∆=+;当m 、n 中一个为正奇数,另一个为正偶数时,m n mn ∆=.则在上述定义下,(){}**,36,,M x y x y x y =∆=∈∈N N ,集合M 中元素的个数为( ) A .40B .48C .39D .41答案:D 解析:分x 、y 都为正偶数或正奇数和x 、y 中一个为正奇数,另一个为正偶数,两种情况,根据运算列举求解.详解:当x 、y 都为正偶数或正奇数时,36x y x y ∆=+=,集合M 中的元素有()()()()()()1,35,2,34,3,33,4,32,...,34,2,35,1,共35个;当x 、y 中一个为正奇数,另一个为正偶数时,36x y x y ∆=⋅=,,集合M 中的元素有()()()()()()1,36,3,12,4,9,9,4,36,1,12,3共6个,所以集合M 中元素的个数为35641+=,故选:D点睛:本题主要考查集合的概念和表示方法,属于基础题.13.已知元素a∈0,1,2,3},且a ∉1,2,3},则a 的值为( )A .0B .1C .2D .3答案:A解析:由题意,根据集合中元素与集合的关系,即可求解,得到答案.详解:由题意,元素a∈0,1,2,3},且a ∉1,2,3}, ∴a 的值为0.故选A .点睛:本题主要考查了集合中元素与集合的关系的应用,其中解答中牢记集合的元素与集合的关系,合理应用是解答本题的关键,着重考查了推理与论证能力,属于基础题.14.已知集合1{|,Z}24k M x x k ==+∈,*1{|,N }42k N x x k ==+∈,若0x M ∈,则0x 与N 的关系是( )A .0x N ∈或0x N ∉B .0x N ∈C .0x N ∉D .不能确定答案:A解析:用列举法表示集合,M N ,最后可以选出正确答案.详解:131357{|,Z},,,,,2444444k M x x k ⎧⎫==+∈=--⎨⎬⎩⎭, *1353{|,N },1,,,42442k N x x k ⎧⎫==+∈=⎨⎬⎩⎭,当01,4x M =-∈但0x N ∉, 当03,4x M =∈有0x N ∈.故选:A点睛:本题考查了列举法表示集合,考查了元素与集合的关系,属于基础题.15.已知,,a b c 均为非零实数,集合{|}a b ab A x x a b ab ==++,则集合A 的元素的个数为. A .2B .3C .4D .5答案:A解析:当0a >,0b >时,1113a b ab x a b ab =++=++=;当0a >,0b <时,1111ab ab x a b ab =++=--=-,当0a <,0b >时,1111a b ab x a b ab=++=-+-=-,;当0,0a b <<时,1111ab ab x a b ab =++=--+=-,故x 的所有值组成的集合为{}1,3-,故选A. 16.若集合A =x|kx 2+4x +4=0,x∈R}中只有一个元素,则实数k 的值为( )A .1B .0C .0或1D .以上答案都不对答案:C解析:当k =0时,A =-1};当k≠0时,Δ=16-16k =0,k =1.故k =0或k =1.选C.17.集合M =(x ,y)|xy<0,x∈R,y∈R}是( )A .第一象限内的点集B .第三象限内的点集C .第四象限内的点集D .第二、四象限内的点集答案:D详解:根据描述法表示集合的特点,可知集合表示的是横、纵坐标异号的点的集合,这些点在第二、四象限内.选D.点睛:集合的表示方法:列举法、描述法、图示法.其中描述法要注意代表元素,是点集还是数集18.定义集合A 、B 的一种运算:{}1212|,,A B x x x x x A x B *==⨯∈∈其中,若{1,2,3,5}A =, {1,2}B =,则A B *中的所有元素之和为为 A .30B .31C .32D .34答案:B详解: 试题分析:由{}1212|,,A B x x x x x A x B *==⨯∈∈其中可知{}1,2,3,5,4,6,10A B *=,所以所有元素之和为31考点:集合运算19.设由“我和我的祖国”中的所有汉字组成集合A ,则A 中的元素个数为( )A .4B .5C .6D .7答案:B解析:列举出集合A 中的元素,由此可得出结论.详解:由题意可知,集合A 中的元素分别为:我、和、的、祖、国,共5个元素. 故选:B.20.已知集合{}21,A a =,实数a 不能取的值的集合是( ) A .{}1,1-B .{}1-C .{}1,0,1-D .{}1答案:A 解析:根据元素的互异性可得出关于实数a 的不等式,由此可求得结果. 详解:由已知条件可得21≠a ,解得1a ≠±.故选:A.。
高三数学集合的概念试题答案及解析

高三数学集合的概念试题答案及解析1.若集合且下列四个关系:①;②;③;④有且只有一个是正确的,则符合条件的有序数组的个数是_________.【答案】6【解析】由于题意是只有一个是正确的所以①不成立,否则②成立.即可得.由即.可得.两种情况.由.所以有一种情况.由即.可得.共三种情况.综上共6种.【考点】1.集合的概念.2.递推的数学思想.3.分类的数学思想.2.对于集合,如果定义了一种运算“”,使得集合中的元素间满足下列4个条件:(ⅰ),都有;(ⅱ),使得对,都有;(ⅲ),,使得;(ⅳ),都有,则称集合对于运算“”构成“对称集”.下面给出三个集合及相应的运算“”:①,运算“”为普通加法;②,运算“”为普通减法;③,运算“”为普通乘法.其中可以构成“对称集”的有.(把所有正确的序号都填上)【答案】①③【解析】由定义可知.,运算“”为普通加法,(ⅰ)显然符合,令,所以(ⅱ)符合,由此(ⅲ)、(ⅳ)符合.所以①正确;,运算“”为普通减法不存在,使得对,都有.所以②不正确;,运算“”为普通乘法.(ⅰ)显然符合,存在.所以(ⅱ)符合,显然(ⅲ)、(ⅳ)符合条件.综上①③符合题意.【考点】1.新定义的问题.2.数集的运算.3.列举递推的思想.3.已知A={a+2,(a+1)2,a2+3a+3}且1∈A,求实数a的值.【答案】a=0【解析】由题意知:a+2=1或(a+1)2=1或a2+3a+3=1,∴ a=-1或-2或0,根据元素的互异性排除-1,-2,∴ a=0即为所求.4.集合A={x∈R||x-2|≤5}中的最小整数为.【答案】-3【解析】|x-2|≤5,∴-5≤x-2≤5,即-3≤x≤7,∴满足条件的最小整数为-3.5.已知集合A、B,定义集合A与B的一种运算A⊕B,其结果如下表所示:A{1,2,3,4}{-1,1}{-4,8}{-1,0,1}【答案】{-2011,2012,-2012,2013}【解析】由给出的定义知集合A⊕B的元素是由所有属于集合A但不属于集合B和属于集合B但不属于集合A的元素构成的,即A⊕B={x|x∈A且x∉B或x∈B且x∉A}.故M⊕N={-2 011,2 012,-2 012,2 013}6.已知集合A={x|x≥0},B={0,1,2},则()A.A⊆B B.B⊆AC.A∪B=B D.A∩B=∅【答案】B【解析】显然B⊆A,A∪B=A,A∩B=B.7.A={x|x≠1,x∈R}∪{y|y≠2,y∈R},B={z|z≠1且z≠2,z∈R},那么()A.A=B B.A BC.B A D.A∩B=⌀【答案】C【解析】集合中的代表元素与用什么字母表示无关.事实上A=(-∞,1)∪(1,+∞)∪(-∞,2)∪(2,+∞)=(-∞,+∞),集合B=(-∞,1)∪(1,2)∪(2,+∞),所以B A.8.已知集合M={1,2,3},N={2,3,4},则M∩N=________.【答案】M∩N={2,3}【解析】M∩N={1,2,3}∩{2,3,4}={2,3}.9.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为().A.14B.13C.12D.10【答案】B【解析】当a=0时,b=-1,0,1,2,有4种可能;当a≠0时,方程有实根,则Δ=4-4ab≥0,ab≤1.若a=-1时,b=-1,0,1,2,有4种可能;若a=0时,b=-1,0,1,2,有4种可能;若a=1时,b=-1,0,1,有3种可能;若a=2时,b=-1,0,有2种可能.∴共有(a,b)的个数为4+4+3+2=13.10.设函数f(x)=|x―a|―2,若不等式|f(x)|<1的解为x∈(-2,0)∪(2,4),则实数a=。
第1讲 集合的概念和运算

第一章集合与常用逻辑用语第1讲集合的概念和运算一、选择题1. 已知集合P={x|x2≤1},M={a}.若P∪M=P,则a的取值范围是()A.(-∞,-1] B.[1,+∞)C.[-1,1] D.(-∞,-1]∪[1,+∞)解析因为P∪M=P,所以M⊆P,即a∈P,得a2≤1,解得-1≤a≤1,所以a的取值范围是[-1,1].答案 C2.已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有() A.2个B.4个C.6个D.8个解析因为M={0,1,2,3,4},N={1,3,5},所以P=M∩N={1,3},所以集合P的子集共有∅,{1},{3},{1,3}4个.答案B3.设集合U={x|x<5,x∈N*},M={x|x2-5x+6=0},则∁U M=().A.{1,4} B.{1,5} C.{2,3} D.{3,4}解析U={1,2,3,4},M={x|x2-5x+6=0}={2,3},∴∁U M={1,4}.答案 A4.若A={2,3,4},B={x|x=n·m,m,n∈A,m≠n},则集合B中的元素个数是().A.2 B.3 C.4 D.5解析B={x|x=n·m,m,n∈A,m≠n}={6,8,12}.答案 B5.设集合M={1,2},N={a2},则“a=1”是“N⊆M”的().A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件解析若N⊆M,则需满足a2=1或a2=2,解得a=±1或a=±2.故“a=1”是“N⊆M”的充分不必要条件.答案 A6.设A、B是两个集合,定义M*N={x|x∈M且x∉N}.若M={y|y=log2(-x2-2x+3)},N={y|y=x,x∈【0,9】},则M*N=()A.(-∞,0】B.(-∞,0)C.【0,2】D.(-∞,0)∪(2,3】解析y=log2(-x2-2x+3)=log2【-(x+1)2+4】∈(-∞,2】,N中,∵x∈【0,9】,∴y =x∈【0,3】.结合定义得:M*N=(-∞,0).答案B二、填空题7.已知集合A={x∈R||x-1|<2},Z为整数集,则集合A∩Z中所有元素的和等于________.解析A={x∈R||x-1|<2}={x|-1<x<3}.∴A∩Z={0,1,2},即0+1+2=3.答案38.已知集合A={0,2,a2},B={1,a},若A∪B={0,1,2,4},则实数a的值为________.解析若a=4,则a2=16∉(A∪B),所以a=4不符合要求,若a2=4,则a=±2,又-2∉(A ∪B),∴a=2.答案 29.已知集合A={(0,1),(1,1),(-1,2)},B={(x,y)|x+y-1=0,x,y∈Z},则A∩B=________.解析A、B都表示点集,A∩B即是由A中在直线x+y-1=0上的所有点组成的集合,代入验证即可.答案{(0,1),(-1,2)}10.设A,B是非空集合,定义A*B={x|x∈A∪B且x∉A∩B},已知A={x|0≤x≤3},B={y|y≥1},则A*B=____________________.解析由题意知,A∪B=[0,+∞),A∩B=[1,3],∴A*B=[0,1)∪(3,+∞).答案[0,1)∪(3,+∞)三、解答题11.若集合A={-1,3},集合B={x|x2+ax+b=0},且A=B,求实数a,b.解∵A=B,∴B={x|x2+ax+b=0}={-1,3}.∴⎩⎨⎧ -a =-1+3=2,b =(-1)×3=-3,∴a =-2,b =-3. 12.已知集合A ={-4,2a -1,a 2},B ={a -5,1-a,9},分别求适合下列条件的a 的值.(1)9∈(A ∩B );(2){9}=A ∩B .解 (1)∵9∈(A ∩B ),∴9∈A 且9∈B ,∴2a -1=9或a 2=9,∴a =5或a =-3或a =3,经检验a =5或a =-3符合题意.∴a =5或a =-3.(2)∵{9}=A ∩B ,∴9∈A 且9∈B ,由(1)知a =5或a =-3.当a =-3时,A ={-4,-7,9},B ={-8,4,9},此时A ∩B ={9},当a =5时,A ={-4,9,25},B ={0,-4,9},此时A ∩B ={-4,9},不合题意.∴a =-3.13.已知集合A ={x|x2-2x -3≤0,x ∈R},B ={x|m -2≤x≤m +2}.(1)若A∩B =[1,3],求实数m 的值;(2)若A ⊆∁RB ,求实数m 的取值范围.解 A ={x|-1≤x≤3},B ={x|m -2≤x≤m +2}.(1)∵A∩B =[1,3],∴⎩⎨⎧ m -2=1,m +2≥3,得m =3. (2)∁RB ={x|x <m -2或x >m +2}.∵A ⊆∁RB ,∴m -2>3或m +2<-1.14.已知集合A ={x ∈R|ax2-3x +2=0,a ∈R}.(1)若A 是空集,求a 的取值范围;(2)若A 中只有一个元素,求a 的值,并把这个元素写出来;解 集合A 是方程ax2-3x +2=0在实数范围内的解组成的集合.(1)A 是空集,即方程ax2-3x +2=0无解,得⎩⎨⎧ a≠0,Δ=-32-8a<0,∴a>98.即实数a 的取值范围是(98,+∞).(2)当a =0时,方程只有一解,方程的解为x =23;当a≠0且Δ=0,即a =98时,方程有两个相等的实数根,A 中只有一个元素43. ∴当a =0或a =98时,A 中只有一个元素,分别是23和43.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 集合的概念与运算(一)目标: 1.理解集合、子集的概念,能利用集合中元素的性质解决问题2.理解交集、并集、全集、补集的概念,掌握集合的运算性质,3.能利用数轴或文氏图进行集合的运算,掌握集合问题的常规处理方法.重点: 1.集合中元素的3个性质,集合的3种表示方法,集合语言、集合思想的运用;2.交集、并集、补集的求法,集合语言、集合思想的运用.基本知识点:知识点1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)(2)元素:集合中每个对象叫做这个集合的元素知识点2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合记作N ,{}Λ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + {}Λ,3,2,1*=N (3)整数集:全体整数的集合记作Z , {}Λ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q , {}整数与分数=Q (5)实数集:全体实数的集合记作R {}数数轴上所有点所对应的=R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集记作N *或N + Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *知识点3、元素与集合关系(隶属)(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉注意:“∈”的开口方向,不能把a ∈A 颠倒过来写 知识点4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里, 或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)知识点5、集合与元素的表示:集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……例题精析1:1、下列各组对象能确定一个集合吗(1)所有很大的实数 (不确定)(2)好心的人(不确定)(3)1,2,2,3,4,5.(有重复)2、设a,b 是非零实数,那么b ba a+可能取的值组成集合的元素是_-2,0,2__ 3、由实数x,-x,|x |,332,x x -所组成的集合,最多含( A )(A )2个元素 (B )3个元素 (C )4个元素 (D )5个元素4、设集合G 中的元素是所有形如a +b 2(a ∈Z, b ∈Z )的数,求证:(1) 当x ∈N 时, x ∈G;(2) 若x ∈G ,y ∈G ,则x +y ∈G ,而x1不一定属于集合G 证明(1):在a +b 2(a ∈Z, b ∈Z )中,令a=x ∈N,b=0,则x= x +0*2= a +b 2∈G,即x ∈G证明(2):∵x ∈G ,y ∈G ,∴x= a +b 2(a ∈Z, b ∈Z ),y= c +d 2(c ∈Z, d ∈Z )∴x+y=( a +b 2)+( c +d 2)=(a+c)+(b+d)2∵a ∈Z, b ∈Z,c ∈Z, d ∈Z∴(a+c) ∈Z, (b+d) ∈Z∴x+y =(a+c)+(b+d)2 ∈G ,又∵211b a x +==2222222b a b b a a --+- 且22222,2ba b b a a ---不一定都是整数, ∴211b a x +==2222222b a b b a a --+-不一定属于集合G知识点6、集合的表示方法:(1)列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程012=-x 的所有解组成的集合,可以表示为{-1,1}注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53, (100)所有正奇数组成的集合:{1,3,5,7,…}(2)a 与{a}不同:a 表示一个元素,{a}表示一个集合,该集合只有一个元素 (2)描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括 号内表示集合的方法格式:{x ∈A| P (x )}含义:在集合A 中满足条件P (x )的x 的集合例如,不等式23>-x 的解集可以表示为:}23|{>-∈x R x 或}23|{>-x x 所有直角三角形的集合可以表示为:}|{是直角三角形x x注:(1)在不致混淆的情况下,可以省去竖线及左边部分如:{直角三角形};{大于104的实数}(2)错误表示法:{实数集};{全体实数}(3)、文氏图:用一条封闭的曲线的内部来表示一个集合的方法 思考:何时用列举法何时用描述法},5,23,{2232y x x y x x +-+⑵有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法如:集合}1|),{(2+=x y y x ;集合{1000以内的质数}例 集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗}1|),{(2+=x y y x 是抛物线12+=x y 上所有的点构成的集合,集合}1|{2+=x y y =}1|{≥y y 是函数12+=x y 的所有函数值构成的数集例题精析2:1、用描述法表示下列集合①{1,4,7,10,13} }5,23|{≤∈-=n N n n x x 且②{-2,-4,-6,-8,-10} }5,2|{≤∈-=n N n n x x 且2、用列举法表示下列集合①{x ∈N|x 是15的约数} {1,3,5,15}②{(x ,y )|x ∈{1,2},y ∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}注:防止把{(1,2)}写成{1,2}或{x=1,y=2}③⎩⎨⎧=-=+}422|),{(y x y x y x )}32,38{(- ④},)1(|{N n x x n ∈-= {-1,1}⑤},,1623|),{(N y N x y x y x ∈∈=+ {(0,8)(2,5),(4,2)}⑥}4,|),{(的正整数约数分别是y x y x{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}3、关于x 的方程ax +b=0,当a,b 满足条件____时,解集是有限集;当a,b 满足条件_____时,解集是无限集4、用描述法表示下列集合:(1) { 1, 5, 25, 125, 625 }= ;(2) { 0,±21, ±52, ±103, ±174, ……}= 巩固提升:1、数集{}21,,x x x -中元素x 所满足的条件是 2、已知{}23,21,1A a a a =--+,其中a R ∈, ⑴若3A -∈,求实数a 的值;⑵当a 为何值时,集合A 的表示不正确。
3、已知集合{}22,2A a a a =++,若3A ∈,求a 的值。
变式:已知集合{}2|320,A x R a x a R x =∈-+=∈。
⑴若A 是空集,求a 的取值范围;⑵若A 中只有一个元素,求a 的值,并把这个元素写出来;⑶若A 中至多有一个元素,求a 的取值范围4、设集合{}2|1,A a a n N n ==+∈,集合{}2|45,B b b k k N k ==-+∈,若a A ∈,试判断a 与集合B 的关系。
5、设,a b Z ∈,集合()(){}2,|36P x y b y x a =+≤-,点()2,1P ∈,点()1,0P ∉, 点()3,2P ∉,求,a b 的值。
知识点7、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合记作Φ,如:}01|{2=+∈x R x 知识点8、集合与集合之间的关系:(一)、子集(1)子集定义:一般地,对于两个集合A 与B ,如果集合A 的任何..一个元素都是集合B 的元素,我们就说集合A 包含于集合B ,或集合B 包含集合A记作:A B B A ⊇⊆或 ,A ⊂B 或B ⊃A 读作:A 包含于B 或B 包含AB A B x A x ⊆∈⇒∈,则若任意当集合A 不包含于集合B ,或集合B 不包含集合A 时,则记作A ⊆/B 或B ⊇/A注:B A ⊆有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合(2)集合相等:一般地,对于两个集合A 与B ,如果集合A 的任何..一个元素都是集合B 的元素,同时集合B 的任何..一个元素都是集合A 的元素,我们就说集合A 等于集合B ,记作A=B (3)真子集:对于两个集合A 与B ,如果B A ⊆,并且B A ≠,我们就说集合A 是集合B 的真子集,记作:A B 或B A, 读作A 真包含于B 或B 真包含A(4)子集与真子集符号的方向 不同与同义;与如B A B A A B B A ⊇⊆⊇⊆(5)空集是任何集合的子集Φ⊆A规定:空集是任何非空集合的真子集Φ A 若A ≠Φ,则ΦA 任何一个集合是它本身的子集A A ⊆(6)易混符号:①“∈”与“⊆”:元素与集合之间是属于关系;集合与集合之间是包含关系如,,1,1R N N N ⊆∉-∈Φ⊆R ,{1}⊆{1,2,3}②{0}与Φ:{0}是含有一个元素0 如 Φ⊆{0}不能写成Φ={0},Φ∈{0} 例题精析3:1(1) 写出N ,Z ,Q ,R 的包含关系,并用文氏图表示(2) 判断下列写法是否正确①Φ⊆A ②Φ A ③A A ⊆ ④A A解(1):N ⊂Z ⊂Q ⊂R(2)①正确;②错误,因为A 可能是空集;③正确;④错误2 (1)填空:N___Z, N___Q, R___Z, R___Q ,Φ___{0}(2)若A={x ∈R|x 2-3x-4=0},B={x ∈Z||x|<10},则A ⊆B 正确吗(3)是否对任意一个集合A ,都有A ⊆A ,为什么(4)集合{a,b}的子集有那些(5)高一(1)班同学组成的集合A ,高一年级同学组成的集合B ,则A 、B 的关系为 .解:(1)N ⊂Z, N ⊂Q, R ⊃Z, R ⊃Q , Φ{0}(2)∵A={x ∈R|x 2-3x-4=0}={-1,4},B={x ∈Z||x|<10}={-9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9}∴A ⊆B 正确(3)对任意一个集合A ,都有A ⊆A ,(4)集合{a,b}的子集有:Φ、{a}、{b}、{a,b}(5)A 、B 的关系为B A ⊆.3 解不等式x+3<2,并把结果用集合表示出来.解:{x ∈R|x+3<2}={x ∈R|x<-1}.巩固提升:1、设{}1,2A =,{}|B x x A =⊆,问A 与B 是什么关系并用列举法写出集合B2、已知集合2{1}P y x ==+,2{|1}Q y y x ==+,2{|1}E x y x ==+,2{(,)|1}F x y y x ==+,{|1}G x x =≥,则 ( D )()A P F = ()B Q E = ()C E F = ()D Q G =解法要点:弄清集合中的元素是什么,能化简的集合要化简.3、设集合1{|,}24k M x x k Z ==+∈, 1{|,}42k N x x k Z ==+∈,则( B ) ()A M N = ()B M N ⊂≠ ()C M N ⊇4、若集合{}2|10,A x x ax x R =++=∈,集合{}1,2B =,且A B ⊆,求实数a 的取值范围.([2,2)-)5、已知2{|2530}M x x x =--=,{|1}N x mx ==,若N M ⊆,则适合条件的实数m 的集合P 为1{0,2,}3-;P 的子集有 8 个;P 的非空真子集有 6 个. 6、已知:2()f x x ax b =++,{}{}|()22A x f x x ===,则实数a 、b 的值分别为2,4-.(二)全集与补集1 补集:一般地,设S 是一个集合,A 是S 的一个子集(即S A ⊆),由S 中所有不属于A的元素组成的集合,叫做S 中子集A 的补集(或余集),记作A C S ,即C S A=},|{A x S x x ∉∈且2、性质:C S (C S A )=A ,C S S=φ,C S φ=S3、全集:如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用U 表示 例题精析3:1、(1)若S={1,2,3,4,5,6},A={1,3,5},求C S A(2)若A={0},求证:C N A=N *(3)求证:C R Q 是无理数集 解(1)∵S={1,2,3,4,5,6},A={1,3,5},∴由补集的定义得C S A={2,4,6}证明(2)∵A={0},N={0,1,2,3,4,…},N *={1,2,3,4,…}∴由补集的定义得C N A=N *证明(3)∵ Q 是有理数集合,R 是实数集合∴由补集的定义得C R Q 是无理数集合 2、已知全集U =R ,集合A ={x |1≤2x +1<9},求C U A解:∵A ={x |1≤2x +1<9}={x|0≤X <4},U =R0 4 x∴C U A ={x |x <0,或x ≥4}3、 已知S ={x |-1≤x +2<8},A ={x |-2<1-x ≤1},B ={x |5<2x -1<11},讨论A 与C S B 的关系解:∵S ={x|-3≤x <6},A ={x|0≤x <3}, B ={x|3≤x <6}∴C S B ={x|-3≤x <3}∴A ⊆C S B知识点9、子集的个数:由例与练习题,可知(1)集合{a,b}的所有子集的个数是4个,即Ø,{a},{b},{a,b}(2) 集合{a,b,c}的所有子集的个数是8个,即Ø,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}猜想:(1)集合{a,b,c,d}的所有子集的个数是多少(1624=)(2)集合{}n a a a ,,21Λ的所有子集的个数是多少(n 2)结论提炼:含n 个元素的集合{}n a a a ,,21Λ的所有子集的个数是n 2,所有真子集的个数是n 2-1,非空真子集数为2-n例题精析4:1、满足条件{}{}1,21,2,3,4,5M ⊆⊆的集合M 的个数是( )A 3B 6C 7D 82、已知集合{},,A a b c =,且B A ⊆,则满足条件的集合B 的个数是( )A 5B 6C 7D 8高考链接:定义集合运算:{}|(),,A B z z xy x y x A y B ⊗==+∈∈。