二级公路毕业设计外文文献

合集下载

二级公路设计英文参考文献

二级公路设计英文参考文献

二级公路设计英文参考文献1. Manzini, R., & Sampath, A. (2015). Design of Rural Road Drainage Systems: A Simple and Effective Analysis Method. Journal of Transportation Engineering, 141(6), 04015014.This paper presents a simple and effective analysis method for designing drainage systems for rural roads. The authors propose a step-by-step approach that includes the determination of catchment areas, estimation of runoff volume, and evaluation of design criteria for culverts and ditches. The method is demonstrated through a case study in a rural area, highlighting its applicability and effectiveness.2. Gupta, A. K., & Kaul, S. K. (2012). Geometric Design of Rural Roads: A Case Study of Jammu & Kashmir in India. International Journal of Emerging Technology and Advanced Engineering, 2(6), 263-269.This case study focuses on the geometric design of rural roads in the Jammu & Kashmir region of India. The authors discuss the design considerations, such as road alignment, cross-section elements, sight distance, and horizontal and vertical curves. They also evaluate the current road design practices in the region and propose improvements based on internationally recognized standards.3. Pathak, N. C., & Das, L. P. (2010). Rural Road Design Guidelines for India. Journal of Transportation Engineering, 136(4), 342-351.This research article presents rural road design guidelines specifically tailored for India. The authors cover various aspects of road design, including alignment, cross-section elements, grading, drainage, and roadside development. The guidelines aim to improve safety and efficiency in the design of rural roads in India and are supported by extensive research and case studies.4. Qi, Y., Song, R., & Xu, W. (2014). Design of Pavement Structure for Rural Roads in Cold, High-Altitude Plateau Regions. Journal of Materials in Civil Engineering, 26(12), 04014065.This study focuses on the design of pavement structures for rural roads in cold, high-altitude plateau regions. The authors investigate the influence of climate, soil conditions, and traffic loads on pavement performance and propose a design method considering these factors. The research provides valuable insights for designing durable andcost-effective pavement structures in challenging environments.5. Thomet, M., Reutter, F., & Betz, F. (2017). Assessment of Safety Measures for Rural Roads: A Case Study in Switzerland. Transportation Research Procedia, 23, 551-558.This case study evaluates safety measures for rural roads in Switzerland. The authors analyze different road design elements, such as geometric design, signage, and delineation, in order to assess their impact on road safety. The findings contribute to the understanding of effective safety measures for rural roads and can inform future design decisions.。

二级公路毕业设计外文文献

二级公路毕业设计外文文献

外文资料及翻译Effects of Design Features on Rigid Pavement PerformanceThe performance of rigid pavements is affected by a variety of design features, including slab thickness, base type, joint spacing, reinforcement, joint orientation, load trans fer, dowel bar coatings, longitudinal joint design, joint sealant, tied concrete shoulders ,and subdrainage . A study was made by ERES Consultants, Inc. under FHWA contract on the effects of these features on rigid pavement performance . Ninety-five pavemen tsections located in four major climatic regions were thoroughly evaluated . The following conclusions, which provide some revealing insights into pavement performance, are abstracted from the report (Smith et al., 1990a).Slab Thickness The effect of slab thickness on pavement performance was significant.It was found that increasing slab thickness reduced transverse and longitudinal cracking in all cases. This effect was much more pronounced for thinner slabs than fo rthicker slabs . It was not possible to compare the performance of the thinner slabs and the thicker slabs directly, because the thick slabs were all constructed directly on th esubgrade and the thinner slabs were all constructed on a base course .Increasing the thickness of slab did not appear to reduce joint spalling or join tfaulting . Thick slabs placed directly on the subgrade, especially in wet climates an dexposed to heavy traffic, faulted as much as thin slabs constructed on a base course .Base Type Base types, including base/slab interface friction, base stiffness, base erodibility, and base permeability, seemed to have a great effect on the performance of jointed concrete pavements . The major performance indicators, which were affected by variations in base type, were transverse and longitudinal cracking, joint spalling, and faulting .The worst performing base type, consisted of the cement-treated or soil cement bases, which tended to exhibit excessive pumping, faulting, and cracking. This is most likely due to the impervious nature of the base, which traps moisture and yet can brea- k down and contribute to the movement of fines beneath the slab .The use of lean concrete bases generally produced poor performance . Large curl -ing and warping stresses have been associated with slabs constructed over lean concrete bases. These stresses result in considerable transverse and longitudinal cracking of the slab . The poor performance of these bases can also be attributed to a bathtub design, in which moisture is trapped within the pavement cross section .Dense-graded asphalt-treated base courses ranged in performance from very poor to good. The fact that these types of bases were often constructed as a bathtub design contributed to their poor performance . This improper design often resulted in severe cracking, faulting, and pumping.The construction of thicker slabs directly on the subgrade with no base resulted In a pavement that performed marginally. These pavements were especially susceptible to faulting, even under low traffic levels.Pavements constructed over aggregate bases had varied performance, but were generally in the fair to very good category. In general, the more open-graded the aggregate,the better the performance . An advantage of aggregate bases is that they contribute the least to the high curling and warping stresses in the slab . Even though aggregate bases are not open-graded, they are more permeable and have a lower friction factor than stabilized bases .The best bases in terms of pavement performance were the permeable bases . Typical base courses have permeabilities ranging from 0 to less than 1 ft/day (0 .3 m/day) ; good permeable bases have permeabilities up to 1000 ft/day (305 m/day) . Specific areas of concern were the high corner deflections and the low load transfer exhibited by the permeable bases . These can affect their long-term performance, so the use of dowel bars might be required . An unexpected benefit of using permeable bases was the reduction in "D" cracking on pavements susceptible to this type of distress .Slab Length For JPCP, the length of slabs investigated ranged from 7 .75 to 30 ft(2.4to9.1m). It was found that reducing the slab length decreased both the magnitude of the joint faulting and the amount of transverse cracking. On pavements with random joint spacings, slabs with joint spacings greater than 18 ft (5.5 m) experienced more transverse cracking than did the shorter slabs .For JRCP, the length of slabs investigated ranged from 21 to 78 ft (6 .4 to 23 .9 m) .Generally, shorter joint spacings performed better, as measured by the deteriorated transverse cracks, joint faulting, and joint spalling . However, several JRCP with long joint spacings performed quite well . In particular, the long jointed pavements in New Jersey, which were constructed with expansion joints, displayed excellent performance .An examination of the stiffness of foundation was made through the use of the radius of relative stiffness, f . Generally speaking, when the ratio L/E, where L is the length of slab, was greater than 5, transverse cracking occurred more frequently . Thisfactor was further examined for different base types . It was found that stiffer base courses required shorter joint spacings to reduce or eliminate transverse cracking .Reinforcement The amount of steel reinforcement appeared to have an effect in controlling the amount of deteriorated transverse cracking . Pavement sections with less than 0.1% reinforcing steel often displayed significant deteriorated transverse cracking.A minimum of 0 .1% reinforcing steel is therefore recommended, with larger amounts required for more severe climate and longer slabs.Joint Orientation Conventional wisdom has it that skewed joints prevent the application of two wheel loads to the joint at the same time and thus can reduce load-associated distresses . The results from the limited sample size in this study were ambiguous, but all of the nondoweled sections with skewed joints had a lower PSR than similar designs with perpendicular joints . The available data provide no definite conclusions on the effectiveness of skewing transverse joints for nondoweled slabs . Skewed joints are not believed to provide any benefit to doweled slabs.Load Transfer Dowel bars were found to be effective in reducing the amount of joint faulting when compared with nondoweled sections of comparable designs. The diameter of dowels had an effect on performance, because larger diameter bars provided better load transfer and control of faulting under heavy traffic than did smaller dowels.It appeared that a minimum dowel diameter of 1 .25 in . (32 mm) was necessary to provide good performance .Nondoweled JPCP slabs generally developed significant faulting, regardless of pavement design or climate . This effect was somewhat mitigated by the use of permeable bases. However, the sections in this group had a much lower number of accumulated ESAL, so no definite conclusions can be drawn yet .Dowel Bar Coatings Corrosion-resistant coatings are needed to protect dowels from the adverse effects of moisture and deicing chemicals .While most of the sections in this study did not contain corrosion-resistant dowel bars, those that did generally exhibited enhanced performance. Very little deteriorated transverse cracking was identified on these sections. In fact, one section in New Jersey with stainless steel-clad dowel bars was performing satisfactorily after 36 years of service .Longitudinal Joint Design The longitudinal joint design was found to be a critical design element.Both inadequate forming techniques and insufficient depths of joint can contribute to the development of longitudinal cracking . There was evidence of the ad vantage of sawing the joints over the use of inserts . The depth of longitudinal joints is generally recommended to be one-third of the actual, notdesigned, slab thickness, but might have to be greater when stabilized bases are used .Joint Sealant Joint sealing appeared to have a beneficial effect on performance . This was particularly true in harsh climates with excessive amounts of moisture . Preformed compression sealants were shown to perform well for more than 15 years under heavy traffic.Except where "D" cracking occurred, pavement sections containing preformed sealants generally exhibited little joint spalling and were in good overall conditions.Rubberized asphalt joint sealants showed good performance for 5 to 7 years.Tied Concrete Shoulders It is generally believed that tied concrete shoulders can reduce edge stresses and corner deflections by providing more lateral supports to the mainline pavement, thus improving pavement performance . Surprisingly, this study showed that, although tied concrete shoulders performed better than asphalt shoulders,many of the tied shoulders were not designed properly and actually contributed to poor performance of the mainline pavement . The tiebars were spaced too far apart ,sometimes at a spacing of 40 in.(1016 mm), and were not strategically located near slab corners to provide adequate support . In some cases, tied concrete shoulders were constructed over a stabilized dense-graded base in a bathtub design, resulting in the poor performance of mainline pavement.Subdrainage The provision of positive subdrainage, either in the form of longitudinal edge drains or the combination of a drainage layer and edge drains, generally reduced the amount of faulting and spalling related to "D" cracking . With few exceptions, the load-associated distresses, especially faulting and transverse cracking, decreased as the drainage characteristics improved . The overall pavement performance can be improved by using an open-graded base or restricting the percentage of fines . A filter layer must be placed below the permeable base, and regular maintenance of the outlets must be provided .译文结构特点对刚性路面性能的影响刚性路面的性能受种种结构特点的影响,如板厚、基层类型、接缝间距、钢筋用量、接风方向、荷载传递、传力杆涂层、纵缝设计、接缝填封料、有拉杆混凝土道肩和地下排水等。

公路路线设计毕业论文外文

公路路线设计毕业论文外文

公路路线设计毕业论文外文Design of Highway RouteIntroductionHighway transportation plays a vital role in modern society, enabling the efficient movement of goods and people. The design of a highway route is a crucial aspect that ensures safe and convenient travel for users. This paper aims to explore the key elements involved in the design of a highway route and provide an overview of the international practices and guidelines inthis field.Key Elements in Highway Route DesignInternational Practices and GuidelinesDifferent countries have developed their own practices and guidelines for highway route design. The United States, for example, follows the standards outlined in the "A Policy on Geometric Design of Highways and Streets" manual, also known as the Green Book. This manual provides detailed guidance on various design elements, such as alignment, cross-section, and geometrics. It emphasizes the importance of considering safety, mobility, and economic factors in the design process.The European Union has developed the "Eurocodes," a set of European standards for highway design. These codes provide guidelines for the design of various aspects, includingalignment, cross-section, and slope. They also emphasize the consideration of sustainability and environmental impact in the design process.ConclusionThe design of a highway route involves various key elements, including alignment, cross-section, slope, and geometrics. International practices and guidelines, such as the Green Book, Eurocodes, and Austroads design guidelines, provide valuable guidance in this field. It is essential for highway route designers to consider factors such as safety, environmental impact, and economic factors in the design process. By following these practices and guidelines, highway routes can be designed to ensure safe and convenient travel for users.。

道路工程毕业设计外文文献翻译

道路工程毕业设计外文文献翻译

外文文献翻译原文:Asphalt Mixtures-Applications, Theory and Principles1 、ApplicationsAsphalt materials find wide usage in the construction industry、The use of asphalt as a cementing agent in pavements is the most common of its applications, however, and the one that will be consid ered here、Asphalt products are used to produce flexibl e pavements for highways and airports、The term “fl exible” is used to distinguish these pavements from those made with Portland cement, which are classified as rigid pavements, that is, having beam strength、This distinction is important because it provid es they key to the design approach which must be used for successful flexibl e pavement structures、The flexibl e pavement classification may be further broken d own into high and l ow types, the type usually depending on whether a solid or liquid asphalt product is used、The l ow types of pavement are mad e with the cutback, or emulsion, liquid products and are very widely used throughout this country、Descriptive terminol ogy has been developed in various sections of the country to the extent that one pavement type may have several names、However, the general process foll owed in construction is similar for most l ow-type pavements and can be described as one in which the aggregate and the asphalt product are usually applied to the roadbed separately and there mixed or all owed to mix, forming the pavement、The high type of asphalt pavements is made with asphalt cements of some sel ected penetration grad e、Fig、·1 A modern asphalt concrete highway、Shoul der striping is used as a safely feature、Fig、·2 Asphalt concrete at the San Francisco International Airport、They are used when high wheel l oads and high volumes of traffic occur and are, therefore, often designed for a particular installation、2 、Theory of asphalt concrete mix designHigh types of flexible pavement are constructed by combining an asphalt cement, often in the penetration grad e of 85 to 100, with aggregates that are usually divided into three groups, based on size、The three groups are coarse aggregates, fine aggregates, and mineral filler、These will be discussed in d etail in later chapter、Each of the constituent parts mentioned has a particular function in the asphalt mixture, and mix proportioning or d esign is the process of ensuring that no function is negl ected、Before these individual functions are examined, however, the criteria for pavement success and failure should be consid ered so that d esign objectives can be established、A successful fl exible pavement must have several particular properties、First, it must be stable, that is to resistant to permanent displacement under l oad、Deformation of an asphaltpavement can occur in three ways, two unsatisfactory and one desirable、Plastic deformation of a pavement failure and which is to be avoid ed if possible、Compressive deformation of the pavement results in a dimensional change in the pavement, and with this change come a l oss of resiliency and usually a d egree of roughness、This d eformation is less serious than the one just described, but it, too, leads to pavement failure、The desirable type of deformation is an elastic one, which actually is beneficial to flexibl e pavements and is necessary to their long life、The pavement should be durable and should offer protection to the subgrade、Asphalt cement is not impervious to the effects of weathering, and so the design must minimize weather susceptibility、A durable pavement that d oes not crack or ravel will probably also protect the roadbed、It must be remembered that flexible pavements transmit loads to the subgrad e without significant bridging action, and so a dry firm base is absolutely essential、Rapidly moving vehicl es d epend on the tire-pavement friction factor for control and safety、The texture of the pavement surfaces must be such that an adequate skid resistance is developed or unsafe conditions result、The design procedure shoul d be used to select the asphalt material and aggregates combination which provid es a skid resistant roadway、Design procedures which yield paving mixtures embodying all these properties are not available、Sound pavements are constructed where materials and methods are selected by using time-tested tests and specifications and engineering judgments al ong with a so-call ed design method、The final requirement for any pavement is one of economy、Economy, again, cannot be measured directly, since true economy only begins with construction cost and is not fully determinable until the full useful life of the pavement has been record ed、If, however, the requirements for a stable, durable, and safe pavement are met with a reasonable safety factor, then the best interests of economy have probably been served as well、With these requirements in mind, the functions of the constituent parts can be examined with consideration give to how each part contributes to now-established objectives or requirements、The functions of the aggregates is to carry the load imposed on the pavement, and this is accomplished by frictional resistance and interl ocking between the individual pieces of aggregates、The carrying capacity of the asphalt pavement is, then, related to thesurface texture (particularly that of the fine aggregate) and the density, or “compactness,”, of the aggregates、Surface texture varies with different aggregates, and while a rough surface texture is desired, this may not be available in some l ocalities、Dense mixtures are obtained by using aggregates that are either naturally or artificially “well graded”、This means that the fine aggregate serves to fill the voids in the coarser aggregates、In addition to affecting density and therefore strength characteristics, the grading also influences workability、When an excess of coarse aggregate is used, the mix becomes harsh and hard to work、When an excess of mineral filler is used, the mixes become gummy and difficult to manage、The asphalt cement in the fl exibl e pavement is used to bind the aggregate particl es together and to waterproof the pavements、Obtaining the proper asphalt content is extremely important and bears a significant influence on all the items marking a successful pavement、A chief objective of all the design methods which have been devel oped is to arrive at the best asphalt content for a particular combination of aggregates、3 、Mix design principl esCertain fundamental principles underlie the design procedures that have been developed、Before these procedures can be properly studied or applied, some consid eration of these principles is necessary、Asphalt pavements are composed of aggregates, asphalt cement, and voids、Considering the aggregate alone, all the space between particles is void space、The volume of aggregate voids depends on grading and can vary widely、When the asphalt cement is add ed, a portion of these aggregate voids is filled and a final air-void volume is retained、The retention of this air-void volume is very important to the characteristics of the mixture、The term air-void volume is used, since these voids are weightless and are usually expressed as a percentage of the total volume of the compacted mixture、An asphalt pavement carries the applied load by particl e friction and interlock、If the particl es are pushed apart for any reason , then the pavement stability is d estroyed、This factor indicates that certainly no more asphalt shoul d be ad ded than the aggregate voids can readily hold、However ,asphalt cement is susceptibl e to volume change and the pavement is subject to further compaction under use、If the pavement has no air voids when placed, or if it loses them under traffic, then the expanding asphalt will overfl ow in a condition known asbleeding、The l oss of asphalt cement through bleeding weakens the pavement and also reduces surface friction, making the roadway hazard ous、Fig、·3 Cross section of an asphalt concrete pavement showing the aggregate framework bound together by asphalt cement、The need for a minimum air-void volume (usually 2 or 3 per cent ) has been established、In addition, a maximum air-void volume of 5 to 7 per cent shoul d not be exceed、An excess of air voids promotes raveling of the pavement and also permits water to enter and speed up the deteriorating processes、Also, in the presence of excess air the asphalt cement hardens and ages with an accompanying loss of durability and resiliency、The air-void volume of the mix is determined by the d egree of compaction as well as by the asphalt content、For a given asphalt content, a lightly compacted mix will have a large voids volume and a l ower d ensity and a greater strength will result、In the laboratory, the compaction is controlled by using a specified hammer and regulating the number of bl ows and the energy per blow、In the field, the compaction and the air voids are more difficult to control and tests must be made no specimens taken from the compacted pavement to cheek on the d egree of compaction being obtained、Traffic further compact the pavement, and all owance must be mad e for this in the design、A systematic checking of the pavement over an extended period is need ed to given factual information for a particular mix、A change in density of several per cent is not unusual, however、Asphalt content has been discussed in connection with various facets of the ix design problem、It is a very important factor in the mix design and has a bearing an all the characteristics ld a successful pavement: stability, skid resistance, durability, and economy、As has been mentioned, the various d esign procedures are intended to provide a means for selecting the asphalt content 、These tests will be considered in detail in a future chapter ,but the relationship between asphalt content and the measurable properties of stability, unit weight, and air voids will be discussed here、Fig、4 Variations in stability, unit weight, and air-void content with asphalt cement content、If the gradation and type of aggregate, the degree of compaction, and the type of asphalt cement are controll ed, then the strength varies in a predictable manner、The strength will increase up to some optimum asphalt content and then decrease with further additions、The pattern of strength variation will be different when the other mix factors are changed, and so only a typical pattern can be predicted prior to actual testing、Unit weight varies in the same manner as strength when all other variabl e arecontroll ed、It will reach some peak value at an asphalt content near that determined from the strength curve and then fall off with further additions、As already mentioned, the air-void volume will vary with asphalt content、However, the manner of variation is different in that increased asphalt content will d ecrease air-void volume to some minimum value which is approached asymptotically、With still greater additions of asphalt material the particles of aggregate are only pushed apart and no change occurs in air-void volume、In summary, certain principles involving aggregate gradation, air-void volume, asphalt content, and compaction mist be understood before proceeding to actual mix d esign、The proper design based on these principl es will result in sound pavements、If these principles are overlooked, the pavement may fail by one or more of the recognized modes of failure: shoving, rutting, corrugating, becoming slick when the max is too ‘rich’; raveling, cracking,having low durability when t he mix is too ‘l ean’、It should be again emphasized that the strength of flexible is, more accurately, a stability and d oes not indicate any ability to bridge weak points in the subgrade by beam strength、No asphalt mixture can be successful unless it rests on top of a properly designed and constructed base structure、This fact, that the surface is no better than the base, must be continually in the minds of those concerned with any aspect of fl exible pavement work、译文:沥青混合料的应用、理论与原则1、应用沥青材料如今在建筑行业广泛使用。

毕设中英文摘要--铁炉子二级公路山岭隧道毕业设计

毕设中英文摘要--铁炉子二级公路山岭隧道毕业设计

随着社会的发展,公路隧道在高等级公路中得到广泛应用。

由于它在山岭地区有克服地形或高程障碍,改善线形,提高车速,缩短里程,节约燃料,节省时间,减少对植被的破坏,保护生态环境等优点。

本设计课题为铁炉子二级公路山岭隧道结构设计,注重的是结构计算,重点研究新奥法施工。

在设计中,首先依据隧道设计规范、结合围岩类型和周围环境对隧道进行选址,并且选择合理的洞门形式及其验算洞门的稳定性。

其次根据洞身所处围岩级别和埋深的不同进行了隧道的围岩压力计算和结构静力计算,根据使用工程类比法来选择支护参数,并且依据围岩压力来进行衬砌配筋计算及其支护参数安全稳定性验算。

然后是根据工程需要选择合理的施工监测方案,通过多种量测手段,对开挖后隧道围岩进行动态监测,并以此知道隧道支护结构的设计与施工。

最后,还根据隧道工程特点、施工技术装备和施工力量等技术与经济因素,在确保安全、经济的前提下,编制隧道施工组织设计。

在设计中,还加入了许多的比选,或者备选方案,在对各项方案的选择时,结合长径隧道的实际特点选定最适合的一种作为最终方案。

这样,对加深隧道结构的认识,施工工艺方法的了解和对检测项目实施完整性准确性的把握都很有好处。

关键词:隧道设计;新奥法;围岩压力;衬砌支护;施工组织With the development of society, highway tunnels are widely used in the high-grade highways. They can overcome obstacles to the terrain or elevation, to improve alignment and enhance the speed and shorten the mileage, save fuel, save time, reduce the destruction of vegetation has the advantages of protecting the environment.The design issue for Secondary roads of the Tie Lu Zi, the structure-oriented computing, focuses on the construction of the new Austrian law. In the design, the first tunnel in accordance with design specifications, combined with rock type and the surrounding environment of the tunnel entrance to the site, and choose a reasonable form of the portal and check the stability of Portal. Second, under the rock where holes are different levels and depth of the tunnel to the rock pressure calculation and calculation of static structure, in accordance with the use of analogy works to select the initial parameters and the second pit lining support parameters, and based on Wai rock reinforcement lining pressure to support the calculation and checking security and stability of parameters. Is based on the project and then need to select a reasonable construction of the monitoring program, through a variety of means of measurement, the tunnel after excavation for dynamic monitoring, and to know that the tunnel support structure design and construction. Finally, also in accordance with the characteristics of tunnel engineering, construction technology and equipment and construction forces and economic factors such as technology, in ensuring the security, economic, under the premise of the preparation of the tunnel construction organization design.In the design, but also adding a lot more than elections or options in the choice of the program, the combined length of the actual characteristics of the tunnel to choose the most suitable one as the final stage. Such as the choice of excavation methods, the law in the whole cross-section, step method, the law division of the excavation were compared, and finally integration of the various ways the characteristics of excavation and grade Ⅴ the inherent characteristics of surrounding areas, selected Division CRD law excavation method. In this way, to deepen understanding of the tunnel structure, construction techniques and methods to understand the integrity of testing the accuracy of the implementation of the project are very good grasp.Key words: Long-track tunnel ;Tunnel design ;Rock pressureLining ;Construction organizations。

道路交通工程专业外文翻译外文文献英文文献

道路交通工程专业外文翻译外文文献英文文献

土木工程学院交通工程专业中英文翻译Road Design专业:交通工程英文原文The Basics of a Good RoadWe have known how to build good roads for a long time. Archaeologists have found ancient Egyptian roadsthat carried blocks to the pyramids in 4600 BCE. Later,the Romans built an extensive road system, using the same principles we use today. Some of these roads arestill in service.If you follow the basic concepts of road building, you will create a road that will last. The ten commandments of a good road are:(1)Get water away from the road(2)Build on a firm foundation(3)Use the best materials(4)Compact all layers properly(5)Design for traffic loads and volumes(6)Design for maintenance(7)Pave only when ready(8)Build from the bottom up(9)Protect your investment(10)Keep good records1.Get water away from the roadWe can’t overemphasize the importance of good drainage.Engineers estimate that at least 90% of a road’s problems can be related to excess water or to poor waterdrainage. Too much water in any laye r of a road’sstructure can weaken that layer, leading to failure.In the surface layer, water can cause cracks and potholes. In lower layers it undermines support, causing cracks and potholes. A common sign of water in an asphalt road surface is alligator cracking — an interconnected pattern of cracks forming small irregular shaped pieces that look like alligator skin. Edge cracking, frost heaves, and spring breakup of pavements also point to moisture problems.To prevent these problems remember that water:• flows downhill• needs to flow someplace• is a problem if it is not flowingEffective drainage systems divert, drain and dispose of water. To do this they use interceptor ditches and slopes,road crowns, and ditch and culvert systems.Divert —Interceptor ditches, located between the road and higher ground along the road, keep the water from reaching the roadway. These ditches must slope so they carry water away from the road.Drain —Creating a crown in the road so it is higher along the centerline than at the edges encourages water to flow off the road. Typically a paved crown should be 1⁄4" higher than the shoulder for each foot of width from the centerline to the edge. For gravel surfaces the crownshould be 1⁄2" higher per foot of width. For this flow path to work, the road surface must be relatively water tight. Road shoulders also must be sloped away from the road to continue carrying the flow away. Superelevations (banking) at the outside of curves will also help drainthe road surface.Dispose —A ditch and culvert system carries water away from the road structure. Ditches should be at least one foot lower than the bottom of the gravel road layer that drains the roadway. They must be kept clean and must be sloped to move water into natural drainage. If water stays in the ditches it can seep back into the road structure and undermine its strength. Ditches should also be protected from erosion by planting grass, or installing rock and other erosion control measures. Erosion can damage shoulders and ditches, clog culverts, undermine roadbeds, and contaminate nearby streams and lakes. Evaluate your ditch and culvert system twice a year to ensure that it works. In the fall, clean out leaves and branches that can block flow. In spring, check for and remove silts from plowing and any dead plant material left from the fall.2.Build on a firm foundationA road is only as good as its foundation. A highway wears out from the top down but falls apart from the bottom. The road base must carry the entire structure and the traffic that uses it.To make a firm foundation you may need to stabilize the roadbed with chemical stabilizers, large stone called breaker run, or geotextile fabric. When you run into conditions where you suspect that the native soil is unstable, work with an engineer to investigate the situation and design an appropriate solution.3.Use the best materialsWith all road materials you “pay now or pay later.” Inferior materials may require extensive maintenance throughout the road’s life. They may also force you to replace the road prematurely.Crushed aggregate is the best material for the base course. The sharp angles of thecrushed material interlock when they are compacted. This supports the pavement and traffic by transmitting the load from particle to particle. By contrast, rounded particles act like ballbearings, moving under loads.Angular particles are more stable than rounded particles.Asphalt and concrete pavement materials must be of the highest quality, designed forthe conditions, obtained from established firms, and tested to ensure it meets specifications.4.Compact all layersIn general, the more densely a material is compacted, the stronger it is. Compaction also shrinks or eliminates open spaces (voids) between particles. This means that less water can enter the structure. Water in soil can weaken the structure or lead to frost heaves. This is especially important for unsurfaced (gravel) roads. Use gravel which has a mix of sizes (well-graded aggregate) so smaller particles can fill the voids between larger ones. Goodcompaction of asphalt pavement lengthens its life.5.Design for traffic loads and volumesDesign for the highest anticipated load the road will carry. A road that has been designed only for cars will not stand up to trucks. One truck with 9 tons on a single rear axle does as much damage to a road as nearly 10,000 cars.Rural roads may carry log trucks, milk trucks, fire department pumper trucks, or construction equipment. If you don’t know what specific loads the road w ill carry, a good rule of thumb is to design for the largest piece of highway maintenance equipment that will be used on the road.A well-constructed and maintained asphalt road should last 20 years without major repairs or reconstruction. In designing a road, use traffic counts that project numbers and sizes of vehicles 20 years into the future. These are only projections, at best, but they will allow you to plan for traffic loadings through a road’s life.6.Design for maintenanceWithout maintenance a road will rapidly deteriorate and fail. Design your roads so they can be easily maintained. This means:• adequate ditches that can be cleaned regularly• culverts that are marked for easy locating in the spring• enough space for snow after it is plowed off the road• proper cross slopes for safety, maintenance and to avoid snow drifts• roadsi des that are planted or treated to prevent erosion• roadsides that can be mowed safelyA rule of thumb for adequate road width is to make it wide enough for a snowplow to pass another vehicle without leaving the travelled way.Mark culverts with a post so they can be located easily.7.Pave only when readyIt is not necessary to pave all your roads immediately. There is nothing wrong with a well-built and wellmaintained gravel road if traffic loads and volume do not require a paved surface. Three hundred vehicles per day is the recommended minimum to justify paving.Don’t assume that laying down asphalt will fix a gravel road that is failing. Before youpave, make sure you have an adequate crushed stone base that drains well and is properly compacted. The recommended minimum depth of crushed stone base is 10" depending on subgrade soils. A road paved only when it is ready will far outperform one that is constructed too quickly.8.Ê Build from the bottom upThis commandment may seem obvious, but it means that you shouldn’t top dress or resurface a road if the problem is in an underlying layer. Before you do any road improvement, locate the cause of any surface problems. Choose an improvement technique that will address the problem. This may mean recycling or removing all road materials down to the native soil and rebuilding everything. Doing any work that doesn’t solve the problem is a waste of money and effort.9.Ê Protec t your investmentThe road system can be your municipality’s biggest investment. Just as a home needs painting or a new roof, a road must be maintained. Wisconsin’s severe climate requires more road maintenance than in milder places. Do these important maintenance activities: Surface —grade, shape, patch, seal cracks, control dust, remove snow and iceDrainage —clean and repair ditches and culverts; remove all excess materialRoadside —cut brush, trim trees and roadside plantings, control erosionTraffic service —clean and repair or replace signsDesign roads with adequate ditches so they can be maintained with a motor grader. Clean and grade ditches to maintain proper pitch and peak efficiency. After grading, remove all excess material from the shoulder.10.Keep good recordsYour maintenance will be more efficient with good records. Knowing the road’s construction, life, and repair history makes it much easier to plan and budget its future repairs. Records can also help you evaluate the effectiveness of the repair methods and materials you used.Good record keeping starts with an inventory of the system. It should include the history and surface condition of the roadway, identify and evaluate culverts and bridges, note ditch conditions, shoulders, signs, and such structures as retaining walls and guardrails.Update your inventory each year or when you repair or change a road section. A formal pavement management system can help use these records and plan and budget road improvements.ResourcesThe Basics of a Good Road#17649, UW-Madison, 15 min. videotape. Presentsthe Ten Commandments of a Good Road. Videotapes are loaned free through County Extension offices.Asphalt PASER Manual(39 pp), Concrete PASER Manual (48 pp), Gravel PASERManual (32 pp). These booklets contain extensive photos and descriptions of road surfaces to help you understand types of distress conditions and their causes. A simple procedure for rating the condition helps you manage your pavements and plan repairs.Roadware, a computer program which stores and reports pavement conditioninformation. Developed by the Transportation Information Center and enhanced by the Wisconsin Department of Transportation, it uses the PASER rating system to providefive-year cost budgets and roadway repair/reconstruction priority lists.Wisconsin Transportation Bulletin factsheets, available from the Transportation Information Center (T.I.C.).Road Drainage, No. 4. Describes drainage for roadways, shoulders, ditches, and culverts.Gravel Roads, No. 5. Discusses the characteristics of a gravel road and how to maintain one.Using Salt and Sand for Winter Road Maintenance,No. 6. Basic information and practical tips on how to use de-icing chemicals and sand.Culverts—Proper Use and Installation, No. 15. Selecting and sizing culverts, designing, installing and maintaining them.Geotextiles in Road Construction/Maintenance andErosion Control, No. 16. Definitions and common applications of geotextiles onroadways and for erosion control.T.I.C. workshops are offered at locations around the state.Crossroads,an 8-page quarterly newsletter published by the T.I.C. carries helpfularticles, workshop information, and resource lists. For more information on any of these materials, contact the T.I.C. at 800/442-4615.中文译文一个良好的公路的基础长久以来我们已经掌握了如何铺设好一条道路的方法,考古学家发现在4600年古埃及使用建造金字塔的石块铺设道路,后来,罗马人使用同样的方法建立了一个庞大的道路系统,这种方法一直沿用到今天。

交通毕业设计外文及翻译(最终五篇)

交通毕业设计外文及翻译(最终五篇)

交通毕业设计外文及翻译(最终五篇)第一篇:交通毕业设计外文及翻译Synchro在交通控制与设计中的应用在城市的较小的区域内,可以对区域内的所有交叉口进行控制;在城市较大的区域,可以对区域进行分区分级控制。

分区的结果往往使面控制成为一个由几条线控制组成的分级集中控制系统,这时,可认为各线控制是面控制中的一个单元;有时分区的结果是成为一个点,线,面控制的综合性分级控制系统。

现在对城市道路进行区域协调控制就是将其划分为多级多个信号控制子区,对信号子区进行协调控制,优化管理控制信号子区,然后对整个道路进行区域协调控制,达到整个城市道路优化的目的。

把城市道路划分为多个信号控制子区,也就是进行城市道路干线交叉口交通信号协调控制,把城市划分为多个主路控制,再把主路上各个交叉口进行联动控制,同时,对单个交叉口信号控制优化的同时需要考虑主路上下游各个交叉口的联动控制。

主路上的各个交叉口按照设计的信号配时方案进行运行,使车辆进入城市主干道交叉口时,不至经常遇到红灯,称为城市主干道交叉口信号协调控制,称为“绿波”信号控制。

城市单点交叉口作为城市交通网络中的重要组成部分,作为城市道路交通问题的关键点。

对城市单点交叉口,评价标准的参考指标:交叉口的通行能力、进口道的饱和度、道路交叉口进口道停车延误、交叉口进口道停车次数、进口道排队长度和汽车的油耗等。

交叉口定时信号控制配时方法在不断的改进之中,国内外大部分学者认为从不同的评价指标出发,可以采用不同的种优化算法寻求其它更合理的配时方法。

平面交叉口按交通管制方式可以分为全无控制交叉口、主路优先控制交叉口、信号灯控制交叉口、环形交叉口等几种类型。

主路优先控制交叉口,是在次路上设停车让行或减速让行标志,指令次路车辆必须停车或减速让主路车辆优先通行的一种交通管制方式。

交叉口是道路网中通行能力的“瓶颈”和交通事故的“黑点”。

国内外城市中的交通堵塞主要发上在交叉口,造成车辆中断,事故增多,延误严重。

毛嘴K6+000至小李湾K9+000二级公路设计专业外文翻译

毛嘴K6+000至小李湾K9+000二级公路设计专业外文翻译

本科毕业设计(论文)专业名称: 土木工程专业(道路与桥梁)年级班级:道桥08-5班 学生姓名:宋鹏 指导教师:廖明成河南理工大学土木工程学院二○一二年五月十八日专业外文翻译Geometric Design of HighwaysThe road is one kind of linear construction used for travel. It is made of the roadbed, the road surface, the bridge, the culvert and the tunnel. In addition, it also has the crossing of lines, the protective project and the traffic engineering and the route facility.The roadbed is the base of road surface, road shoulder, side slope, side ditch foundations. It is stone material structure, which is designed according to route's plane position .The roadbed, as the base of travel, must guarantee that it has the enough intensity and the stability that can prevent the water and other natural disaster from corroding.The road surface is the surface of road. It is single or complex structure built with mixture. The road surface require being smooth, having enough intensity, good stability and anti-slippery function. The quality of road surface directly affects the safe, comfort and the traffic.Highway geometry designs to consider Highway Horizontal Alignment, Vertical Alignment two kinds of linear and cross-sectional composition of coordination, but also pay attention to the smooth flow of the line of sight, etc. Determine the road geometry, consider the topography, surface features, rational use of land and environmental protection factors, to make full use of the highway geometric components of reasonable size and the linear combination.1.Alignment DesignThe alignment of a road is shown on the plane view and is a series of straight lines called tangents connected by circular. In modern practice it is common to interpose transition or spiral curves between tangents and circular curves.Alignment must be consistent. Sudden changes from flat to sharp curves and long tangents followed by sharp curves must be avoided; otherwise, accident hazards will be created. Likewise, placing circular curves of different radii end to end (compound curves) or having a short tangent between two curves is poor practice unless suitable transitions between them are provided. Long, flat curves are preferable at all times, as they are pleasing in appearance and decrease possibility of futureobsolescence. However, alignment without tangents is undesirable on two-lane roads because some drivers hesitate to pass on curves. Long, flat curves should be used for small changes in direction, as short curves appear as “kink”. Also horizontal and vertical alignment must be considered together, not separately. For example, a sharp horizontal curve beginning near a crest can create a serious accident hazard.A vehicle traveling in a curved path is subject to centrifugal force. This is balanced by an equal and opposite force developed through cannot exceed certain maximums, and these controls place limits on the sharpness of curves that can be used with a design speed. Usually the sharpness of a given circular curve is indicated by its radius. However, for alignment design, sharpness is commonly expressed in terms o f degree of curve, which is the central angle subtended by a 100-ft length of curve. Degree of curve is inversely proportional to the radius.Tangent sections of highways carry normal cross slope; curved sections are super elevated. Provision must be made for gradual change from one to the other. This usually involves maintaining the center line of each individual roadway at profile grade while raising the outer edge and lowering the inner edge to produce the desired super elevation is attained some distance beyond the point of curve.If a vehicle travels at high speed on a carefully restricted path made up of tangents connected by sharp circular curve, riding is extremely uncomfortable. As the car approaches a curve, super elevation begins and the vehicle is tilted inward, but the passenger must remain vertical since there is on centrifugal force requiring compensation. When the vehicle reaches the curve, full centrifugal force develops at once, and pulls the rider outward from his vertical position. To achieve a position of equilibrium he must force his body far inward. As the remaining super elevation takes effect, further adjustment in position is required. This process is repeated in reverse order as the vehicle leaves the curve. When easement curves are introduced, the change in radius from infinity on the tangent to that of the circular curve is effected gradually so that centrifugal force also develops gradually. By careful application of super elevation along the spiral, a smooth and gradual application of centrifugal force can be had and the roughness avoided.Easement curves have been used by the railroads for many years, but their adoption by highway agencies has come only recently. This is understandable. Railroad trains must follow the precise alignment of the tracks, and the discomfort described here can be avoided only by adopting easement curves. On the other hand, the motor-vehicle operator is free to alter his lateral position on the road and can provide his own easement curves by steering into circular curves gradually. However, this weaving within a traffic lane (but sometimes into other lanes) is dangerous. Properly designed easement curves make weaving unnecessary. It is largely for safety reasons, then, that easement curves have been widely adopted by highway agencies.For the same radius circular curve, the addition of easement curves at the ends changes the location of the curve with relation to its tangents; hence the decision regarding their use should be made before the final location survey. They point of beginning of an ordinary circular curve is usually labeled the PC (point of curve) or BC (beginning of curve). Its end is marked the PT (point of tangent) or EC (end of curve). For curves that include easements, the common notation is, as stationing increases: TS (tangent to spiral), SC (spiral to circular curve), CS (circular curve to spiral), and ST (spiral go tangent).On two-lane pavements provision of a wilder roadway is advisable on sharp curves. This will allow for such factors as (1) the tendency for drivers to shy away from the pavement edge, (2) increased effective transverse vehicle width because the front and rear wheels do not track, and (3) added width because of the slanted position of the front of the vehicle to the roadway centerline. For 24-ft roadways, the added width is so small that it can be neglected. Only for 30mph design speeds and curves sharper than 22°does the added width reach 2 ft. For narrower pavements, however, widening assumes importance even on fairly flat curves. Recommended amounts of and procedures for curve widening are given in Geometric Design for Highways.2. GradesThe vertical alignment of the roadway and its effect on the safe and economical operation of the motor vehicle constitute one of the most important features of road design. The vertical alignment, which consists of a series of straight lines connected by vertical parabolic or circular curves, is known as the “grade line.” When the gradeline is increasing from the horizontal it is known as a “plus grade,” and when it is decreasing from the horizontal it is known as a “minus grade.” In analyzing grade and grade controls, the designer usually studies the effect of change in grade on the centerline profile.In the establishment of a grade, an ideal situation is one in which the cut is balanced against the fill without a great deal of borrow or an excess of cut to be wasted. All hauls should be downhill if possible and not too long. The grade should follow the general terrain and rise and fall in the direction of the existing drainage. In mountainous country the grade may be set to balance excavation against embankment as a clue toward least overall cost. In flat or prairie country it will be approximately parallel to the ground surface but sufficiently above it to allow surface drainage and, where necessary, to permit the wind to clear drifting snow. Where the road approaches or follows along streams, the height of the grade line may be dictated by the expected level of flood water. Under all conditions, smooth, flowing grade lines are preferable to choppy ones of many short straight sections connected with short vertical curves.Changes of grade from plus to minus should be placed in cuts, and changes from a minus grade to a plus grade should be placed in fills. This will generally give a good design, and many times it will avoid the appearance of building hills and producing depressions contrary to the general existing contours of the land. Other considerations for determining the grade line may be of more importance than the balancing of cuts and fills.Urban projects usually require a more detailed study of the controls and finer adjustment of elevations than do rural projects. It is often best to adjust the grade to meet existing conditions because of the additional expense of doing otherwise.In the analysis of grade and grade control, one of the most important considerations is the effect of grades on the operating costs of the motor vehicle. An increase in gasoline consumption and a reduction in speed are apparent when grades are increase in gasoline consumption and a reduction in speed is apparent when grades are increased. An economical approach would be to balance the added annual cost of grade reduction against the added annual cost of vehicle operation without grade reduction. An accurate solution to the problem depends on the knowledge of trafficvolume and type, which can be obtained only by means of a traffic survey.While maximum grades vary a great deal in various states, AASHTO recommendations make maximum grades dependent on design speed and topography. Present practice limits grades to 5 percent of a design speed of 70 mph. For a design speed of 30 mph, maximum grades typically range from 7 to 12 percent, depending on topography. Wherever long sustained grades are used, the designer should not substantially exceed the critical length of grade without the provision of climbing lanes for slow-moving vehicles. Critical grade lengths vary from 1700 ft for a 3 percent grade to 500 ft for an 8 percent grade.Long sustained grades should be less than the maximum grade on any particular section of a highway. It is often preferred to break the long sustained uniform grade by placing steeper grades at the bottom and lightening the grade near the top of the ascent. Dips in the profile grade in which vehicles may be hidden from view should also be avoided. Maximum grade for highway is 9 percent. Standards setting minimum grades are of importance only when surface drainage is a problem as when water must be carried away in a gutter or roadside ditch. In such instances the AASHTO suggests a minimum of 0.35%.3. Sight DistanceFor safe vehicle operation, highway must be designed to give drivers a sufficient distance or clear version ahead so that they can avoid unexpected obstacles and can pass slower vehicles without danger. Sight distance is the length of highway visible ahead to the driver of a vehicle. The concept of safe sight distance has two facets: “stopping” (or “no passing”) and “passing”.At times large objects may drop into a roadway and will do serious damage to a motor vehicle that strikes them. Again a car or truck may be forced to stop in the traffic lane in the path of following vehicles. In dither instance, proper design requires that such hazards become visible at distances great enough that drivers can stop before hitting them. Further more, it is unsafe to assume that one oncoming vehicle may avoid trouble by leaving the lane in which it is traveling, for this might result in loss of control or collision with another vehicle.Stopping sight distance is made up of two elements. The first is the distancetraveled after the obstruction comes into view but before the driver applies his brakes. During this period of perception and reaction, the vehicle travels at its initial velocity. The second distance is consumed while the driver brakes the vehicle to a stop. The first of these two distances is dependent on the speed of the vehicle and the perception time and brake-reaction time of the operator. The second distance depends on the speed of the vehicle; the condition of brakes, times, and roadway surface; and the alignment and grade of the highway.On two-lane highways, opportunity to pass slow-moving vehicles must be provided at intervals. Otherwise capacity decreases and accidents increase as impatient drivers risk head-on collisions by passing when it is unsafe to do so. The minimum distance ahead that must be clear to permit safe passing is called the passing sight distance. In deciding whether or not to pass another vehicle, the driver must weigh the clear distance available to him against the distance required to carry out the sequence of events that make up the passing maneuver. Among the factors that will influence his decision are the degree of caution that he exercises and the accelerating ability of his vehicle. Because humans differ markedly, passing practices, which depend largely on human judgment and behavior rather than on the laws of mechanics, vary considerably among drivers.The geometric design is to ensure highway traffic safety foundation, the highway construction projects around the other highway on geometric design, therefore, in the geometry of the highway design process, if appear any unsafe potential factors, or low levels of combination of design, will affect the whole highway geometric design quality, and the safety of the traffic to bring adverse impact. So, on the geometry of the highway design must be focus on.公路几何设计公路是供汽车或其他车辆行驶的一种线形带状结构体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

外文资料及翻译Effects of Design Features on Rigid Pavement PerformanceThe performance of rigid pavements is affected by a variety of design features, including slab thickness, base type, joint spacing, reinforcement, joint orientation, load trans fer, dowel bar coatings, longitudinal joint design, joint sealant, tied concrete shoulders ,and subdrainage . A study was made by ERES Consultants, Inc. under FHWA contract on the effects of these features on rigid pavement performance . Ninety-five pavemen tsections located in four major climatic regions were thoroughly evaluated . The following conclusions, which provide some revealing insights into pavement performance, are abstracted from the report (Smith et al., 1990a).Slab Thickness The effect of slab thickness on pavement performance was significant.It was found that increasing slab thickness reduced transverse and longitudinal cracking in all cases. This effect was much more pronounced for thinner slabs than fo rthicker slabs . It was not possible to compare the performance of the thinner slabs and the thicker slabs directly, because the thick slabs were all constructed directly on th esubgrade and the thinner slabs were all constructed on a base course .Increasing the thickness of slab did not appear to reduce joint spalling or join tfaulting . Thick slabs placed directly on the subgrade, especially in wet climates an dexposed to heavy traffic, faulted as much as thin slabs constructed on a base course .Base Type Base types, including base/slab interface friction, base stiffness, base erodibility, and base permeability, seemed to have a great effect on the performance of jointed concrete pavements . The major performance indicators, which were affected by variations in base type, were transverse and longitudinal cracking, joint spalling, and faulting .The worst performing base type, consisted of the cement-treated or soil cement bases, which tended to exhibit excessive pumping, faulting, and cracking. This is most likely due to the impervious nature of the base, which traps moisture and yet can brea- k down and contribute to the movement of fines beneath the slab .The use of lean concrete bases generally produced poor performance . Large curl -ing and warping stresses have been associated with slabs constructed over lean concrete bases. These stresses result in considerable transverse and longitudinal cracking of the slab . The poor performance of these bases can also be attributed to a bathtub design, in which moisture is trapped within the pavement cross section .Dense-graded asphalt-treated base courses ranged in performance from very poor to good. The fact that these types of bases were often constructed as a bathtub design contributed to their poor performance . This improper design often resulted in severe cracking, faulting, and pumping.The construction of thicker slabs directly on the subgrade with no base resulted In a pavement that performed marginally. These pavements were especially susceptible to faulting, even under low traffic levels.Pavements constructed over aggregate bases had varied performance, but were generally in the fair to very good category. In general, the more open-graded the aggregate,the better the performance . An advantage of aggregate bases is that they contribute the least to the high curling and warping stresses in the slab . Even though aggregate bases are not open-graded, they are more permeable and have a lower friction factor than stabilized bases .The best bases in terms of pavement performance were the permeable bases . Typical base courses have permeabilities ranging from 0 to less than 1 ft/day (0 .3 m/day) ; good permeable bases have permeabilities up to 1000 ft/day (305 m/day) . Specific areas of concern were the high corner deflections and the low load transfer exhibited by the permeable bases . These can affect their long-term performance, so the use of dowel bars might be required . An unexpected benefit of using permeable bases was the reduction in "D" cracking on pavements susceptible to this type of distress .Slab Length For JPCP, the length of slabs investigated ranged from 7 .75 to 30 ft(2.4to9.1m). It was found that reducing the slab length decreased both the magnitude of the joint faulting and the amount of transverse cracking. On pavements with random joint spacings, slabs with joint spacings greater than 18 ft (5.5 m) experienced more transverse cracking than did the shorter slabs .For JRCP, the length of slabs investigated ranged from 21 to 78 ft (6 .4 to 23 .9 m) .Generally, shorter joint spacings performed better, as measured by the deteriorated transverse cracks, joint faulting, and joint spalling . However, several JRCP with long joint spacings performed quite well . In particular, the long jointed pavements in New Jersey, which were constructed with expansion joints, displayed excellent performance .An examination of the stiffness of foundation was made through the use of the radius of relative stiffness, f . Generally speaking, when the ratio L/E, where L is the length of slab, was greater than 5, transverse cracking occurred more frequently . Thisfactor was further examined for different base types . It was found that stiffer base courses required shorter joint spacings to reduce or eliminate transverse cracking .Reinforcement The amount of steel reinforcement appeared to have an effect in controlling the amount of deteriorated transverse cracking . Pavement sections with less than 0.1% reinforcing steel often displayed significant deteriorated transverse cracking.A minimum of 0 .1% reinforcing steel is therefore recommended, with larger amounts required for more severe climate and longer slabs.Joint Orientation Conventional wisdom has it that skewed joints prevent the application of two wheel loads to the joint at the same time and thus can reduce load-associated distresses . The results from the limited sample size in this study were ambiguous, but all of the nondoweled sections with skewed joints had a lower PSR than similar designs with perpendicular joints . The available data provide no definite conclusions on the effectiveness of skewing transverse joints for nondoweled slabs . Skewed joints are not believed to provide any benefit to doweled slabs.Load Transfer Dowel bars were found to be effective in reducing the amount of joint faulting when compared with nondoweled sections of comparable designs. The diameter of dowels had an effect on performance, because larger diameter bars provided better load transfer and control of faulting under heavy traffic than did smaller dowels.It appeared that a minimum dowel diameter of 1 .25 in . (32 mm) was necessary to provide good performance .Nondoweled JPCP slabs generally developed significant faulting, regardless of pavement design or climate . This effect was somewhat mitigated by the use of permeable bases. However, the sections in this group had a much lower number of accumulated ESAL, so no definite conclusions can be drawn yet .Dowel Bar Coatings Corrosion-resistant coatings are needed to protect dowels from the adverse effects of moisture and deicing chemicals .While most of the sections in this study did not contain corrosion-resistant dowel bars, those that did generally exhibited enhanced performance. Very little deteriorated transverse cracking was identified on these sections. In fact, one section in New Jersey with stainless steel-clad dowel bars was performing satisfactorily after 36 years of service .Longitudinal Joint Design The longitudinal joint design was found to be a critical design element.Both inadequate forming techniques and insufficient depths of joint can contribute to the development of longitudinal cracking . There was evidence of the ad vantage of sawing the joints over the use of inserts . The depth of longitudinal joints is generally recommended to be one-third of the actual, notdesigned, slab thickness, but might have to be greater when stabilized bases are used .Joint Sealant Joint sealing appeared to have a beneficial effect on performance . This was particularly true in harsh climates with excessive amounts of moisture . Preformed compression sealants were shown to perform well for more than 15 years under heavy traffic.Except where "D" cracking occurred, pavement sections containing preformed sealants generally exhibited little joint spalling and were in good overall conditions.Rubberized asphalt joint sealants showed good performance for 5 to 7 years.Tied Concrete Shoulders It is generally believed that tied concrete shoulders can reduce edge stresses and corner deflections by providing more lateral supports to the mainline pavement, thus improving pavement performance . Surprisingly, this study showed that, although tied concrete shoulders performed better than asphalt shoulders,many of the tied shoulders were not designed properly and actually contributed to poor performance of the mainline pavement . The tiebars were spaced too far apart ,sometimes at a spacing of 40 in.(1016 mm), and were not strategically located near slab corners to provide adequate support . In some cases, tied concrete shoulders were constructed over a stabilized dense-graded base in a bathtub design, resulting in the poor performance of mainline pavement.Subdrainage The provision of positive subdrainage, either in the form of longitudinal edge drains or the combination of a drainage layer and edge drains, generally reduced the amount of faulting and spalling related to "D" cracking . With few exceptions, the load-associated distresses, especially faulting and transverse cracking, decreased as the drainage characteristics improved . The overall pavement performance can be improved by using an open-graded base or restricting the percentage of fines . A filter layer must be placed below the permeable base, and regular maintenance of the outlets must be provided .译文结构特点对刚性路面性能的影响刚性路面的性能受种种结构特点的影响,如板厚、基层类型、接缝间距、钢筋用量、接风方向、荷载传递、传力杆涂层、纵缝设计、接缝填封料、有拉杆混凝土道肩和地下排水等。

相关文档
最新文档